
Scientific Research and Essays Vol. 7(20), pp. 1935-1953, 30 May, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE12.056
ISSN 1992-2248 ©2012 Academic Journals

Full Length Research Paper

Hybrid intelligent algorithm [improved particle swarm
optimization (PSO) with ant colony optimization (ACO)]

for multiprocessor job scheduling

K. Thanushkodi1 and K. Deeba2*

1
Akshaya College of Engineering, Anna University of Technology, Coimbatore, India.

2
Department of Computer Science and Engineering, Kalignar Karunanidhi Institute of Technology, Anna University of

Technology, Coimbatore, India.

Accepted May 3, 2012

Efficient multiprocessor scheduling is essentially the problem of allocating a set of computational jobs
to a set of processors to minimize the overall execution time. The main issue is how jobs are partitioned
in which total finishing time and waiting time is minimized. Minimization of these two criteria
simultaneously, is a multi objective optimization problem. There are many variations of this problem,
most of which are NP-hard problem, so we must rely on heuristics to solve the problem instances.
Many heuristic-based approaches have been applied to finding schedules that minimize the execution
time of computing tasks on parallel processors. Particle swarm optimization (PSO) is currently
employed in several optimization and search problems due to its ease and ability to find solutions
successfully. A variant of PSO, called as improved particle swarm optimization (ImPSO) has been
developed in this paper and is hybridized with the ant colony optimization (ACO) to achieve better
solutions. The proposed hybrid algorithm effectively exploits the capabilities of distributed and parallel
computing of swarm intelligence approaches. In addition hybrid algorithm using improved particle
swarm optimization (ImPSO) with artificial immune system (AIS) is also implemented for the same set of
problems to compare with the proposed hybrid algorithm (ImPSO with ACO). It was observed that the
proposed hybrid approach (Improved PSO with ACO) gives better results in experiments and reduces
finishing and waiting time simultaneously.

Key words: Particle swarm optimization (PSO), improved particle swarm optimization (ImPSO), ant colony
optimization (ACO), job scheduling, finishing time, waiting time.

INTRODUCTION

Scheduling, in general, is concerned with allocation of
limited resources to certain tasks to optimize few
performance criterions, like the completion time, waiting
time or cost of production. Job scheduling problem is a
popular problem in scheduling area of this kind. The main
objective of job scheduling problem is to find optimal
scheduling of the jobs to processors such that the overall
finishing time is reduced. The importance of scheduling

*Corresponding author. E-mail: deeba.senthil@gmail.com.

has increased in recent years due to the extravagant
development of new process and technologies.
Multiprocessors have been accepted in vehicles for
improving computing speeds, cost/performance and
enhanced reliability or availability. The main reason for
using a multiprocessor system is to improve the
performance and to achieve high scalability. Scheduling,
in multiprocessor architecture, can be defined as
assigning the tasks of precedence constrained task graph
onto a set of processors and determine the sequence of
execution of the tasks at each processor. A major factor
in the efficient utilization of multiprocessor systems is the

1936 Sci. Res. Essays

proper assignment and scheduling of computational tasks
among the processors.

Total finishing time and waiting time are two
computable criteria in multiprocessor architecture which
can be used to evaluate efficiency of proposed
algorithms. Total finishing time is defined as maximum of
each processor‟s finishing time which is the time that the
processor finishes its job. Waiting time is defined as
average of time that each job waits in ready queue. Most
of the algorithms reduce only finishing time not the
finishing and waiting time simultaneously. Simultaneously
minimizing these two criteria is a multi objective
optimization (MOO) problem (Elnaz et al., 2008).

The main objective of MOO algorithms is to find a set of
solutions which optimally balances the trade-offs among
the objectives of a multi objective problem (MOP). The
task is to find a set of non-dominated solutions, referred
to as the Pareto-optimal set. In the following, domination
and Pareto-optimal set concepts will be described, but
first we should define our notations (Engelbrecht, 2005).

Let xm
QP denote the mx –dimensional search space.

The search space, P is also referred to as the decision
space and F ⊆ 𝑃 the feasible space. With no constraints,
"the feasible space is the same as the search space." Let

xmxxxX ,......, 21 referred to as a decision vector. A

single objective function, Xfn is defined as

QQf nm

n : .

Let x

n

m

m QOXfXfXfXf ,......, 21

be an objective vector containing mn objective function

evaluations, O is referred as the objective space.

Domination

A Decision vector, X1 dominates a decision vector, X2

(denoted by
21 XX) if and only if

 X1 is not worse than X2 in all objectives, that is,

 nnn mnXfXf1,21 and X1 is strictly better

than X2 in at least one objective, that is,

 21:......1 XfXfmn nnn

Similarly, an objective vector, f1 dominates another
objective vector f2, if f1 is not worse than f2 in all objective
values and f1 is better than f2 in at least one of the
objective values. Objective vector dominance is denoted
by f1 ≺ f2.

Pareto-optimal

A Decision vector FX *
is pareto optimal if there does

not exist a decision vector, FXX *
 that dominates

it. That is ∄n *: XfXf nn . An objective vector

 Xf *
 is pareto optimal if X is pareto- optimal.

Pareto-optimal set

The set of all pareto optimal decision vectors form the

pareto-optimal set
*P that is |** FXP ∄

*: XXFX

Related works on multiprocessor scheduling

Several research works has been carried out in the past
decades, in the heuristic algorithms for job scheduling
and generally, since scheduling problems are NP-hard
that is, the time required to complete the problem to
optimality increases exponentially with increasing
problem size, the requirement of developing algorithms to
find solution to these problem is of highly important and
necessary. Some heuristic methods like branch and
bound and prime and search, Mitten (1970), have been
proposed earlier to solve this kind of problem. Also, the
major set of heuristics for job scheduling onto
multiprocessor architectures is based on list scheduling
Adam et al. (1974), Lee et al. (1998), Baxter et al. (1989),
Sih et al. (1990) and Wu et al. (1990). However, the time
complexity increases exponentially for these conventional
methods and becomes excessive for large problems.
Then, the approximation schemes are often utilized to
find a optimal solution. It has been reported in Adam
(1974), Baxter (1989) that the critical path list scheduling
heuristic is within 5% of the optimal solution 90% of the
time when the communication cost is ignored, while in the
worst case any list scheduling is within 50% of the
optimal solution. The critical path list scheduling no
longer provides 50% performance guarantee in the
presence of non-negligible intertask communication
delays. The greedy algorithm is also used for solving
problem of this kind.

Lin and Hsu (1990) proposed a stochastic heuristic
algorithm, simulated annealing for the problem of static
task assignment scheduling in distributed computing
systems. The purpose of task assignment scheduling is
to assign modules of programs over a set of
interconnected tasks in order to reduce the job
turnaround time as well as to obtain the best system
performance.

