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In this paper, new preconditioners from class of (I+S)-type for solving linear systems are developed and
preconditioned, accelerated overrelaxation (AOR) method is used for the systems. The proposed
algorithms have a simple and graceful structure. Asymptotic convergence of the sequence generated
by the methods to the unique solution of linear systems is proved, along with a result regarding the
convergence rate of the preconditioned methods. Finally, computational comparisons of the standard
methods against preconditioned methods based on examples are presented which illustrate the merits
of simplicity, power and effectiveness of the proposed algorithms.

Key words: Preconditioning, accelerated overrelaxation (AOR), successive over relaxation (SOR), Z-, M-

matrix.

INTRODUCTION

Science history indicates that substantial improvements
and huge jumps in science and technology require
interaction between mathematicians with different
scientists. Meanwhile, solving linear equation system play
the role of a catalyst for further connection of this
interaction between mathematics and the sciences.
Consider the following linear system:

Ax = b, 1)

n
where A e R™", b,XeR", we proposes to use
the iterative method as:

XT=MNx'+M* i=01...

@)

For splitting A = M - N with the nonsingular matrix M. Lets
consider the following preconditioned linear systems:

PAx=Pb peR™
or
AFY =Db X =FY

®)

Where p and F are respectively called left and right
preconditioners. Therefore we have:

i+l _ a1 i -1 L
X" =M N x'+M “pb i=01...
Where PA = Mp - Np and Mp is nonsingular. And
y =M N y? +MM =01,

Where AF = Mg - Nr and Mg is nonsingular.



These kind of preconditioned methods have been
discussed and used by many researchers [Milaszewicz,
1987,

Gunawardena et al.,, 1991; Kotakemori et al., 1997,
2001; Kohno and Kotakemori, 1997; Evans et al., 2001,
Sun, 2006; Wang, 2006; Wang and Song, 2009; Najafi
and Edalatpanah (2011a, 2011b, 2012)].

For example, Milaszewicz (1987) presented the
preconditioner (I + S), where the elements of the first
column below the diagonal of A eliminate. Consider:

P=1+S
Where

—a. .

S= (Si,j) = {0 .

Then A= (1 +S)A can be written as follows:

for j=i+1i=12,..,n-1

for otherwise @

A=1-D-L-E-(U -S+SU)

Where Iﬁ, E are the diagonal and strictly lower triangular

parts of SL, respectively and also A=1-L-U, where
I, is the identity matrix, L and U are strictly lower and
strictly upper triangular matrices of A, respectively.

Gunawardena et al. (1991) considered the
preconditioner (| +S"), which eliminates the elements of
the first upper diagonal. Kohno and Kotakemori (1997)
extended Gunawardena et al. (1991) work to a more
general case as:

(1+s,)
Where,
() - ;8 j=i+l 0<¢g; <1
A ¢} otherwise

Kotakemori et al. (2002) used:

P=1+S
rex (5)
Where
s ) — for i=12,...n-1,j>i
=(s. .)= !
e i 0 for otherwise

and k; =min je{j

max
i

q;

} for i<n.

Then A= (1 +S,)A can be written as:
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A=1-D-L-E-U-5,, +F+5S,,U)

Where D,E,F are the diagonal, strictly lower and strictly
upper triangular parts of S __ L, respectively. We also

present some new preconditioners, by using the
aforestated preconditioners.
THE AOR ITERATIVE METHOD FOR NEW
PRECONDITIONER
Consider the preconditioned form of (3) as:
Ax=Db (6)
Where
A=(1+5,+5,)A "o 0
b=(1+5)b 0 0
_ _ and g — and
S — Sa _I_ Sk ........
—-a
k>1 -0
— k —
0 -aa, O 0
0 0 —aa,
g =
0 0 _an—lan—l,n
—a
0 0
Lk _
Let A be split as:
A=l-L-U=
1 170 170 -a, -a, — -
1 a 0 0 -a,
8, —a, 0 - R
1 0
L 1_ __anl _anz _anfln 0_ L

