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Efficient multiprocessor scheduling is essentially the problem of allocating a set of computational jobs 
to a set of processors to minimize the overall execution time. The main issue is how jobs are partitioned 
in which total finishing time and waiting time is minimized. Minimization of these two criteria 
simultaneously, is a multi objective optimization problem. There are many variations of this problem, 
most of which are NP-hard problem, so we must rely on heuristics to solve the problem instances. 
Many heuristic-based approaches have been applied to finding schedules that minimize the execution 
time of computing tasks on parallel processors. Particle swarm optimization (PSO) is currently 
employed in several optimization and search problems due to its ease and ability to find solutions 
successfully. A variant of PSO, called as improved particle swarm optimization (ImPSO) has been 
developed in this paper and is hybridized with the ant colony optimization (ACO) to achieve better 
solutions. The proposed hybrid algorithm effectively exploits the capabilities of distributed and parallel 
computing of swarm intelligence approaches. In addition hybrid algorithm using improved particle 
swarm optimization (ImPSO) with artificial immune system (AIS) is also implemented for the same set of 
problems to compare with the proposed hybrid algorithm (ImPSO with ACO). It was observed that the 
proposed hybrid approach (Improved PSO with ACO) gives better results in experiments and reduces 
finishing and waiting time simultaneously. 
 
Key words: Particle swarm optimization (PSO), improved particle swarm optimization (ImPSO), ant colony 
optimization (ACO), job scheduling, finishing time, waiting time. 

 
 
INTRODUCTION 
 
Scheduling, in general, is concerned with allocation of 
limited resources to certain tasks to optimize few 
performance criterions, like the completion time, waiting 
time or cost of production. Job scheduling problem is a 
popular problem in scheduling area of this kind. The main 
objective of job scheduling problem is to find optimal 
scheduling of the jobs to processors such that the overall 
finishing time is reduced.  The  importance  of  scheduling  
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has increased in recent years due to the extravagant 
development of new process and technologies. 
Multiprocessors have been accepted in vehicles for 
improving computing speeds, cost/performance and 
enhanced reliability or availability. The main reason for 
using a multiprocessor system is to improve the 
performance and to achieve high scalability. Scheduling, 
in multiprocessor architecture, can be defined as 
assigning the tasks of precedence constrained task graph 
onto a set of processors and determine the sequence of 
execution of the tasks at each processor. A major factor 
in the efficient utilization of multiprocessor systems is  the  
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proper assignment and scheduling of computational tasks 
among the processors. 

Total finishing time and waiting time are two 
computable criteria in multiprocessor architecture which 
can be used to evaluate efficiency of proposed 
algorithms. Total finishing time is defined as maximum of 
each processor‟s finishing time which is the time that the 
processor finishes its job. Waiting time is defined as 
average of time that each job waits in ready queue. Most 
of the algorithms reduce only finishing time not the 
finishing and waiting time simultaneously. Simultaneously 
minimizing these two criteria is a multi objective 
optimization (MOO) problem (Elnaz et al., 2008).   

The main objective of MOO algorithms is to find a set of 
solutions which optimally balances the trade-offs among 
the objectives of a multi objective problem (MOP). The 
task is to find a set of non-dominated solutions, referred 
to as the Pareto-optimal set. In the following, domination 
and Pareto-optimal set concepts will be described, but 
first we should define our notations (Engelbrecht, 2005). 
 

Let xm
QP   denote the mx –dimensional search space. 

The search space, P is also referred to as the decision 
space and F ⊆ 𝑃 the feasible space. With no constraints, 
"the feasible space is the same as the search space." Let

 
xmxxxX ,......, 21 referred to as a decision vector. A 

single objective function,  Xfn  is defined as 

QQf nm
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be an objective vector containing mn objective function 

evaluations, O  is referred as the objective space. 
 
 

Domination  
 

A Decision vector, X1 dominates a decision vector, X2 

(denoted by
21 XX  ) if and only if 

  
 X1 is not worse than X2 in all objectives, that is, 

    nnn mnXfXf ......1,21   and  X1 is strictly better 

than X2 in at least one objective, that is,
 

   21:......1 XfXfmn nnn   

 
Similarly, an objective vector, f1 dominates another 
objective vector f2, if f1 is not worse than f2 in all objective 
values and f1 is better than f2 in at least one of the 
objective values. Objective vector dominance is denoted 
by f1 ≺ f2. 

 
 

Pareto-optimal 
 

A Decision vector FX *
is pareto optimal if there does  

 
 
 
 

not exist a decision vector, FXX  *
 that dominates 

it. That is ∄n    *: XfXf nn  . An objective vector 

 Xf *
 is pareto optimal if X is pareto- optimal. 

 
 
Pareto-optimal set 
 
The set of all pareto optimal decision vectors form the 

pareto-optimal set 
*P  that is  |** FXP  ∄

*: XXFX   

 
 
Related works on multiprocessor scheduling 
 
Several research works has been carried out in the past 
decades, in the heuristic algorithms for job scheduling 
and generally, since scheduling problems are NP-hard 
that is, the time required to complete the problem to 
optimality increases exponentially with increasing 
problem size, the requirement of developing algorithms to 
find solution to these problem is of highly important and 
necessary. Some heuristic methods like branch and 
bound and prime and search, Mitten (1970), have been 
proposed earlier to solve this kind of problem. Also, the 
major set of heuristics for job scheduling onto 
multiprocessor architectures is based on list scheduling 
Adam et al. (1974), Lee et al. (1998), Baxter et al. (1989), 
Sih et al. (1990) and Wu et al. (1990). However, the time 
complexity increases exponentially for these conventional 
methods and becomes excessive for large problems. 
Then, the approximation schemes are often utilized to 
find a optimal solution. It has been reported in Adam 
(1974), Baxter (1989) that the critical path list scheduling 
heuristic is within 5% of the optimal solution 90% of the 
time when the communication cost is ignored, while in the 
worst case any list scheduling is within 50% of the 
optimal solution. The critical path list scheduling no 
longer provides 50% performance guarantee in the 
presence of non-negligible intertask communication 
delays. The greedy algorithm is also used for solving 
problem of this kind. 