Selvakumar and Siva Ram Murthy (1994) presented an
efficient heuristic algorithm for scheduling precedence
constrained task graphs with non-negligible inter-task
communication onto multiprocessors taking contention in
the communication channels into consideration. The
proposed algorithm for obtaining satisfactory suboptimal

schedules is based on the classical list scheduling
strategy. It simultaneously exploits the schedule holes
generated in the processors and in the communication
channels during the scheduling process in order to
produce better schedules. The effectiveness of the
proposed algorithm is demonstrated by comparing with
two competing heuristic algorithms.

Ahmad and Dhodhi (1996) used a problem-space
genetic algorithm (PSGA) that combines the list
scheduling with the genetic algorithm for the static
scheduling of directed acyclic graphs. Lee et al. (1997)
considered the problem of assigning the tasks of a
distributed application to the processors of a distributed
system such that the sum of execution and
communication costs is minimized. A modeling technique
is developed that transforms the assignment problem in
an array or tree into a minimum-cut maximum-flow
problem. The assignment problem is the solved for a
general array or tree network in polynomial time.

Graham (2003) proposed the ant colony optimization
algorithm for solving the static multiprocessor scheduling
problem along with the combination of the local search
operators. Wu et al. (2004) presented a representation
for the task scheduling using Genetic Algorithm in which
each individual consists of series of cells. Each cell is a
task-processor pair (t, p) for which task „t‟ is assigned to
processor „p‟. The number of cells can vary from one
individual to the next and therefore different individuals
can have different lengths. If the prerequisites are not
satisfied, a penalty is assigned to the respective
individual.

A new genetic algorithm called genetic convex cluster
algorithm is proposed by Sanchez and Trystram (2005) to
solve the task assignment with large communication
delays. It uses the convex cluster property and is well
suited for parallel systems like cluster of computers with
hierarchical communications.

Tzu et al. (2006) proposed a solution to the constrained
scheduling problem in display system operation, using
the particle swarm optimization. In particle encoding, the
authors used a one- dimensional 0-1 array mapping of a
three- dimension matrix of a candidate solution for each
particle and then used sigmoid function to produce
probability threshold for velocity updating in each particle.
The results show that the proposed approach is capable
of obtaining higher quality solution efficiently in
constrained scheduling problems.

Lei et al. (2008) adopted a heuristic approach based on
particle swarm optimization for solving task scheduling
problem in a grid environment. Each particle is
represented by a possible solution and the position vector
is transformed from the continuous variable. The
approach aims to generate an optimal schedule so as to
get the minimum completion time while completing the
tasks. The results of simulated experiments show that the
particle swarm optimization algorithm is able to get the
better schedule than genetic algorithm.

Thanushkodi and Deeba 1937

Visalakshi et al. (2009) proposed a hybrid particle
swarm optimization (HPSO) method for solving the task
assignment problem. HPSO yields better results
compared with normal PSO and also the proposed
method is compared with GA.

Gagne et al. (2002) proposed an Ant Colony
Optimization Algorithm for the scheduling problem and
showed that it performs competitively with the best
results of previous methods like genetic algorithm and
simulated annealing.

Gupta and Smith (2006) proposed two heuristics, a
greedy randomized adaptive search procedure (GRASP)
and a problem space-based local search heuristics
performs equally well when compared to ant colony
optimization of Gagne et al. (2002) while taking much
less computational time.

In the past decades basic PSO and ACO have used to
solve the scheduling problem. Basic PSO easily suffers
from the partial optimism, which causes the less exact at
the regulation of its speed and the direction, for this
reason to improve the speed of convergence and quality
of solution found by the PSO many variant PSO have
been developed. Similarly, ACO also takes more
convergence time. Hence, blending PSO with other
intelligent optimization algorithm, that is, combining the
advantages of the PSO with the advantages of other
intelligent optimization algorithms produces results with
minimum convergence time.

In this paper a new hybrid algorithm based on improved
PSO (ImPSO) and ACO is developed to solve job
scheduling in multiprocessor architecture with the
objective of minimizing the job finishing time and waiting
time.

JOB SCHEDULING IN MULTIPROCESSOR
ARCHITECTURE

Job scheduling, considered in this paper, is an
optimization problem in operating system in which the
ideal jobs are assigned to resources at particular times
which minimizes the total length of the schedule. Also,
multiprocessing is the use of two or more central
processing units within a single computer system. This
also refers to the ability of the system to support more
than one processor or the ability to allocate tasks
between them. In multiprocessor scheduling, each
request is a job or process. A job scheduling policy uses
the information associated with requests to decide which
request should be serviced next. All requests waiting to
be serviced are kept in a list of pending requests.
Whenever scheduling is to be performed, the scheduler
examines the pending requests and selects one for
servicing. This request is handled over to server. A
request leaves the server when it completes or when it is
preempted by the scheduler, in which case it is put back
into the list of pending requests. In either situation,

1938 Sci. Res. Essays

Figure 1. A Schematic of job scheduling.

scheduler performs scheduling to select the next request
to be serviced. The scheduler records the information
concerning each job in its data structure and maintains it
all through the life of the request in the system. The
schematic of job scheduling in a multiprocessor
architecture is shown in Figure 1.

Problem definition

The objective function defined for this problem as a
weighted sum of the objectives. Using aggregation
method MOP is redefined as,

Minimize

nm

n

nn xf
1

)((1)

Subject to

 gt mtXg ,.....1,0

 hggt mmmtXh ,.....1,0

 xm
XXX maxmin ,

 nn mn ,......1,0

Where gt and ht are the inequality and equality
constraints. [Xmin, Xmax] represents the boundary
constraints.

The job scheduling problem of a multiprocessor
architecture is a scheduling problem to partition the jobs
between different processors by attaining minimum
finishing time and minimum waiting time simultaneously.
If N different processors and M different jobs are
considered, the search space is given by Equation 2, Liu
et al. (2005).

Size of search space =

 MN

NM

!

!
 (2)

Earlier, longest processing time (LPT), and shortest
processing time (SPT) and traditional optimization
algorithms was used for solving these type of scheduling
problems Sivanandam et al. (2007), Amirthagadeswaran
et al. (2005), Sha et al. (2007), Dobsonet et al. (1984),
Coffmanet al. (1972).

When all the jobs are in ready queue and their
respective time slice is determined, LPT selects the
longest job and SPT selects the shortest job, thereby
having shortest waiting time. Thus SPT is a typical
algorithm which minimizes the waiting time. Basically, the
total finishing time is defined as the total time taken for
the processor to complete its job and the waiting time is
defined as the average of time that each job waits in
ready queue. LPT and SPT reduces finishing time and
Waiting time respectively. Minimization of finishing time
and waiting time simultaneously is a multi objective
optimization problem. Two objective of this problem can
be unified by using waited sum, Zhou et al. (1999) as is
presented in the following, which is a derivative of
Equation 1.

f=Total finishing Time + β Waiting Time (3)

„β‟ is a weight coefficient which can be adjusted to
compromise between two minimization objectives. A
smaller β attaches relatively more emphasis on the
minimization of total finishing time. While a larger β gives
relatively more emphasis on the minimization of waiting
time. In this paper an attempt is made to solve job
scheduling biobjective optimization problem by using a
hybrid algorithm using improved particle swarm
optimization and ant colony optimization.