Where |, -L, -U are respectively identity, strictly lower and
upper triangular matrices.
Now we consider the splitting of (6) as:

A=D-L-U

Where,
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1-aaa,
_ 1-a,a,5as,
D= )
1 B8y
) k- 1o
o ]
B 08385, — 85, 0
[ :
! &,28 8184
(E_ )an’l k _an,Z h k _an,nfl 0
' e
0 (al _l)a12 a1a12a23 - a13 . a13-123-2n _ aln
- 0 0 oy =Day...  @,8,8,, —ay,
0. N (V2 —1)an_1yn
10 0 _
9)
Generally,
i j ~ X184 | 1<i<n
A= Qi1 )
i T i=n
(10)
1-aa,85,; 1<i<n
1— 1,i70,1 i—n
“ (11)

In 1987, the accelerated over-relaxation iterative method
(AOR) in Hadjidimos (1978) was defined as:

(i+) _ (i) _ -1 1= v
V=L XY+ -rL)"wb i=01,. 12)
With iterative matrix:
i _ -1 — —
L.,=-rL)7[@-w)I+(w-r)L+wU] (13)

Where (w, r) are real parameters with w#0. Then, the
iterative matrix with preconditioner of (6) is defined as:

L., =(D-rL)*[1-w)D +(w-r)L +wU]
(14)

REQUIRED DEFINITIONS AND LEMMAS

Definition 1: [Berman and Plemmons (1994), Poole and
Boullion (1974) and Najafi and Edalatpana (2011)]:

(a) The matrix A = [a;] is nonnegative (positive) if ¥ i,j a;

2 O(aj > 0). In this case we write A 2 0(A>0). Similarly, for
n-dimensional vectors x, by identifying them with
nx1lmatrices, we can also define x =2 0 (x>0);

(b) A matrix A = a;; is called a Z-matrix if for any
I # J,8 <0
(c) A Z-matrix is a nonsingular M-matrix, if A is

-1
nonsingular, and if A >0 .

Definition 2: A matrix A is irreducible if the directed
graph associated to A is strongly connected (Varga,
2000).

Definition 3: Let A be a real matrix (Varga, 2000;
Woznicki, 2001). The representation A = M — N is called a
splitting of A, if M is a nonsingular matrix. The splitting is
called:

(a) Convergent if p (M N ) <1; (we denote the spectral

radius of A by p(A));

(b) RegularifM >0, N>0 ;

(c) Nonnegative if M™*N >0 ;

(d) M-splitting if M is a nonsingular M-matrix and N >0 ;

Clearly, an M-splitting is regular and a regular splitting is
non-negative.

Definition 4: A square matrix A :(aij)nxn is called
(nonsingular) M-matrix (Berman and Plemmons, 1994), if

A=al-B ; B>0 and(a>p(B) ) o> p(B)

Lemma 1: Let A e R™ be nonnegative and irreducible
n x n matrix (Varga, 2000; Theorem 2.7). Then,

(i) A has a positive real eigenvalue equal to its spectral
radius p(A);

(i) For p(A), there corresponds an eigenvector x >0;

(i) p(A)is a simple eigenvalue of A; and

(iv) p(A)increases when any entry of A increases.

Lemma 2: (Li and Sun, 2000) Let A = M - N be an M-
splitting of A. Then p (I\/I‘lN) <1lifand only if Ais a
nonsingular M-matrix.



Lemma 3: (Berman and Plemmons, 1994; Theorem 2.2].
Let A be a non-negative matrix. Then:

(1) If ax< AX for some non-negative vector x, X =0 ,
thena < p(A);

(2) If ax<pxfor some positive vector X,
then p(A) < . Moreover, if A is irreducible and if
0#ax< AXZ BX,ax# AX, AX# X for some non-

negative vector x, thena < p(A) < fand x is a positive
vector.

Lemma 4: (Berman and Plemmons, 1994, Theorem 6-
2.3] Let A be a Z-matrix. Then A is a nonsingular M-
matrix if and only if there is a positive vector x such that
Ax>0.