Lin and Hsu (1990) proposed a stochastic heuristic 
algorithm, simulated annealing for the problem of static 
task assignment scheduling in distributed computing 
systems. The purpose of task assignment scheduling is 
to assign modules of programs over a set of 
interconnected tasks in order to reduce the job 
turnaround time as well as to obtain the best system 
performance. 

Selvakumar and Siva Ram Murthy (1994) presented an 
efficient heuristic algorithm for scheduling precedence 
constrained task graphs with non-negligible inter-task 
communication onto multiprocessors taking contention in 
the communication channels into consideration. The 
proposed algorithm for obtaining  satisfactory  suboptimal  



 
 
 
 
schedules is based on the classical list scheduling 
strategy. It simultaneously exploits the schedule holes 
generated in the processors and in the communication 
channels during the scheduling process in order to 
produce better schedules. The effectiveness of the 
proposed algorithm is demonstrated by comparing with 
two competing heuristic algorithms. 

Ahmad and Dhodhi (1996) used a problem-space 
genetic algorithm (PSGA) that combines the list 
scheduling with the genetic algorithm for the static 
scheduling of directed acyclic graphs. Lee et al. (1997) 
considered the problem of assigning the tasks of a 
distributed application to the processors of a distributed 
system such that the sum of execution and 
communication costs is minimized. A modeling technique 
is developed that transforms the assignment problem in 
an array or tree into a minimum-cut maximum-flow 
problem. The assignment problem is the solved for a 
general array or tree network in polynomial time. 

Graham (2003) proposed the ant colony optimization 
algorithm for solving the static multiprocessor scheduling 
problem along with the combination of the local search 
operators. Wu et al. (2004) presented a representation 
for the task scheduling using Genetic Algorithm in which 
each individual consists of series of cells. Each cell is a 
task-processor pair (t, p) for which task „t‟ is assigned to 
processor „p‟. The number of cells can vary from one 
individual to the next and therefore different individuals 
can have different lengths. If the prerequisites are not 
satisfied, a penalty is assigned to the respective 
individual. 

A new genetic algorithm called genetic convex cluster 
algorithm is proposed by Sanchez and Trystram (2005) to 
solve the task assignment with large communication 
delays. It uses the convex cluster property and is well 
suited for parallel systems like cluster of computers with 
hierarchical communications. 

Tzu et al. (2006) proposed a solution to the constrained 
scheduling problem in display system operation, using 
the particle swarm optimization. In particle encoding, the 
authors used a one- dimensional 0-1 array mapping of a 
three- dimension matrix of a candidate solution for each 
particle and then used sigmoid function to produce 
probability threshold for velocity updating in each particle. 
The results show that the proposed approach is capable 
of obtaining higher quality solution efficiently in 
constrained scheduling problems. 

Lei et al. (2008) adopted a heuristic approach based on 
particle swarm optimization for solving task scheduling 
problem in a grid environment. Each particle is 
represented by a possible solution and the position vector 
is transformed from the continuous variable. The 
approach aims to generate an optimal schedule so as to 
get the minimum completion time while completing the 
tasks. The results of simulated experiments show that the 
particle swarm optimization algorithm is able to get the 
better schedule than genetic algorithm. 
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Visalakshi et al. (2009) proposed a hybrid particle 
swarm optimization (HPSO) method for solving the task 
assignment problem. HPSO yields better results 
compared with normal PSO and also the proposed 
method is compared with GA.  

Gagne et al. (2002) proposed an Ant Colony 
Optimization Algorithm for the scheduling problem and 
showed that it performs competitively with the best 
results of previous methods like genetic algorithm and 
simulated annealing. 

Gupta and Smith (2006) proposed two heuristics, a 
greedy randomized adaptive search procedure (GRASP) 
and a problem space-based local search heuristics 
performs equally well when compared to ant colony 
optimization of Gagne et al. (2002) while taking much 
less computational time. 

In the past decades basic PSO and ACO have used to 
solve the scheduling problem. Basic PSO easily suffers 
from the partial optimism, which causes the less exact at 
the regulation of its speed and the direction, for this 
reason to improve the speed of convergence and quality 
of solution found by the PSO many variant PSO have 
been developed. Similarly, ACO also takes more 
convergence time. Hence, blending PSO with other 
intelligent optimization algorithm, that is, combining the 
advantages of the PSO with the advantages of other 
intelligent optimization algorithms produces results with 
minimum convergence time.  

In this paper a new hybrid algorithm based on improved 
PSO (ImPSO) and ACO is developed to solve job 
scheduling in multiprocessor architecture with the 
objective of minimizing the job finishing time and waiting 
time.  
 
 
JOB SCHEDULING IN MULTIPROCESSOR 
ARCHITECTURE 
 
Job scheduling, considered in this paper, is an 
optimization problem in operating system in which the 
ideal jobs are assigned to resources at particular times 
which minimizes the total length of the schedule. Also, 
multiprocessing is the use of two or more central 
processing units within a single computer system. This 
also refers to the ability of the system to support more 
than one processor or the ability to allocate tasks 
between them. In multiprocessor scheduling, each 
request is a job or process. A job scheduling policy uses 
the information associated with requests to decide which 
request should be serviced next. All requests waiting to 
be serviced are kept in a list of pending requests. 
Whenever scheduling is to be performed, the scheduler 
examines the pending requests and selects one for 
servicing. This request is handled over to server. A 
request leaves the server when it completes or when it is 
preempted by the scheduler, in which case it is put back 
into  the  list   of  pending   requests.  In  either   situation,  
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Figure 1. A Schematic of job scheduling. 
 