OPTIMIZATION TECHNIQUES

Several heuristic traditional algorithms were used for
solving the job scheduling in a multiprocessor
architecture, which includes genetic algorithm (GA),
particle swarm optimization (PSO) algorithm. In this paper

Server

Scheduler

Arriving
requests/
jobs

Pending
requests/ jobs

Scheduled

jobs

Completed

Jobs

- Preempted jobs

a new hybrid proposed improved PSO with ant colony
optimization (ACO) is suggested for the job scheduling
NP-hard problem. The following sections discuss on the
application of these techniques to the considered
problem Thanushkodi et al. (2011a and b).

Genetic algorithm for scheduling

Genetic algorithms are a kind of random search
algorithms coming under evolutionary strategies which
uses the natural selection and gene mechanism in nature
for reference. The key concept of genetic algorithm is
based on natural genetic rules and it uses random search
space. GA was formulated by J Holland with a key
advantage of adopting population search and exchanging
the information of individuals in population

Gur et al. (2004) introduces a polynomial time solution
algorithm for the problem which appears to be
surprisingly simple.
Amirthagadeswaran et al. (2005) used Genetic Algorithm
to solve job –based , operation-based and proposed
methods of representation and schedule deduction with
the makespan objective. Computational experiments
show better results with appreciable reduction in
computer processing time.

Tung-Kuan et al (2005), suggests an improved genetic
algorithm, called the hybrid Taguchi-genetic algorithm
(HTGA), is proposed to solve the job-shop scheduling
problem (JSP). The HTGA approach is a method of
combining the traditional genetic algorithm (TGA), which
has a powerful global exploration capability, with the
Taguchi method, which can exploit the optimal offspring.
The Taguchi method is inserted between crossover and
mutation operations of a TGA. Then, the systematic
reasoning ability of the Taguchi method is incorporated in
the crossover operations to systematically select the
better genes to achieve crossover, and consequently
enhance the genetic algorithm. Therefore, the proposed
HTGA approach possesses the merits of global
exploration and robustness. The computational
experiments show that the proposed HTGA approach can
obtain both better and more robust results than other GA-
based methods reported recently.

Qing-dao-er-ji et al (2010) Job shop scheduling
problem is a typical NP-hard problem. In this paper, new
designed crossover and mutation operators based on the
characteristic of the job shop problem itself are
specifically designed. Based on these, an improved
genetic algorithm is proposed. The computer simulations
are made on a set of benchmark problems and the
results indicate the effectiveness of the proposed
algorithm. The algorithm used to solve scheduling
problem is thus explained in steps.

Step 1

Initialize the population to start the genetic algorithm. For

Thanushkodi and Deeba 1939

initializing population, it is necessary to input number of
processors, number of jobs and population size.

Step 2

Evaluate the fitness function with the generated
populations. For the problem defined, the fitness function
is given by,

Vf

TimeWaiting

VfTimeFinishingTotalV

F

0

 (4)

Where „V „should be set to select an appropriate positive
number for ensuring the fitness of all good individuals to
be positive in the solution space.

Step 3

Perform selection process to select the best individual
based on the fitness evaluated to participate in the next
generation and eliminate the inferior. The job with the
minimal finishing time and waiting time is the best
individual corresponding to a particular generation.

Step 4

For JSP problem, of this type, two –point crossover is
applied to produce a new offspring. Two crossover points
are generated uniformly in the mated parents at random,
and then the two parents exchange the centre portion
between these crossover points to create two new
children. Newly produced children after crossover are
passed to the mutation process.

Step 5

In this step, mutation operation is performed to further
create new offsprings, which is necessary for adding
diversity to the solution set. Here mutation is done, using
flipping operation. Generally, mutation is adopted to avoid
loss of information about the individuals during the
process of evolution. In JSP problem, mutation is
performed by setting a random selected job to a random
processor.

Step 6

Test for the stopping condition. Stopping condition may
be obtaining the best fitness value with minimum finishing
time and minimum waiting time for the given objective
function of a JSP problem or number of generations. If

1940 Sci. Res. Essays

Figure 2. Flowchart for genetic algorithm to JSP.

stopping condition satisfied then go to step 7 else go to
step 2.

Step 7

Declare the best individual in the complete generations.
Stop. The flowchart depicting the approach of genetic
algorithm for JSP is as shown in Figure 2.

Genetic Algorithm was invoked with the number of
populations to be 100 and 900 generations. The
crossover rate was 0.1 and the mutation rate was 0.01.
Randomly the populations were generated and for
various trials of the number of processors and jobs, the
completed fitness values of waiting time and finishing
time as shown in Table 1.

From the Figure 3, it can be observed that for equal no
of jobs for different processors, the finishing time has got
reduced. The finishing time and waiting time is observed
based on the number of jobs allocated to each processor.

Also, shows the variation in finishing time and waiting
time for the assigned number of jobs and processors.

Particle swarm optimization for scheduling

The particle swarm optimization (PSO) technique
appeared as a promising algorithm for handling the
optimization problems. PSO is a population-based
stochastic optimization technique, inspired by social
behavior of bird flocking or fish schooling Thanushkodi et
al. (2009), Shi et al. (1999) and Gur et al. (2004). PSO is
inspired by the ability of flocks of birds, schools of fish,
and herds of animals to adapt to their environment, find
rich sources of food, and avoid predators by
implementing an information sharing approach. PSO
technique was invented in the mid-1990s while
attempting to simulate the choreographed, graceful
motion of swarms of birds as part of a socio cognitive
study investigating the notion of collective intelligence in

Initialize the population input number of processors, number of jobs and population size

Stop

Evaluate the fitness function

 F = V-Total finishing time- β waiting time

Perform selection to select best individuals from the current population

Perform two point crossover

Termination

 condition

No

Yes

 Start

Thanushkodi and Deeba 1941

Table 1. Comparison of job using GA, PSO, Proposed Improved PSO and Proposed Hybrid Algorithm (ImPSO with ACO).