Lemma 5: (Varga, 2000; Theorem 3.16). If A>0is a
NxN matrix, then the following are equivalent:

(1) a>p(A).
(2) al — A Is nonsingular, and (ol — A )™ >0.

COMPARISON THEOREM

Let A be a Z-matrix, therefore, L =0 and U 2 0. Then we
have:

A=) =14 L4 2L 4o ™
— Ly, =@ L4 U [ W)+ (W-r)L+wU]
=(L-wl+(w=r)L+wU +rL{L-w)l
Frw-nL+ WU (L 4+ 0 ) [-w)l + (w-r)L+wU ]
=(-w)l+wld-rL+wU +7
whergz = rL[W-r)L+wU ]+ (r*L +-+ """ [A-w)l + (w-r)L+wU]>0

And this means that L;,, =2 0. Also, it is easy to see that
L, is irreducible when A is irreducible. For Lr’W the proof

is as follows:

It p(L,,) <1lthen by Lemma 2, A is a nonsingular M-
matrix and from Lemma 4:

3 x>0 ST AX>0= (1 +5)AX>0.

It is easy to see that A is a Z-matrix and then by Lemma
4, we conclude that A is a nonsingular M-matrix; so

l-aa .. .a

LI+ LI

>0, 1-(1/k)a, a, >0. So by

Najafi and Edalatpanah 1525

Equations (7) and (11), we have D = 0 and if:

a; <1&a;;,3;,,; <1

L >1and
,0( r,W) {k 21&0<al,nan,l<k

We have the aforestated conclusion. Also by (8), (9),
L=0,U=0.So:

L. = (B—r[)’l[(l—w)5+(w— ML +wWJ ]

—@a-rD 'O [(1— W)l +(w—r)D 'L+wD U ]

=@-wW)l +w@-r)D L+wD U +x

x = rB*E[(W_ 1D ‘L+wD U ]

+[r2(5’1t)2 +~--]{(1—w)| +(w—r)D 'L+wD U }>0

Thus, we have proved the following corollary.

Corollary 1: Let A and A are respectively the coefficients
matrix of (1) and (6), if0<r <w<1,w=0,r#1 and A
a; <1&a;;,,a,,; <1

i+ 7+

be a nonsingular Z-matrix and ,
k>1&0<a,,a, <k

then the iterative matrices L,,, and Er,w of AOR methods

applied to the linear systems (1), (6), respectively, are

nonnegative. Now we show the

convergence for this new preconditioner.

improvement of

Theorem 1: Let L,,, and Er,w are the iterative matrices of

(13), (14) of AOR method. If A is a Z-matrix which is
nonsingular and irreducible and conditions of corollary (1)
are satisfied. Then we have:

I p(L,,) <1= p(Lrw) < p(L,.,)
2)If p(L,,)=1= p(Lww) = p(L,,)
3) If p(Lrw) >1= p([fW) 2 p(LI'W)

Proof: If A is irreducible then by proof of corollary(1) L,
is nonnegative and irreducible. Therefore from Lemma 1
(Perron-Frobenius), there exists a vector x>0 such that

L, ,X=AX, A= p(L,,) from (13) we have:

(I =rL) [ w)l +(W—r)L+wU]x = Ax (15)

>[AL-w)l+(w-r)L+wU]x=A(l —rL)x (16)
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—[@-w-AD)l+(wW-r+Ar)L+wU]x=0 sU=D,+L,+U,
(17) (25)

To continue, we used lemma 3. Then, we have:
—wlL+U-1)+@-A) +r(1-)L]x=0 (18)

[r,wx—/lx:(5—r[)fl[(l—w)5+(w—r)[+v\U]—/1x

—wW(L+U —1)x=(1-1)@-rL)x=0 _ _ . _
WL+U = Dx=(A-Di-rbx (19) :(D—rL)‘l[(l—w)D+(w—r)L+va—}t(D—rL)}x
Also from (6), we have: = (D-rL) [A-w—A)D+W—r+Ar)L +WJ]x