 
 

scheduler performs scheduling to select the next request 
to be serviced. The scheduler records the information 
concerning each job in its data structure and maintains it 
all through the life of the request in the system. The 
schematic of job scheduling in a multiprocessor 
architecture is shown in Figure 1. 
 
 
Problem definition 
 
The objective function defined for this problem as a 
weighted sum of the objectives. Using aggregation 
method MOP is redefined as, 
 

Minimize 


nm

n

nn xf
1

)(                           (1) 

 
Subject to  

   gt mtXg ,.....1,0   

   hggt mmmtXh  ,.....1,0  

   xm
XXX maxmin ,  

  nn mn ,......1,0 
 

 

Where gt and ht are the inequality and equality 
constraints. [Xmin, Xmax] represents the boundary 
constraints. 

The job scheduling problem of a multiprocessor 
architecture is a scheduling problem to partition the jobs 
between different processors by attaining minimum 
finishing time and minimum waiting time simultaneously. 
If N different processors and M different jobs are 
considered, the search space is given by Equation 2, Liu 
et al. (2005). 
 

Size of search space =  
 
 MN

NM

!

!
            (2) 

Earlier, longest processing time (LPT), and shortest 
processing time (SPT) and traditional optimization 
algorithms was used for solving these type of scheduling 
problems Sivanandam et al. (2007), Amirthagadeswaran 
et al. (2005), Sha et al. (2007), Dobsonet et al. (1984), 
Coffmanet al. (1972). 

When all the jobs are in ready queue and their 
respective time slice is determined, LPT selects the 
longest job and SPT selects the shortest job, thereby 
having shortest waiting time. Thus SPT is a typical 
algorithm which minimizes the waiting time. Basically, the 
total finishing time is defined as the total time taken for 
the processor to complete its job and the waiting time is 
defined as the average of time that each job waits in 
ready queue. LPT and SPT reduces finishing time and 
Waiting time respectively. Minimization of finishing time 
and waiting time simultaneously is a multi objective 
optimization problem. Two objective of this problem can 
be unified by using waited sum, Zhou et al. (1999) as is 
presented in the following, which is a derivative of 
Equation 1. 
 
f=Total finishing Time + β Waiting Time                         (3) 
 
„β‟ is a weight coefficient which can be adjusted to 
compromise between two minimization objectives. A 
smaller β attaches relatively more emphasis on the 
minimization of total finishing time. While a larger β gives 
relatively more emphasis on the minimization of waiting 
time. In this paper an attempt is made to solve job 
scheduling biobjective optimization problem by using a 
hybrid algorithm using improved particle swarm 
optimization and ant colony optimization. 
 
 

OPTIMIZATION TECHNIQUES 
 
Several heuristic traditional algorithms were used for 
solving the job scheduling in a multiprocessor 
architecture, which includes genetic algorithm (GA), 
particle swarm optimization (PSO) algorithm. In this paper  
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a new hybrid proposed improved PSO with ant colony 
optimization (ACO) is suggested for the job scheduling 
NP-hard problem. The following sections discuss on the 
application of these techniques to the considered 
problem Thanushkodi et al. (2011a and b).  
 
 

Genetic algorithm for scheduling 
 

Genetic algorithms are a kind of random search 
algorithms coming under evolutionary strategies which 
uses the natural selection and gene mechanism in nature 
for reference. The key concept of genetic algorithm is 
based on natural genetic rules and it uses random search 
space. GA was formulated by J Holland with a key 
advantage of adopting population search and exchanging 
the information of individuals in population  

Gur et al. (2004) introduces a polynomial time solution 
algorithm for the problem which appears to be 
surprisingly simple. 
Amirthagadeswaran et al. (2005) used Genetic Algorithm 
to solve job –based , operation-based and proposed 
methods of representation and schedule deduction with 
the makespan objective. Computational experiments 
show better results with appreciable reduction in 
computer processing time. 

Tung-Kuan et al (2005), suggests an improved genetic 
algorithm, called the hybrid Taguchi-genetic algorithm 
(HTGA), is proposed to solve the job-shop scheduling 
problem (JSP). The HTGA approach is a method of 
combining the traditional genetic algorithm (TGA), which 
has a powerful global exploration capability, with the 
Taguchi method, which can exploit the optimal offspring. 
The Taguchi method is inserted between crossover and 
mutation operations of a TGA. Then, the systematic 
reasoning ability of the Taguchi method is incorporated in 
the crossover operations to systematically select the 
better genes to achieve crossover, and consequently 
enhance the genetic algorithm. Therefore, the proposed 
HTGA approach possesses the merits of global 
exploration and robustness. The computational 
experiments show that the proposed HTGA approach can 
obtain both better and more robust results than other GA-
based methods reported recently. 

Qing-dao-er-ji et al (2010) Job shop scheduling 
problem is a typical NP-hard problem. In this paper, new 
designed crossover and mutation operators based on the 
characteristic of the job shop problem itself are 
specifically designed. Based on these, an improved 
genetic algorithm is proposed. The computer simulations 
are made on a set of benchmark problems and the 
results indicate the effectiveness of the proposed 
algorithm. The algorithm used to solve scheduling 
problem is thus explained in steps. 
 
 

Step 1  
 

Initialize the population to start the genetic algorithm.  For  
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initializing population, it is necessary to input number of 
processors, number of jobs and population size.  
 