No of
processors

No of
jobs

GA PSO
Proposed improved PSO

(ImPSO)
Proposed hybrid
(ImPSO with AIS)

Proposed hybrid
(ImPSO with ACO)

WT FT WT FT WT FT WT FT WT FT

2 20 31.38 61.80 30.10 60.52 29.12 57.34 22.16 52.64 18.02 48.92

3 20 47.01 57.23 45.92 56.49 45.00 54.01 38.65 48.37 35.12 48.00

3 40 44.31 70.21 42.09 70.01 41.03 69.04 34.26 61.20 30.16 57.32

4 30 32.91 74.26 30.65 72.18 29.74 70..97 23.92 65.47 21.87 62.45

4 50 35.72 76.21 32.79 71.20 30.06 70.62 25.96 69.83 24.63 67.45

5 45 38.03 72.65 34.91 70.09 33.65 69.04 27.56 64.96 26.21 60.87

5 60 42.93 77.29 39.61 75.42 36.56 72.31 30.19 69.21 28.42 64.26

Figure 3. Chart for job scheduling in multiprocessor with different number of processors and
different number of jobs using GA.

biological populations.

The basic idea of the PSO is the mathematical
modelling and simulation of the food searching activities
of a swarm of birds (particles). In the multi-dimensional
space where the optimal solution is sought, each particle
in the swarm is moved towards the optimal point by
adding a velocity with its position. The velocity of a
particle is influenced by three components, namely,
inertial momentum, cognitive, and social. The inertial
component simulates the inertial behaviour of the bird to
fly in the previous direction. The cognitive component
models the memory of the bird about its previous best
position, and the social component models the memory
of the bird about the best position among the particles.

PSO procedures based on the above concept can be
described as follows. Namely, bird flocking optimizes a
certain objective function. Each agent knows its best
value so far (pbest) and its XY position. Moreover, each
agent knows the best value in the group (gbest) among
pbests. Each agent tries to modify its position using the

current velocity and the distance from the pbest and
gbest. Based on the above discussion, the mathematical
model for PSO is as follows:

Velocity update equation is given by:

)()(2211 ibestibestii SgrCSPrCVwV
ii
 (5)

Using Equation 5, a certain velocity that gradually gets
close to pbests and gbest can be calculated. The current
position (searching point in the solution space) can be
modified by the following equation:

iii VSS 1 (6)

Where, Vi : velocity of particle i, Si: current position of the
particle, w: inertia weight, C1: cognition acceleration
coefficient, C2 : social acceleration coefficient, Pbest i :

own best position of particle i, gbest i : global best position
among the group of particles, r1, r2 : uniformly distributed

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Processors

No. of jobs

Waiting time

Finishing time

1942 Sci. Res. Essays

Figure 4. Flow diagram of PSO.

random numbers in the range [0 to 1], si : current
position, s i + 1 : modified position, v i : current velocity, v i +1

: modified velocity, vpbest : velocity based on pbest, vgbest :
velocity based on gbest.

Figure 4 shows the searching point modification of the
particles in PSO. The position of each agent is
represented by XY-axis position and the velocity
(displacement vector) is expressed by vx (the velocity of
X-axis) and vy (the velocity of Y-axis). Particle are
change their searching point from Si to Si +1 by adding
their updated velocity Vi with current position Si. Each
particle tries to modify its current position and velocity
according to the distance between its current position Si
and V pbest, and the distance between its current
position Si and V gbest.

The General particle swarm optimization was applied to
the same set of processors with the assigned number of
jobs, as done in case of genetic algorithm. The number of
particles-100, number of generations = 250, the values of
c1 = c2 = 1.5 and ω = 0.5. Figure 3 shows the completed
finishing time and waiting time for the respective number
of processors and jobs utilizing PSO.

It is noted from Figure 5 that for the same number of
processors and jobs, the waiting time and finishing time
using PSO has constructively reduced with less number
of generations in comparison with GA Also, Figure 5
shows the variation in finishing time and waiting time for
the assigned number of jobs and processors using
particle swarm optimization.

ARTIFICIAL IMMUNE SYSTEM

Biological immune systems can be viewed as a powerful
distributed information processing systems, capable of
learning and self-adaptation. AIS is rapidly emerging,
which is inspired by theoretical immunology and
observed immune functions, principles, and models. An

immune system is a naturally occurring event response
system that can quickly adapt to changing situations. The
efficient mechanisms of immune system, including clonal
selection, learning ability, memory, robustness and
flexibility, make AIS s useful in many applications. AIS
appear to offer powerful and robust information
processing capabilities for solving complex problems Yu
et al. (2001), Yang et al. (2001), Yang et al. (2000),
Coello et al. (2003) and Hong-Wei et al. (2008). The AIS
based algorithm is built on the principles of clonal
selection, affinity maturation, and the abilities of learning
and memory.

AIS-Based scheduling algorithm

The brief outline of the proposed algorithm based on AIS
can be described as follows:

Step 1

Initialize pop_size antibodies (PSA) as an initial
population by using the proposed initialization algorithm,
where pop_size denotes the population size.

Step 2

Select m antibodies from the population by the
proportional selection model and clone them to a clonal
library.

Step 3

Perform the mutation operation for each of the antibodies
in the clonal library.

Thanushkodi and Deeba 1943

Figure 5. Chart for job scheduling in multiprocessor with different number of processors and different
number of jobs using PSO.

Step 4

Randomly select s antibodies from the clonal library to
perform the operation of vaccination.

Step 5

Replace the worst s antibodies in the population by the
best s antibodies from the clonal library.

Step 6

Perform the operation of receptor editing if there is no
improvement of the highest affinity degree for a certain
number of generations G.

Step 7

Stop if the termination condition is satisfied; else, repeat
Steps 2 to7.

In this paper, the parameters are taken as pop_size =
50, m = 30, s = 10, and G = 80.

ANT COLONY OPTIMIZATION

Ant colony metaheuristic is a concurrent algorithm in
which a colony of artificial ants cooperates to find
optimized solutions of a given problem. The ant colony
optimization (ACO) algorithm was introduced by Dorigo et

al. (2006), Dorigo et al. (2007), Dorigo et al. (2002) and
Shelokar (2002). It is a probabilistic technique for solving
computational problems, which can be reduced to finding
good paths through graphs.

They are inspired by the behavior of ants in finding
paths from the colony to the food. In the real world, ants
initially wander randomly, and upon finding food, they
return to their colony while laying down pheromone trails.
If other ants find such a path, they are likely not to keep
travelling at random, but rather follow the trail, returning
and reinforcing it if they eventually find food. However,
the pheromone trail starts to evaporate over time,
therefore reducing its attractive strength. The more time it
takes for an ant to travel down the path and back again,
the quicker it takes for the pheromones to evaporate. A
short path, by comparison, gets marched over faster and
thus the pheromone density remains high as it is laid on
the path as fast as it can evaporate. Pheromone
evaporation also has the advantage of avoiding the
convergence to a locally optimal solution. If there were no
evaporation at all, the paths chosen by the first ants
would tend to be excessively attractive to the ants
following ones. In that case, the exploration of the
solution space is constrained. Thus, when one ant finds a
short path from the colony to a food source (that is, a
good solution), other ants are more likely to follow that
path, and positive feedback eventually leaves all the ants
following a single path.