Ax=Db

—@+s, +s)(I -L-U)= L

I—L-U+(s, +5,)—(s, +s)L—(s, +s)U=D-L-0 (¥ =(0-rb)* [@-w-2)(1-D,-D;)+W-r+ar)(L-s, +L,+L,)
+w(U -s, +U,)

And, ~ Ty
=(D-rL)” [Q-w=-2)(1)+(w-r+Ar) L) +WU) K+

D=(1-D,-D,) oo O WA DT A s U,

(202122

—H=(D-rL) H-w-2)0, D)+ (-4 ) L+ =5) +ull; -5, )
(@1 =l -0,+ DD+ L5 L+l ) 4wl I

=(D-rL) TA-D, +D)+1 (AL, Ly =8 ) +WD,+ Dy +L, +Ls =5 +U, - ¢

L=(L-s, +L,+L,)

=U-s, +U,)

22
Where. - —E22) 5o (D-rL) [(A-D) 0, + D) +1(A-D (L, +L,-5)+W(sL+sU-3 )X
=(D-rL)'[(A-1)(D, +D;) +r(A-1(L, +L, -s,) +ws(L+U - 1)]x
S=S,+S, (23)
—8 5 (D=L {(A-1)(D, +D,) +r(A-1(L, +L, -5,)+ (A-D)s(1-rL)]x
sb=D,+L, (24) :(B rL)[(2-1)(D, +D,)+r(A-1)(L, + L, -s,) + (A-Ds—r(1-DsLix

=(D-rL)[(1-1)(D, + D) +r(A-1)(L, + L, —s, —sL) + (1 —1)s]x
=(D-rL)*[(A-1)(D, + D)+ r(2—1)(L, —sL) +
r(A-Y(L;) +r(A -D(-s,) + (A —Ds]x

(23,24)
—1=220

=(D—rL) (A —1)(D, + D)+ r(A —1)(-D,) + r(A —1)(L;) + @—r)(A —1)(s, ) + (A —1D)s,_ Ix
=(D-rL)[(A-1)@A-r)(D,) +(A—1)(D,) + r(A—-1)(L,) + @—r)(A-1)(s,) + (A —Ds,, Ix

=(D—rL) " [(A-DA-r)(D; +5,) +(A-1)(D; +5,) +r(A-1)(L;)Ix 26)
where,D, +s, >0&D, +s, >0&L, >0 is a nonsingular M-matrix and by Lemma 5,
(1-rD 1)*>0

- =0 L= is i i
Also since r= 0, L = 0 this is obviously that, Therefore,

M = ([_) - r[) is a Z-matrix and  since L
M =(D-rL)=D(I-rD L)

rD L>0,p(rD L)=0<1 by definition 4, 1 _rb"0)  —>t" —a-rb D)D" =0



—)M is nonsingular M-matrix.
Py
p=L,  x—-Ax=|:
Py

Now, let and ?M,:(E)nxn'

Hence from (26) we have:

if A<1 then p<O0
if A>1then p>0

Thus, by Lemma 3, we obtain the required results.

OTHER PRECONDITIONERS

The preconditioners which are presented here, are sort of
extension of the previous preconditioner. Therefore, the
proof of improvement in the convergence process is
similar as that one, but we show that the iterative
matrices are nonnegative.

The second preconditioned form

In this case, the preconditioned form of ,&X = 6 is:

A=(1+3)A
b=@+8)h 4
0
L= a2a23a31—a21 0

nla a

U=U
Obviously, (Vl, ki > 1) ;J >0, E >0. Also if

p(Lr,w)<1 then, from proof of corollary 1,

D > 0 Otherwise, under the following conditions
elements of the diagonal are positive:

{[(——1)an1] (Z ”'_'1)} {[((— l)anz)]+(z ™ '2)} {[((
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0 -«a, 0 0
0 0 —aja,,
S =
0 0 —a,,4a, -1,n
T T ~ 8 0
L kl k2 kn—l | (27)
By direct computation we obtain that:
Qi — i1, 1<i<n
A=3 = nla . a, )
RE PR S AR
1] k
f=1 f
1-aa,,8,,
1-a,a8,8,,
D=
n-1 a. .a.
1 n,i~ti,n
_ 27
i a a ~ n| II']
-Da,, 1)](2 —t)} 0
n-1 |
|¢2 .

ai € [011] & O < al |+1a|+1| < 1

nla a
Vitk >1& o<z

The third preconditioned form

Consider the preconditioned system AX =D as:
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A 1+ ?)A By direct computation we obtain that:
b=@1+35)b
r T ~ & — 8@, —18,,a,
0 aa;, 0 —ta,, A= 5”' = ai,j _aiai,i+1ai+l,j
0 0 —aja, 0 1a a
I~ iff
e
0 0 _an—lan—l,n f=1 f
—a —a —a
ni "2 n.n-1 0
L kl I(2 kn—l n (28)
[1- a8, —ta, a,, |
- 1-a,a,5a;, -
D= L =
nla a
1_— n,i“i,n
[0 (o, —Day, +1a,,a, , 38,3+t 8., — &y, o (t-Da, +xa,3,, ]
_ 0 (o, —Day,--- Qp8,y383, — 8y,
U= :
0 (an_l _1)an—1,n

Obviously, (¢;,t €[01] &k; >1) .U >0,L>0. Also, if

~

p(L,,) <1 then, from proof of corollary 1, D >0.
Otherwise, under the following conditions, elements of
diagonals are positive:

0

i1

l<i<n

i

And with this process we can make up preconditioners by
the following models; the 4™ and 5™ preconditioned forms

(29), (30) respectively:

(cr,,t =[01],k, =1
O=<a,a,, +ta, ,a,;, <1
4()Sa'i,i+lai+l,i <1
n—1
Zan,ialn <1
Li=1 i
= = _ —a;a; for(j=1+2D,(j=n,i=n),(j=n,i=n
AX 5 52{ a;a; (i | ). ( ), (J )
0 otherwise (29)
= ~ _ —a;a for(j=i+1),(j=n,izn),(j=n,i=n),(j=li=1
AX —b: §:{ 3y (j=1+1).(] ). (] ).(J )
0 otherwise (30)



The sixth preconditioned form

Similar to Kotakemori et al. (2002), we consider the
following preconditioner;

p:(l +Smin) (31)
Where
0 if a; €aq
Smin: . |=1n—l,]>|
—q; otherwise
(32)

Also, similar to k; in S, , Q; is given by the following:

Qizje{j ‘ min‘aij‘} for i<n-1
j

Then, the AOR preconditioned matrix is as follows:

Amin = (I + Smin )A!

Amin = (I - I—_L")_'_Smin _Smin I-_SminU

—)Amin :(I _D)_(L+E)_(U _Smin +F +SminU)
%/ —

M min Dmin - erin
N min (1_ W) Dmin + (W - r) I—min +wU min
(33)

Where D, E and F are the diagonal, strictly lower and
strictly upper triangular parts of S . L=D+E+F >0,
respectively. It can be seen that:

a;— >, a,a,; 1l<i<n
Am. = keQ;
In }
a, | i=n
' (34)
E.F are nonnegative and D =1 — Zai,kak,i . So if
keQ
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1# > a8, ;i=12..,n-1
keQ;

Then M ;.  exists.