 
Step 2  
 
Evaluate the fitness function with the generated 
populations. For the problem defined, the fitness function 
is given by, 
 

















Vf

TimeWaiting

VfTimeFinishingTotalV

F

0

           (4) 

 
Where „V „should be set to select an appropriate positive 
number for ensuring the fitness of all good individuals to 
be positive in the solution space.  
 
 
Step 3 
 
Perform selection process to select the best individual 
based on the fitness evaluated to participate in the next 
generation and eliminate the inferior. The job with the 
minimal finishing time and waiting time is the best 
individual corresponding to a particular generation.  
 
 

Step 4 
 
For JSP problem, of this type, two –point crossover is 
applied to produce a new offspring. Two crossover points 
are generated uniformly in the mated parents at random, 
and then the two parents exchange the centre portion 
between these crossover points to create two new 
children. Newly produced children after crossover are 
passed to the mutation process.  
 
 

Step 5 
 
In this step, mutation operation is performed to further 
create new offsprings, which is necessary for adding 
diversity to the solution set. Here mutation is done, using 
flipping operation. Generally, mutation is adopted to avoid 
loss of information about the individuals during the 
process of evolution. In JSP problem, mutation is 
performed by setting a random selected job to a random 
processor.  
 
 

Step 6 
 
Test for the stopping condition. Stopping condition may 
be obtaining the best fitness value with minimum finishing 
time and minimum waiting time for the given objective 
function of a JSP  problem  or  number  of  generations. If  
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Figure 2. Flowchart for genetic algorithm to JSP. 

 
 
 
stopping condition satisfied then go to step 7 else go to 
step 2.  
 
 
Step 7 
 
Declare the best individual in the complete generations. 
Stop.  The flowchart depicting the approach of genetic 
algorithm for JSP is as shown in Figure 2. 

Genetic Algorithm was invoked with the number of 
populations to be 100 and 900 generations. The 
crossover rate was 0.1 and the mutation rate was 0.01. 
Randomly the populations were generated and for 
various trials of the number of processors and jobs, the 
completed fitness values of waiting time and finishing 
time as shown in Table 1. 

From the Figure 3, it can be observed that for equal no 
of jobs for different processors, the finishing time has got 
reduced. The finishing time and waiting time is observed 
based on the number of jobs allocated to each processor. 

Also, shows the variation in finishing time and waiting 
time for the assigned number of jobs and processors. 
 
 
Particle swarm optimization for scheduling 
 
The particle swarm optimization (PSO) technique 
appeared as a promising algorithm for handling the 
optimization problems. PSO is a population-based 
stochastic optimization technique, inspired by social 
behavior of bird flocking or fish schooling Thanushkodi et 
al. (2009), Shi et al. (1999) and Gur et al. (2004). PSO is 
inspired by the ability of flocks of birds, schools of fish, 
and herds of animals to adapt to their environment, find 
rich sources of food, and avoid predators by 
implementing an information sharing approach. PSO 
technique was invented in the mid-1990s while 
attempting to simulate the choreographed, graceful 
motion  of  swarms  of  birds  as  part  of a socio cognitive 
study investigating the notion of collective  intelligence  in  

 

Initialize the population input number of processors, number of jobs and population size 
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Table 1. Comparison of job using GA, PSO, Proposed Improved PSO and Proposed Hybrid Algorithm (ImPSO with ACO). 
  

No of 
processors 

No of 
jobs 

GA PSO 
Proposed improved PSO 

(ImPSO) 
Proposed hybrid 
(ImPSO with AIS) 

Proposed hybrid 
(ImPSO with ACO) 

WT FT WT FT WT FT WT FT WT FT 

2 20 31.38 61.80 30.10 60.52 29.12 57.34 22.16 52.64 18.02 48.92 

3 20 47.01 57.23 45.92 56.49 45.00 54.01 38.65 48.37 35.12 48.00 

3 40 44.31 70.21 42.09 70.01 41.03 69.04 34.26 61.20 30.16 57.32 

4 30 32.91 74.26 30.65 72.18 29.74 70..97 23.92 65.47 21.87 62.45 

4 50 35.72 76.21 32.79 71.20 30.06 70.62 25.96 69.83 24.63 67.45 

5 45 38.03 72.65 34.91 70.09 33.65 69.04 27.56 64.96 26.21 60.87 

5 60 42.93 77.29 39.61 75.42 36.56 72.31 30.19 69.21 28.42 64.26 

 
 
 

 
 

Figure 3. Chart for job scheduling in multiprocessor with different number of processors and 
different number of jobs using GA. 

 
 
 
biological populations.  

The basic idea of the PSO is the mathematical 
modelling and simulation of the food searching activities 
of a swarm of birds (particles). In the multi-dimensional 
space where the optimal solution is sought, each particle 
in the swarm is moved towards the optimal point by 
adding a velocity with its position. The velocity of a 
particle is influenced by three components, namely, 
inertial momentum, cognitive, and social. The inertial 
component simulates the inertial behaviour of the bird to 
fly in the previous direction. The cognitive component 
models the memory of the bird about its previous best 
position, and the social component models the memory 
of the bird about the best position among the particles.  

PSO procedures based on the above concept can be 
described as follows. Namely, bird flocking optimizes a 
certain objective function. Each agent knows its best 
value so far (pbest) and its XY position. Moreover, each 
agent knows the best value in the group (gbest) among 
pbests. Each agent tries to modify  its  position  using  the 

current velocity and the distance from the pbest and 
gbest. Based on the above discussion, the mathematical 
model for PSO is as follows: 
 

Velocity update equation is given by: 
 

)()( 2211 ibestibestii SgrCSPrCVwV
ii
  (5) 

 

Using Equation 5, a certain velocity that gradually gets 
close to pbests and gbest can be calculated. The current 
position (searching point in the solution space) can be 
modified by the following equation: 
  

iii VSS 1               (6) 

 

Where, Vi : velocity of particle i, Si: current position of the 
particle, w: inertia weight, C1: cognition acceleration 
coefficient, C2 : social acceleration coefficient, Pbest i : 

own best position of particle i, gbest i : global best position 
among the group of  particles, r1, r2 : uniformly  distributed  
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Figure 4. Flow diagram of PSO. 