ACO algorithms have an advantage over simulated
annealing and GA approaches when the graph may
change dynamically, since the ant colony algorithm can
be run continuously and adapt to changes in real time.

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Processors

No. of jobs

Waiting time

Finishing time

1944 Sci. Res. Essays

Figure 6. Flow chart for ant colony optimization algorithm.

General ant colony optimization (ACO) algorithm

Step 1: Initialize ACO parameters;
Step 2: Generate solutions from each ants‟ random walk;
Step 3: Update pheromone intensities;
Step 4: go to step 3, and repeat until convergence or a
stopping condition is satisfied. The flow chart for the ant
colony optimization (ACO) algorithm is depicted in Figure
6.

ACO for job scheduling

Consider a n× n matrix named as pheromone

variables, in which „n‟ is number of jobs.
 (i, j) is desirability of selecting job j just after job i.

Initially all elements of matrix have the same and small
value.

Then iterative ant colony algorithm is executed:

 1. Generate ant (or ants)
 2. Loop for each ant (until complete scheduling of tasks)
- Select next task with respect to pheromone variables of
ready tasks.
 3. Deposit pheromone on visited states
 4. Daemon activities
 5. Evaporate pheromone

 At first, a list with length of n, is created as ant. Initially it
is empty and will be completed during next stage. In the
second stage, there is a loop for each ant. At each
iteration, ant must select a job from ready list with regard
to values of pheromone variables of jobs in the ready list
using a probabilistic decision making.

For ant k, probability of selecting job j just after
selecting job i is obtained by using:

),(jiP k
 =

Nk

ki

ji

),(

),(

 (7)

where N is set of ready jobs.

Then a random number is generated and next job is
selected with respect to the generated number. It is clear
that jobs which have bigger pheromone value, have
bigger chance to select. Selected job is appended to the
ant list, removed from ready list. These operations are
repeated until complete scheduling of all jobs, in the other
words, completing the ant's list. In the third stage, tasks
are extracted one by one from ant's list, are committed to
processor that supplies the earliest start time. Maximum
finish time of the last tasks on all over processors is
calculated which it is desirability of obtained scheduling of
the ant. With respect to this desirability, measure of

 Generation of artificial ant agents

Stop

 Start

Is the termination

condition?

N
o

Yes

Ant Agents evaluation of best possible

solution from the entire solution space

Assign the new solution as the

current solution

Update the solution set based on the goodness

of the solution and generate a new search list

Print the best

solution

Terminate

pheromone depositing on the visited states is calculated
by:

k

k

ij
L

1
 if (i, j) T

k
 (8)

where L
k
 is finish time obtained by ant k and T

k
is

executed tour of this ant.

That is, ij will be deposited on (i, j) only if job j would

be selected just after task i. otherwise, (i, j) will be

remained unchanged. In the forth stage, the best ant until
now (Ant

min
), is selected as the best solution. Extra

pheromone is deposited on states visited by the best ant
by using:

min

min

min),(
1

Tjiif
L

ij (9)

In the last stage, by using (9), pheromone variables are
decreased simulating pheromone evaporation in real
environments. It must be taken to avoid premature
convergence (stagnation) because of local minima:

),()1(),(jiji (10)

where, is evaporation rate in the range of [0, 1].

PROPOSED IMPROVED PARTICLE SWARM
OPTIMIZATION (IMPSO) FOR SCHEDULING

In this new proposed improved PSO (ImPSO) having
better optimization result compare to general PSO by
splitting the cognitive component of the general PSO into
two different component. The first component can be
called good experience component. This means the bird
has a memory about its previously visited best position.
This is similar to the general PSO method. The second
component is given the name by bad experience
component. The bad experience component helps the
particle to remember its previously visited worst position.
To calculate the new velocity, the bad experience of the
particle also taken into consideration. On including the
characteristics of Pbest and Pworst in the velocity
updation process along with the difference between the
present best particle and current particle respectively, the
convergence towards the solution is found to be faster
and an optimal solution is reached in comparison with
conventional PSO approaches. This infers that including
the good experience and bad experience component in
the velocity updation also reduces the time taken for
convergence.

The new velocity update equation is given by, Equation
11:

Vi = w × Vi + C1g × r1 × (P best i – Si) × P best i + C1b × r2 ×
(Si –P worst i) × P worst i + C2 × r3 × (Gbest i – Si) (11)

Thanushkodi and Deeba 1945

Where, C1g: acceleration coefficient, which accelerate the
particle towards its best position; C1b: acceleration
coefficient, which accelerate the particle away from its
worst position; P worst i : worst position of the particle i;
 r1, r2, r3 : uniformly distributed random numbers in the
range [0 to 1].

The positions are updated using Equation 5. The
inclusion of the worst experience component in the
behaviour of the particle gives the additional exploration
capacity to the swarm. By using the bad experience
component; the particle can bypass its previous worst
position and try to occupy the better position. Figure 7
shows the concept of ImPSO searching points.

The algorithmic steps for the Improved PSO is as
follows:

Step 1: Select the number of particles, generations,
tuning accelerating coefficients C1g , C1b , and C2 and
random numbers r1, r2, r3 to start the optimal solution
searching.

Step 2: Initialize the particle position and velocity.

Step 3: Select particles individual best value for each
generation.

Step 4: Select the particles global best value, i.e. particle
near to the target among all the particles is obtained by
comparing all the individual best values.

Step 5: Select the particles individual worst value, i.e.
particle too away from the target.

Step 6: Update particle individual best (p best), global
best (g best), particle worst (P worst) in the velocity
Equation 11 and obtain the new velocity.

Step 7: Update new velocity value in the Equation 5 and
obtain the position of the particle.

Step 8: Find the optimal solution with minimum „F‟ by the
updated new velocity and position.

The flowchart for the proposed model formulation
scheme is shown in Figure 8. The proposed improved
particle swarm optimization approach was applied to this
multiprocessor scheduling problem. As in this case, the
good experience component and the bad experience
component are included in the process of velocity
updation and the finishing time and waiting time
computed are shown in Table 1.

The same number of particles and generations as in
case of general PSO is assigned for Improved PSO also.
It is observed in case of proposed improved PSO, the
finishing time and waiting time has been reduced in
comparison with GA and PSO. This is been achieved by
the introduction of bad experience and good experience
component in the velocity updation process. Figure 9

1946 Sci. Res. Essays

Figure 7. Concept of Improved Particle Swarm Optimization
search point.

shows the variation in finishing time and waiting time for
the assigned number of jobs and processors using
improved particle swarm optimization.

HYBRID ALGORITHM (IMPSO WITH AIS) FOR JOB
SCHEDULING

The proposed improved PSO algorithm is independent of
the problem and the results obtained using the improved
PSO can be improved with AIS.

The steps involved in the proposed hybrid algorithm is
as follows:

Step 1: Initialize Population size of the antibodies as PSA.