 
 
 
random numbers in the range [0 to 1], si : current 
position, s i + 1 : modified position, v i : current velocity, v i +1 

: modified velocity, vpbest : velocity based on pbest, vgbest : 
velocity based on gbest. 

Figure 4 shows the searching point modification of the 
particles in PSO. The position of each agent is 
represented by XY-axis position and the velocity 
(displacement vector) is expressed by vx (the velocity of 
X-axis) and vy (the velocity of Y-axis). Particle are 
change their searching point from Si to Si +1 by adding 
their updated velocity Vi with current position Si. Each 
particle tries to modify its current position and velocity 
according to the distance between its current position Si 
and V pbest, and the distance between its current 
position Si and V gbest.  

The General particle swarm optimization was applied to 
the same set of processors with the assigned number of 
jobs, as done in case of genetic algorithm. The number of 
particles-100, number of generations = 250, the values of 
c1 = c2 = 1.5 and ω = 0.5. Figure 3 shows the completed 
finishing time and waiting time for the respective number 
of processors and jobs utilizing PSO. 

It is noted from Figure 5 that for the same number of 
processors and jobs, the waiting time and finishing time 
using PSO has constructively reduced with less number 
of generations in comparison with GA Also, Figure 5 
shows the variation in finishing time and waiting time for 
the assigned number of jobs and processors using 
particle swarm optimization. 
 
 
ARTIFICIAL IMMUNE SYSTEM  
 
Biological immune systems can be viewed as a powerful 
distributed information processing systems, capable of 
learning and self-adaptation. AIS is rapidly emerging, 
which is inspired by theoretical immunology and 
observed immune functions, principles, and models. An 

immune system is a naturally occurring event response 
system that can quickly adapt to changing situations. The 
efficient mechanisms of immune system, including clonal 
selection, learning ability, memory, robustness and 
flexibility, make AIS s useful in many applications. AIS 
appear to offer powerful and robust information 
processing capabilities for solving complex problems Yu 
et al. (2001), Yang et al. (2001), Yang et al. (2000), 
Coello et al. (2003) and Hong-Wei et al. (2008). The AIS 
based algorithm is built on the principles of clonal 
selection, affinity maturation, and the abilities of learning 
and memory. 
 
 
AIS-Based scheduling algorithm 
 
The brief outline of the proposed algorithm based on AIS 
can be described as follows: 
 
 
Step 1 
 
Initialize pop_size antibodies (PSA) as an initial 
population by using the proposed initialization algorithm, 
where pop_size denotes the population size. 
 
 
Step 2 
 
Select m antibodies from the population by the 
proportional selection model and clone them to a clonal 
library. 
 
 
Step 3 
 
Perform the mutation operation for each of the antibodies 
in the clonal library. 
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Figure 5. Chart for job scheduling in multiprocessor with different number of processors and different 
number of jobs using PSO. 

 
 
 
Step 4 
 
Randomly select s antibodies from the clonal library to 
perform the operation of vaccination. 
 
 

Step 5 
 
Replace the worst s antibodies in the population by the 
best s antibodies from the clonal library. 
 
 

Step 6 
 
Perform the operation of receptor editing if there is no 
improvement of the highest affinity degree for a certain 
number of generations G. 
 
 
Step 7 
 
Stop if the termination condition is satisfied; else, repeat 
Steps 2 to7. 

In this paper, the parameters are taken as pop_size = 
50, m = 30, s = 10, and G = 80. 
 

 
ANT COLONY OPTIMIZATION  
 
Ant colony metaheuristic is a concurrent algorithm in 
which a colony of artificial ants cooperates to find 
optimized solutions of a given problem. The ant colony 
optimization (ACO) algorithm was introduced by Dorigo et 

al. (2006), Dorigo et al. (2007), Dorigo et al. (2002) and 
Shelokar  (2002). It is a probabilistic technique for solving 
computational problems, which can be reduced to finding 
good paths through graphs.  

They are inspired by the behavior of ants in finding 
paths from the colony to the food. In the real world, ants 
initially wander randomly, and upon finding food, they 
return to their colony while laying down pheromone trails. 
If other ants find such a path, they are likely not to keep 
travelling at random, but rather follow the trail, returning 
and reinforcing it if they eventually find food. However, 
the pheromone trail starts to evaporate over time, 
therefore reducing its attractive strength. The more time it 
takes for an ant to travel down the path and back again, 
the quicker it takes for the pheromones to evaporate. A 
short path, by comparison, gets marched over faster and 
thus the pheromone density remains high as it is laid on 
the path as fast as it can evaporate. Pheromone 
evaporation also has the advantage of avoiding the 
convergence to a locally optimal solution. If there were no 
evaporation at all, the paths chosen by the first ants 
would tend to be excessively attractive to the ants 
following ones. In that case, the exploration of the 
solution space is constrained. Thus, when one ant finds a 
short path from the colony to a food source (that is, a 
good solution), other ants are more likely to follow that 
path, and positive feedback eventually leaves all the ants 
following a single path.  

ACO algorithms have an advantage over simulated 
annealing and GA approaches when the graph may 
change dynamically, since the ant colony algorithm can 
be run  continuously  and  adapt  to  changes in real time. 
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Figure 6. Flow chart for ant colony optimization algorithm.  

 
 
 
General ant colony optimization (ACO) algorithm 
 
Step 1: Initialize ACO parameters; 
Step 2: Generate solutions from each ants‟ random walk; 
Step 3: Update pheromone intensities; 
Step 4: go to step 3, and repeat until convergence or a 
stopping condition is satisfied. The flow chart for the ant 
colony optimization (ACO) algorithm is depicted in Figure 
6. 
 
 

ACO for job scheduling 
 
Consider a n× n matrix named   as pheromone 

variables, in which „n‟ is number of jobs.  
  (i, j) is desirability of selecting job j just after job i. 

Initially all elements of matrix have the same and small 
value. 

Then iterative ant colony algorithm is executed: 
 

 1. Generate ant (or ants) 
 2. Loop for each ant (until complete scheduling of tasks) 
- Select next task with respect to pheromone variables of 
ready tasks. 
 3. Deposit pheromone on visited states 
 4. Daemon activities 
 5. Evaporate pheromone 

 At first, a list with length of n, is created as ant. Initially it 
is empty and will be completed during next stage. In the 
second stage, there is a loop for each ant. At each 
iteration, ant must select a job from ready list with regard 
to values of pheromone variables of jobs in the ready list 
using a probabilistic decision making.  

For ant k, probability of selecting job j just after 
selecting job i is obtained by using: 

  

 ),( jiP k
 = 


Nk

ki

ji
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),(




                          (7) 

 
where N is set of ready jobs. 

Then a random number is generated and next job is 
selected with respect to the generated number. It is clear 
that jobs which have bigger pheromone value, have 
bigger chance to select. Selected job is appended to the 
ant list, removed from ready list. These operations are 
repeated until complete scheduling of all jobs, in the other 
words, completing the ant's list. In the third stage, tasks 
are extracted one by one from ant's list, are committed to 
processor that supplies the earliest start time. Maximum 
finish time of the last tasks on all over processors is 
calculated which it is desirability of obtained scheduling of 
the  ant.  With  respect  to   this   desirability,  measure  of  
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pheromone depositing on the visited states is calculated 
by: 
 

k

k

ij
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1
  if (i, j)   T

k                                    
 (8) 

 

where L
k
 is finish time obtained by ant k and T

k 
is 

executed tour of this ant. 

That is, ij will be deposited on  (i, j) only if job j would 

be selected just after task i. otherwise,  (i, j) will be 

remained unchanged. In the forth stage, the best ant until 
now (Ant

min
), is selected as the best solution. Extra 

pheromone is deposited on states visited by the best ant 
by using: 
 

min

min

min ),(
1

Tjiif
L

ij              (9) 

 

In the last stage, by using (9), pheromone variables are 
decreased simulating pheromone evaporation in real 
environments. It must be taken to avoid premature 
convergence (stagnation) because of local minima: 
  

),()1(),( jiji             (10) 

 

where,   is evaporation rate in the range of [0, 1]. 

 
 

PROPOSED IMPROVED PARTICLE SWARM 
OPTIMIZATION (IMPSO) FOR SCHEDULING 
 
In this new proposed improved PSO (ImPSO) having 
better optimization result compare to general PSO by 
splitting the cognitive component of the general PSO into 
two different component. The first component can be 
called good experience component. This means the bird 
has a memory about its previously visited best position. 
This is similar to the general PSO method. The second 
component is given the name by bad experience 
component. The bad experience component helps the 
particle to remember its previously visited worst position. 
To calculate the new velocity, the bad experience of the 
particle also taken into consideration. On including the 
characteristics of Pbest and Pworst in the velocity 
updation process along with the difference between the 
present best particle and current particle respectively, the 
convergence towards the solution is found to be faster 
and an optimal solution is reached in comparison with 
conventional PSO approaches. This infers that including 
the good experience and bad experience component in 
the velocity updation also reduces the time taken for 
convergence. 

The new velocity update equation is given by, Equation 
11: 

 
Vi = w × Vi + C1g × r1 × (P best i – Si) × P best i + C1b × r2 × 
(Si –P worst i) × P worst i + C2 × r3 × (Gbest i – Si)              (11)  
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Where, C1g: acceleration coefficient, which accelerate the 
particle towards its best position; C1b: acceleration 
coefficient, which accelerate the particle away from its 
worst position; P worst i : worst position of the particle i;  
 r1, r2, r3 : uniformly distributed random numbers in the 
range [0 to 1]. 

The positions are updated using Equation 5. The 
inclusion of the worst experience component in the 
behaviour of the particle gives the additional exploration 
capacity to the swarm. By using the bad experience 
component; the particle can bypass its previous worst 
position and try to occupy the better position. Figure 7 
shows the concept of ImPSO searching points. 

The algorithmic steps for the Improved PSO is as 
follows: 

 
Step 1: Select the number of particles, generations, 
tuning accelerating coefficients C1g , C1b , and C2 and 
random numbers r1, r2, r3 to start the optimal solution 
searching. 
 
Step 2: Initialize the particle position and velocity. 
 
Step 3: Select particles individual best value for each 
generation. 
 
Step 4: Select the particles global best value, i.e. particle 
near to the target among all the particles is obtained by 
comparing all the individual best values.  
 
Step 5: Select the particles individual worst value, i.e. 
particle too away from the target.  
 
Step 6: Update particle individual best (p best), global 
best (g best), particle worst (P worst) in the velocity 
Equation 11 and obtain the new velocity. 
 
Step 7: Update new velocity value in the Equation 5 and 
obtain the position of the particle. 
 

Step 8: Find the optimal solution with minimum „F‟ by the 
updated new velocity and position. 
 
The flowchart for the proposed model formulation 
scheme is shown in Figure 8. The proposed improved 
particle swarm optimization approach was applied to this 
multiprocessor scheduling problem. As in this case, the 
good experience component and the bad experience 
component are included in the process of velocity 
updation and the finishing time and waiting time 
computed are shown in Table 1. 