Step 2: Initialize the number of particles N and its value
may be generated randomly. Initialize swarm with
random positions and velocities.

Step 3: Compute the finishing time for each and every
particle using the objective function and also find the
“pbest“, that is, If current fitness of particle is better than “
pbest” the set “ pbest” to current value.

If “pbest” is better than “gbest then set “gbest” to
current particle fitness value.

Step 4: Select particles individual “pworst” value, that is,
particle moving away from the solution point.

Step 5: Update velocity and position of particle as per
Equation 5, 10.

Step 6: If best particle is not changed over a period of
time, Select „m‟ antibodies out of the population PSA by
the proportional selection model and clone them to a
colonal library.

Step 7: Select m antibodies from the population by the
proportional selection model and clone them to a clonal
library.

Step 8: Perform the mutation operation for each of the
antibodies in the clonal library.

Step 9: Randomly select s antibodies from the clonal
library to perform the operation of vaccination.

Step 10: Replace the worst s antibodies in the population
by the best s antibodies from the clonal Library.

Step 11: Terminate the process if maximum number of
iterations reached or optimal value is obtained, else go to
step 3. The flow chart for the hybrid algorithm is shown in
Figure 10.

The proposed hybrid algorithm is applied to the
multiprocessor scheduling algorithm. In this algorithm 100
particles are considered as the initial population. The
values of C1g, C1b and C2 are 1.5, w = 0.5. The values
are utilized as per the previous literatures and as
suggested by the author of PSO (Kenedy and Eberhart,
1995). The finishing time and waiting time completed for
the random instances of jobs are as shown in Table 1.

The same number of generations as in the case of
improved PSO is assigned for the proposed hybrid
algorithm. It is observed, that in the case of proposed
hybrid algorithm, there is a drastic reduction in the
finishing time and waiting time of the considered
processors and respective jobs assigned to the
processors in comparison with the general PSO and
improved PSO. Thus combining the effects of the AIS,
with improved PSO, better solutions have been achieved.
Figure 11 shows the variation in finishing time and waiting

Thanushkodi and Deeba 1947

Figure 8. Flowchart for job scheduling using Improved PSO.

Initialize the population Input number of processors,

number of jobs and population size

Compute the objective function

 Invoke ImPSO

For each particle

If E < best ‘E’

(P best) so far

For each generation Search is terminated

optimal solution reached

Current value = new p best

Choose the minimum ‘F’ of all particles as the g best

Calculate particle velocity

Calculate particle position

Update memory of each particle

End

End

Return by using ImPSO

stop

Start

1948 Sci. Res. Essays

Figure 9. Chart for job scheduling in multiprocessor with different number of
processors and different number of jobs using ImPSO.

time for the assigned number of jobs and processors
using Hybrid algorithm.

PROPOSED HYBRID ALGORITHM (IMPSO WITH
ACO) FOR JOB SCHEDULING

The proposed improved PSO algorithm is independent of
the problem and the results obtained using the improved
PSO can be further improved with Ant Colony
Optimization (ACO).

The steps involved in the proposed hybrid algorithm are
as follows:

Step 1: Initialize ACO parameters.

Step 2: Initialize the number of particles N and its value
may be generated randomly. Initialize swarm with
random positions and velocities.

Step 3: Compute the finishing time for each and every
particle using the objective function and also find the
“pbest “ thar is, If current fitness of particle is better than “
pbest” the set “ pbest” to current value.

If “pbest” is better than “gbest then set “gbest” to
current particle fitness value.

Step 4: Select particles individual “pworst” value that is,
particle moving away from the solution point.

Step 5: Update velocity and position of particle as per
Equation 5, 11.

Step 6: If best particle is not changed over a period of
time, (a) Generate solutions from each ants‟ random
walk.

Step 7: Update pheromone intensities.

Step 11: Terminate the process if maximum number of
iterations reached or optimal value is obtained, else go to
step 3. The flow chart for the hybrid algorithm is shown in
Figure 12.

The proposed hybrid algorithm is applied to the
multiprocessor scheduling algorithm. In this algorithm 100

particles are considered as the initial population. The
values of C1 and C2 are 1.5. The finishing time and
waiting time completed for the random instances of jobs
are as shown in Table 1.

The same number of generations as in the case of
improved PSO is assigned for the proposed hybrid
algorithm. It is observed, that in the case of proposed
hybrid algorithm, there is a drastic reduction in the
finishing time and waiting time of the considered
processors and respective jobs assigned to the
processors in comparison with the general PSO and
improved PSO. Thus combining the effects of the Ant
Colony Optimization (ACO) and improved PSO, better
solutions have been achieved. Figure 13 shows the
variation in finishing time and waiting time for the
assigned number of jobs and processors using Hybrid
algorithm.

DISCUSSION

The growing heuristic optimization techniques have been
applied for job scheduling in multiprocessor architecture.
Table 1 shows the completed waiting time and finishing
time for GA, PSO, proposed improved PSO, proposed
hybrid algorithm and conventional longest processing
time (LPT) and Shortest processing time (SPT) algorithm.

In this paper, the four intelligent algorithms (GA, PSO,
AIS, and ACO) have been involved. These intelligent

0

10

20

30

40

50

60

70

80

1 2 3 4 5

Processors

No. of jobs

Waiting time

Finishing time

Thanushkodi and Deeba 1949

Figure 10. Flowchart for job scheduling using Hybrid algorithm
(Improved PSO with AIS) for job scheduling in Multiprocessor
Architecture.

Initialize the population Input number of processors, number of jobs and population size

Initialize population size of Antibodies

 Invoke Hybrid algorithm

For each particle

If E < best ‘E’ (P best) so far

For each generation

Current value = new p best

Choose the minimum ISE of all particles as the g best

Calculate particle velocity

Calculate particle position

Update memory of each
particle

If best particle is not changed over
a period of time

Select ‘m’ antibodies from the population and clone them to clonal library

Start

Compute the objective function

Perform mutation operation to the antibodies

Yes

No

Perform vaccination operation on randomly selected ‘s’ antibodies

Replace the worst antibodies by best antibodies

If improvement in highest

affinity degree

Yes

No

Perform receptor editing operation

D

B

Search is

terminated
optimal solution

reached

C

C

A

A

End

End

C

B

If stopping condition

reached

D

Yes

No

 Stop

1950 Sci. Res. Essays

Figure 11. Chart for job scheduling in multiprocessor with different number of processors and
different number of jobs using Hybrid algorithm (Improved PSO with AIS).

algorithms, has been applied to the mentioned
scheduling problem either individually (GA or PSO) or
hybridized (AIS, ACO). Based on the convergence to the
solutions and the minimization of the objective function,
the validity of the considered algorithms is enforced. GA
and PSO involve more time in comparison with that of the
two said hybridized approaches. Also due to the
behavioral and convergence characteristics, the
proposed improved PSO with ACO provides a better
solution. The problems values are randomly generated.

In LPT algorithm, Friesen et al. (1987,) Coffmanet al.
(1972) it is noted that the waiting time is drastically high
in comparison with the heuristic approached and in SPT
with the heuristic approaches and in SPT algorithm, the
finishing time is drastically high. Genetic algorithm
process was run for about 900 generations and the
finishing time and waiting time has been reduced
compared to LPT and SPT algorithms. Further the
introduction of general PSO with the number of particles
100 and within 250 generations minimized the waiting
time and finishing time considerably with Genetic
Algorithm (GA). The proposed improved Particle Swarm
Optimization (PSO) with the good (pbest) and bad
(pworst) experience component involved with the same
number of particles and generations as in comparison
with the general Particle Swarm Optimization (PSO),
minimized the waiting time and finishing time of the
processors with respect to all the other considered
algorithms.

The Improved Particle Swarm Optimization (ImPSO)
combined with the concept of Artificial Immune System, a
hybrid algorithm was proposed and it has reduced the
finishing time and waiting time. In Artificial Immune

System (AIS), the colonal library consists of the pool of
antibodies are identified and replaced with the best
antibodies in a manner of how best and worst particles
are included in Particle Swarm Optimization.

Further, Improved Particle Swarm Optimization
(ImPSO) is combined with Ant Colony Optimization
(ACO) and a new hybrid algorithm proposed. The new
hybrid algorithm reduces finishing and waiting time
drastically. In ACO each ant incrementally constructs a
solution to the problem. When an ant complete solution,
or during the construction phase, the ant evaluates the
solution and modifies the trail value on the components
used in its solution. Ants deposit a certain amount of
pheromone on the components; that is, either on the
vertices or on the edges that they traverse. The amount
of pheromone deposited may depend on the quality of
the solution found. Subsequent ants use the pheromone
information as a guide toward promising regions of the
search space. Ants adaptively modify the way the
problem is represented and perceived by other ants, but
they are not adaptive themselves.

Thus based on the results, it can be observed that the
proposed hybrid algorithm gives better results than the
conventional methodologies LPT, SPT and other heuristic
optimization techniques Genetic Algorithm (GA), General
Particle Swarm Optimization (PSO) and Proposed
Improved Particle Swarm Optimization (ImPSO). This
work was carried out in Intel Pentium i3core processors
with 2 GB RAM and it took around 68 seconds by the
CPU for the complete simulation of 451 generations.

Thus, when independently the Improved PSO takes
more convergence time, the hybrid Improved Particle
Swarm Optimization along with Ant Colony Optimization,

0

10

20

30

40

50

60

70

1 2 3 4 5

Processors

No. of jobs

Waiting time

Finishing time

Thanushkodi and Deeba 1951

Figure 12. Flowchart for job scheduling using Improved PSO with ACO.

Initialize the population, number of processors, number of jobs and population size

Initialize ACO parameters

 Invoke Hybrid algorithm

For each particle

If E < best ‘E’ (P best) so far

For each generation

Current value = new p best

Choose the minimum ‘F’ of all particles as the g best

Calculate particle velocity

Calculate particle position

Update memory of each particle

If best particle is not changed over

a period of time

Generate solutions from each ants’ random walk

Start

Compute the objective function

Perform pheromone updation

Yes

No

End

Yes

No

Stop

Search is

terminated
optimal solution

reached

If stopping

condition reached

1952 Sci. Res. Essays

Figurer 13. Chart for job scheduling in multiprocessor with different number of processors and
different number of jobs using Hybrid algorithm (Improved PSO with ACO).

reduces the finishing and waiting time of the jobs.

CONCLUSION

In this paper, a new hybrid algorithm based on the
concept of Ant Colony Optimization and proposed
improved particle swarm optimization has been
developed and applied to multiprocessor job shop
scheduling. Ant Colony Optimization has positive
feedbacks for rapid discovery of good solutions and a
simple implementation of pheromone-guided will improve
the performance of Improved Particle Swarm
Optimization (ImPSO). It has been proven that Improved
Particle Swarm Optimization was able to discover
reasonable quality solutions much faster than other
evolutionary algorithms. However, Particle Swarm
Optimization does not possess the ability to improve
upon the quality of the solutions as the number of
generations is increased.

In our application of Improved Particle Swarm
Optimization / Ant Colony Optimization approach, a
simple pheromone-guided search mechanism of ant
colony was implemented which acted locally to
synchronize positions of the particles in Particle Swarm
Optimization to attain the feasible domain of the objective
function faster.

The proposed algorithm partitioned the jobs in the
processors by attaining minimum waiting time and
finishing time in comparison with the other algorithms,
longest processing time, shortest processing time,
genetic algorithm, particle swarm optimization and also
the proposed particle swarm optimization. The worst

component being included along with the best component
and Ant Colony Optimization tends to minimize the
waiting time and finishing time, by its cognitive behavior
drastically. Thus the proposed algorithm (ImPSO with
ACO), for the same number of generations, has achieved
better results.

REFERENCES

Adam TL, Chandy KM, Dicson JR (1974). A Comparison of List

Schedules for Parallel Processing Systems. Commun. ACM, 17: 685-
690.

Ahmad I, Dhodhi MK (1996). Multiprocessor scheduling in a genetic
paradigm. Parallel Comput., 22: 859-866.

Amirthagadeswaran KS, Arunachalam VP (2005). Improved solutions
for job shop scheduling problems through genetic algorithm with a
different method of schedule deduction. International Journal
Advanced Manufacture Technology (Spiringer), pp. 532-540.

Baxter J, Patel JH (1989). The LAST Algorithm: A Heuristic- Based
Static Task Allocation Algorithm. Int. Conf. Parallel Process., 2: 217-
222.

Chen BA (1993). Note on LPT scheduling. Oper. Res. Lett., 14: 139-
142.

Coello CAC, Rivera DC, Cortes NC (2003). Use of an artificial immune
system for job Shop scheduling, in Proc. 2nd Int. Conf. Artif. Immune
Syst., 2787: 1-10.

Coffman Jr EG, Graham RL (1972. Optimal scheduling for two-
processor systems. Acta Inf., 1: 200-213.

Dobson G (1984). Scheduling independent tasks on uniform
processors. SIAM J. Comput., 13: 705-716.

Dorigo M, Birattari M, Stützle T (2006). Ant Colony Optimization –
Artificial Ants as a Computational Intelligence Technique. IEEE
Computational Intelligence Magazine.

Dorigo M, Socha K (2007). An Introduction to Ant Colony Optimization.
Gonzalez TF, Approximation Algorithms and Metaheuristics. CRC
Press.

Dorigo M, Stützle T (2002). The Ant Colony Optimization Metaheuristic:
Algorithms, Applications, and Advances. Handbook of Metaheuristics.