The same number of particles and generations as in 
case of general PSO is assigned for Improved PSO also. 
It is observed in case of proposed improved PSO, the 
finishing time and waiting time has been reduced in 
comparison with GA and PSO. This is been achieved by 
the introduction of bad experience and good experience 
component  in  the  velocity  updation   process.  Figure 9  
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Figure 7. Concept of Improved Particle Swarm Optimization 
search point. 

 
 
 

shows the variation in finishing time and waiting time for 
the assigned number of jobs and processors using 
improved particle swarm optimization. 
 
 
HYBRID ALGORITHM (IMPSO WITH AIS) FOR JOB 
SCHEDULING 
 

The proposed improved PSO algorithm is independent of 
the problem and the results obtained using the improved 
PSO can be improved with AIS.  

The steps involved in the proposed hybrid algorithm is 
as follows: 

 
Step 1: Initialize Population size of the antibodies as PSA. 
 
Step 2: Initialize the number of particles N and its value 
may be generated randomly. Initialize swarm with 
random positions and velocities.  
 

Step 3: Compute the finishing time for each and every 
particle using the objective function and also find the 
“pbest“, that is, If current fitness of particle is better than “ 
pbest” the set “ pbest” to current value. 

If “pbest” is better than “gbest then set “gbest” to 
current particle fitness value. 
 
Step 4: Select particles individual “pworst” value, that is, 
particle moving away from the solution point. 
 

Step 5: Update velocity and position of particle as per 
Equation 5, 10. 
 

Step 6: If best particle is not changed over a period of 
time, Select „m‟ antibodies out of the population PSA by 
the  proportional  selection  model  and  clone  them  to  a  
colonal library. 

Step 7: Select m antibodies from the population by the 
proportional selection model and clone them to a clonal 
library. 

 
Step 8: Perform the mutation operation for each of the 
antibodies in the clonal library. 

 
Step 9: Randomly select s antibodies from the clonal 
library to perform the operation of vaccination. 
 
Step 10: Replace the worst s antibodies in the population 
by the best s antibodies from the clonal Library. 

 
Step 11: Terminate the process if maximum number of 
iterations reached or optimal value is obtained, else go to 
step 3. The flow chart for the hybrid algorithm is shown in 
Figure 10. 

 
The proposed hybrid algorithm is applied to the 
multiprocessor scheduling algorithm. In this algorithm 100 
particles are considered as the initial population. The 
values of C1g, C1b and C2 are 1.5, w = 0.5. The values 
are utilized as per the previous literatures and as 
suggested by the author of PSO (Kenedy and Eberhart, 
1995). The finishing time and waiting time completed for 
the random instances of jobs are as shown in Table 1. 

The same number of generations as in the case of 
improved PSO is assigned for the proposed hybrid 
algorithm. It is observed, that in the case of proposed 
hybrid algorithm, there is a drastic reduction in the 
finishing time and waiting time of the considered 
processors and respective jobs assigned to the 
processors in comparison with the general PSO and 
improved PSO. Thus combining the effects of the AIS, 
with improved PSO, better solutions have been achieved. 
Figure 11 shows the variation in finishing time and waiting  
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Figure 8. Flowchart for job scheduling using Improved PSO. 
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Figure 9. Chart for job scheduling in multiprocessor with different number of 
processors and different number of jobs using ImPSO. 

 
 
 
time for the assigned number of jobs and processors 
using Hybrid algorithm. 
 
 
PROPOSED HYBRID ALGORITHM (IMPSO WITH 
ACO) FOR JOB SCHEDULING 
 
The proposed improved PSO algorithm is independent of 
the problem and the results obtained using the improved 
PSO can be further improved with Ant Colony 
Optimization (ACO).  

The steps involved in the proposed hybrid algorithm are 
as follows: 

 
Step 1: Initialize ACO parameters. 
 
Step 2: Initialize the number of particles N and its value 
may be generated randomly. Initialize swarm with 
random positions and velocities.  
 
Step 3: Compute the finishing time for each and every 
particle using the objective function and also find the 
“pbest “ thar is, If current fitness of particle is better than “ 
pbest” the set “ pbest” to current value. 

If “pbest” is better than “gbest then set “gbest” to 
current particle fitness value. 

 
Step 4: Select particles individual “pworst” value that is, 
particle moving away from the solution point. 
 
Step 5: Update velocity and position of particle as per 
Equation 5, 11.  

 
Step 6: If best particle is not changed over a period of 
time, (a) Generate solutions from each ants‟ random 
walk. 

Step 7: Update pheromone intensities. 
 

Step 11: Terminate the process if maximum number of 
iterations reached or optimal value is obtained, else go to 
step 3. The flow chart for the hybrid algorithm is shown in 
Figure 12. 
 

The proposed hybrid algorithm is applied to the 
multiprocessor scheduling algorithm. In this algorithm 100 

particles are considered as the initial population. The 
values of C1 and C2 are 1.5. The finishing time and 
waiting time completed for the random instances of jobs 
are as shown in Table 1.  

The same number of generations as in the case of 
improved PSO is assigned for the proposed hybrid 
algorithm. It is observed, that in the case of proposed 
hybrid algorithm, there is a drastic reduction in the 
finishing time and waiting time of the considered 
processors and respective jobs assigned to the 
processors in comparison with the general PSO and 
improved PSO. Thus combining the effects of the Ant 
Colony Optimization (ACO) and improved PSO, better 
solutions have been achieved. Figure 13 shows the 
variation in finishing time and waiting time for the 
assigned number of jobs and processors using Hybrid 
algorithm.  
 
 

DISCUSSION 
 

The growing heuristic optimization techniques have been 
applied for job scheduling in multiprocessor architecture. 
Table 1 shows the completed waiting time and finishing 
time for GA, PSO, proposed improved PSO, proposed 
hybrid algorithm and conventional longest processing 
time (LPT) and Shortest processing time (SPT) algorithm. 

In this paper, the four intelligent algorithms (GA, PSO, 
AIS,  and  ACO)  have  been  involved.  These  intelligent  
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Figure 10. Flowchart for job scheduling using Hybrid algorithm 
(Improved PSO with AIS) for job  scheduling in Multiprocessor 
Architecture. 
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Figure 11. Chart for job scheduling in multiprocessor with different number of processors and 
different number of jobs using Hybrid algorithm (Improved PSO with AIS). 

 
 
 
algorithms, has been applied to the mentioned 
scheduling problem either individually (GA or PSO) or 
hybridized (AIS, ACO). Based on the convergence to the 
solutions and the minimization of the objective function, 
the validity of the considered algorithms is enforced. GA 
and PSO involve more time in comparison with that of the 
two said hybridized approaches. Also due to the 
behavioral and convergence characteristics, the 
proposed improved PSO with ACO provides a better 
solution. The problems values are randomly generated.  

In LPT algorithm, Friesen et al. (1987,) Coffmanet al. 
(1972) it is noted that the waiting time is drastically high 
in comparison with the heuristic approached and in SPT 
with the heuristic approaches and in SPT algorithm, the 
finishing time is drastically high. Genetic algorithm 
process was run for about 900 generations and the 
finishing time and waiting time has been reduced 
compared to LPT and SPT algorithms. Further the 
introduction of general PSO with the number of particles 
100 and within 250 generations minimized the waiting 
time and finishing time considerably with Genetic 
Algorithm (GA). The proposed improved Particle Swarm 
Optimization (PSO) with the good (pbest) and bad 
(pworst) experience component involved with the same 
number of particles and generations as in comparison 
with the general Particle Swarm Optimization (PSO), 
minimized the waiting time and finishing time of the 
processors with respect to all the other considered 
algorithms.  

The Improved Particle Swarm Optimization (ImPSO) 
combined with the concept of Artificial Immune System, a 
hybrid algorithm was proposed and it has reduced the 
finishing   time   and  waiting  time.  In   Artificial   Immune 

System (AIS), the colonal library consists of the pool of 
antibodies are identified and replaced with the best 
antibodies in a manner of how best and worst particles 
are included in Particle Swarm Optimization.  

Further, Improved Particle Swarm Optimization 
(ImPSO) is combined with Ant Colony Optimization 
(ACO) and a new hybrid algorithm proposed. The new 
hybrid algorithm reduces finishing and waiting time 
drastically. In ACO each ant incrementally constructs a 
solution to the problem. When an ant complete solution, 
or during the construction phase, the ant evaluates the 
solution and modifies the trail value on the components 
used in its solution. Ants deposit a certain amount of 
pheromone on the components; that is, either on the 
vertices or on the edges that they traverse. The amount 
of pheromone deposited may depend on the quality of 
the solution found. Subsequent ants use the pheromone 
information as a guide toward promising regions of the 
search space. Ants adaptively modify the way the 
problem is represented and perceived by other ants, but 
they are not adaptive themselves.  

Thus based on the results, it can be observed that the 
proposed hybrid algorithm gives better results than the 
conventional methodologies LPT, SPT and other heuristic 
optimization techniques Genetic Algorithm (GA), General 
Particle Swarm Optimization (PSO) and Proposed 
Improved Particle Swarm Optimization (ImPSO). This 
work was carried out in Intel Pentium i3core processors 
with 2 GB RAM and it took around 68 seconds by the 
CPU for the complete simulation of 451 generations. 

Thus, when independently the Improved PSO takes 
more convergence time, the hybrid Improved Particle 
Swarm Optimization along with Ant Colony  Optimization,  
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Figure 12. Flowchart for job scheduling using Improved PSO with ACO. 
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Figurer 13. Chart for job scheduling in multiprocessor with different number of processors and 
different number of jobs using Hybrid algorithm (Improved PSO with ACO). 

 
 
 
reduces the finishing and waiting time of the jobs. 
 
 
CONCLUSION  
 
In this paper, a new hybrid algorithm based on the 
concept of Ant Colony Optimization and proposed 
improved particle swarm optimization has been 
developed and applied to multiprocessor job shop 
scheduling. Ant Colony Optimization has positive 
feedbacks for rapid discovery of good solutions and a 
simple implementation of pheromone-guided will improve 
the performance of Improved Particle Swarm 
Optimization (ImPSO). It has been proven that Improved 
Particle Swarm Optimization was able to discover 
reasonable quality solutions much faster than other 
evolutionary algorithms. However, Particle Swarm 
Optimization does not possess the ability to improve 
upon the quality of the solutions as the number of 
generations is increased.  

In our application of Improved Particle Swarm 
Optimization / Ant Colony Optimization approach, a 
simple pheromone-guided search mechanism of ant 
colony was implemented which acted locally to 
synchronize positions of the particles in Particle Swarm 
Optimization to attain the feasible domain of the objective 
function faster.  

The proposed algorithm partitioned the jobs in the 
processors by attaining minimum waiting time and 
finishing time in comparison with the other algorithms, 
longest processing time, shortest processing time, 
genetic algorithm, particle swarm optimization and also 
the proposed  particle  swarm   optimization.  The    worst 

component being included along with the best component 
and Ant Colony Optimization tends to minimize the 
waiting time and finishing time, by its cognitive behavior 
drastically. Thus the proposed algorithm (ImPSO with 
ACO), for the same number of generations, has achieved 
better results.  
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