0

10

20

30

40

50

60

70

1 2 3 4 5

Processors

No. of jobs

Waiting time

Finishing time

Elnaz ZM, Amir MR, Mohammad R, Feizi D (2008). Job Scheduling in

Multiprocessor Architecture Using Genetic Algorithm. Proc. IEEE, pp.
248-250.

Engelbrecht AP (2005). Fundamentals of Computational Swarm
Intelligence. John Wiley & Son.

Friesen DK (1987). Tighter bounds for LPT scheduling on uniform
processors. SIAM J. Comput., 6: 554-660.

Gagne C, Price WL, Gravel M (2002). Comparing an ACO algorithm
with other heuristics for the single machine scheduling problem with
sequence dependent setup times. J. Oper. Res. Soc., 53: 895-906.

Graham R (2003). Static Multi-processor scheduling with Ant Colony
Optimization and Local search. Master of Science thesis, University
of Edinburgh, pp. 1-101.

Gur M, Daniel O (2006). Open- shop batch scheduling with identical
jobs. Eur. J. Oper. Res. (Elsevier), pp. 1282-1292.

Gur M, Uri Y (2004). Comments on Flow shop and open shop
scheduling with a critical machine and two operations per job.
European Journal of Operational Research(Elsevier), pp. 257-261.

Hong-Wei G, Liang S, Yan-Chun L, Feng Q (2008). An Effective PSO
and AIS-Based Hybrid Intelligent Algorithm for Job-Shop Scheduling.
IEEE Transactions On Systems, Man, And Cybernetics-Part A: Syst.
And Hum., 38(2).

Kenedy J, Eberhart RC (1995). Particle Swarm Optimization. proc. IEEE
Int. Conf. Neural Networks. Pistcataway, pp. 1942-1948.

Lee CY, Hwang JJ, Chow YC, Anger FD (1998).Multiprocessor
Scheduling with Interprocessor Communication Delays. Oper. Res.
Lett., 7(3): 141-147.

Lei Z, Yuehui C, Runyuan S, Shan J, Bo Y (2008). A Task Scheduling
Algorithm Based on PSO for Grid Computing. Int. J. Comput. Intell.
Res., 4(1): 37-43.

Lin FT, Hsu CC (1990). Task assignment Scheduling by simulated
annealing‟, in proceed. conf. Comput. Commun. Syst. Hong Kong, 1:
279-283.

Mitten L (1970). Branch and Bound Method: general formulation and
properties. Oper. Res., 18: 24-34.

Morrison JF (1998). A note on LPT scheduling. Oper. Res. Lett., 7: 77-
79.

Qing-dao-er-ji R, Yuping W, Xiaojing S (2010). Improved genetic
Algorithm for Job shop scheduling problem Sch. of Comput. Sci. &
Technol., Xidian Univ., Xi'an, China , Computational Intelligence and
Security (CIS), 2010 Int. Conf., p. 113.

Sanchez JEP, Trystram D (2005). A New Genetic Convex Clustering
Algorithm for Parallel Time Minimization with Large Communication
Delays. in Proceedings of the International Conference on Parallel
Computing, ParCo , Malaga, Spain, 33: 709-716.

Selvakumar S, Siva Ram Murthy C (1994), Scheduling Precedence
Constrained Task Graphs with Non-Negligible Intertask
Communication onto Multiprocessors. IEEE Trans. Parallel Distrib.
Syt., 5(3): 328-336.

Sha DY, Cheng-Yu Hsu (2007). A new particle swarm optimization for
open shop, pp. 3243-3261.

Shelokar PS (2007). Particle Swarm and Ant Colony Algorithms
Hybridized for Improved Continues Optimization. Appl. Math.
Comput., 188: 129-142.

Thanushkodi and Deeba 1953

Shi Y, Eberthart R (1999). Empirical study of particle swarm

optimization. Proc. IEEE Congr. Evol. Comput., pp. 1945-1950.
Sih GC, Lee EA (1990). Scheduling to Account for Interprocessor

Communication Within Interconnection- Constrained Processor
Network. Int. Conf. Parallel Process., 1: 9-17.

Sivanandam SN, Deepa SN (2007). Introduction to Genetic Algorithm.
Springer verlog.

Gupta SR, Smith JS (2006). Algorithms for single machine total
tardiness scheduling with sequence dependent setups. European
Journal of Operational Research (In Press).

Thanushkodi K, Deeba K (2009). An Evolutionary Approach for Job
Scheduling in a Multiprocessor Architecture. CiiT Int. J. Artif. Intell.
Syst. Mach. Learn., 1(4).

Thanushkodi K, Deeba K (2011). A New Improved Particle Swarm
Optimization Algorithm for Multiprocessor Job Scheduling. Int. J.
Computer Sci. Issues. 8(4).

Thanushkodi K, Deeba K (2011). A Comparative study of proposed
improved PSO algorithm with proposed Hybrid Algorithm for
Multiprocessor Job Scheduling. International Journal of Computer
Science and Information Secur. 9(6).

Thanushkodi K, Deeba K (2011). On Performance Comparisons of GA,
PSO and proposed Improved PSO for Job Scheduling in
Multiprocessor Architecture. Int. J. Comput. Sci. Netw. Secur., pp. 27-
34.

Tung-Kuan L, Jinn- Tsong T, Jyh-Hong C (2005). Improved genetic
algorithm for the job-shop scheduling problem. International Journal
Advanced Manufacture Technology (Spiringer), pp. 1021-1029.

Tzu-Chiang C, Po-Yin C, Yueh-Min H (2006). Multiprocessor Tasks with
Resource and Timing Constraints Using Particle Swarm Optimization.
Int. J. Comput. Sci. Netw. Secur. 6(4): 71-77.

Wu MY, Gajski DD (1990). Hypertool: A Programming Aid for
Message_Passing Systems. IEEE Trans Parallel Distrib. Comput.,
1(3): 330-343.

Yang S, Wang D (2000). Constraint satisfaction adaptive neural network
and heuristics combined approaches for generalized job-shop
scheduling. IEEE Trans. Neural Network, 11(2): 474-486.

Yang S, Wang D (2001). A new adaptive neural network and heuristics
hybrid approach for job-shop scheduling. Comput. Oper. Res.,
28(10): 955-971.

Yang T Gerasoulis A (1993). List Scheduling with and without
Communication Delays. Parallel Comput., 19: 1321-1344.

Yu HB, Liang W (2001). Neural network and genetic algorithm-based
hybrid approach to expanded job- shop scheduling, Comput. Ind.
Eng., 39(3/4): 337-356.

Zhang XD, Yan HS (2005). Integrated optimization of production
planning and scheduling for a kind of job-shop. Int. J. Adv. Manuf.
Technol. (Spiringer), pp. 876-886.

Zhou M, Sun SD (1999). Genetic algorithms: theory and application.
National Defense Industry Press. Beijing, China, pp. 130-138.