Theorem 2: let L;,, be the iterative matrix of (13) and
L, , be an iterative preconditioned matrix of AOR method

by any of our preconditioned models and A is an
irreducible and nonsingular Z-matrix. If by the aforestated

conditions L. >0. Then, we have:

rw —

yir oL, ) <l=pL.,)<plL,.,)
i p(L,,) =1= p(L, ) = p(L,..)
3) If p(Lr,W) > 1 = p(I:r,w) 2 p(LrW)

Proof: Let A be the preconditioned matrix of A with
preconditioner of (I +S) . Without loss of generality, let
S=(S +S,). Where S_,S,are strictly lower and

upper triangular matrices obtained from A, respectively.
Then we have:

A

A=(1+S, +S,)A=1-L-U+S -8, L-S,U+S,-S,L-S,U

and A=D-L-U where,

ot SU=Db,+L,+U, A A
e
SyL=D,+L;+U,

[3:(|_D2_D3)

L=L-S +S L+L,+L,
U=U+U,-S, +U,-S,U

Now, with proof of Theorem 1, we have:

L, X—AX=(D—-rL)'[A—wW—A)D+W-—r + Ar)L +wU]x
=(D-rb)'[(A-—D)(D, + D) +r(A—D(L, +L; —S, +S, L)+ (1 —-1)s@—rL)]x

= (Ij_ rl:)_l[(}b_l)(Dz + D3) + r(/’t—l)(l—z + I—s)
+r(A—DCES,_ +S L)+ (A-DS._+S,)—r(A—D(S L+S,L)Ix
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Table 1. The results of example 1.

w r p p p p
1 0 0.7352 0.6774 0.6709 0.5890
0.9 0.4 0.7188 0.6549 0.6519 0.5696
0.9 0.5 0.7058 0.6369 0.6351 0.5501
0.9 0.6 0.6912 0.6163 0.6160 0.5279
0.9 0.8 0.6553 0.5635 0.5679 0.4716
1 1 0.5604 0.4210 0.4380 0.3119

= (D-rD) (2 ~1(D, + D) +r(A =1)(L, + Ly) + (L= A -1)(S.) + (2 ~1)(Sy ) + r{L— 2)(Sy L)IX

On the other hand by (17), we have:

L —l-w-A)I -wU
- (W—r+Ar)

L, X —AX =

(D -r0)[A-1)(D, + D) +r(A—1)(L, + L)) +A—-r)(A—1)(S. )+ (1 —Dw

Thus by Lemma 3, we obtain the required results.

Remark 2: In (13) by choice special parameters can be
obtained, similar results about popular method from the
aforestated theorems. Evidently:

1) Jacobi method forw =1, r=0.

2) JOR (Jacobi Over relaxation) method for r = 0.
3) Gauss-seidel method forr=w =1.

4) SOR method for r = w.

NUMERICAL EXAMPLES

Here, we give two examples to illustrate the results
obtained earlier.

Example 1: The coefficient matrix A of (1) is given by:

(1 02 0023 018 027 0031 01
01 1 031 018 007 01 02
001 01 1 01 02 017 -0.0098

A=<-0020 02 003 1 03 001 01
01 004 009 003 1 01 01
02 003 01 027 003 1 01

\018 00081 01 0019 01 02 1)

Therefore,

{@-r)s, +S U}
W—r + Ar

1x

If we apply all the last methods for A and compute the
spectral radius in each case we have the following
results. In Table 1, we reported the spectral radius of the
corresponding iterative matrix with different parameters
w, r. We denote spectral radius of the AOR method by p .

Alsop,p, p are spectral radius of iteration matrix with
preconditioners (4), (5) and (31), respectively.

Example 2: The coefficient matrix A of (1) is given by:
1 if

A:(ai,j)nxn = -1
I+2]

=]

it i |

In Table 2, we reported the spectral radius of the
corresponding iterative matrix with different parameters
w, r. We denote spectral radius of the AOR method by

p(Lr,w)andp(LR,W). p(Er,w)’ p(frw)' p(Erw) are

spectral radius of the Ganawardena's preconditioner,
first, second, fourth and fifth preconditioners as stated

earlier. Also, we take K;,«;,t=1 in proposed
preconditioners. From Table 1, we can see that all the
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N w r p(L, ) pllew) o) pL,) oL, oL,
1 0 0.6470 0.6028 0.5999 0.5875 0.5845 0.5170
8 0.9 0.7 0.5794 0.5184 0.5137 0.5035 0.5001 0.4410
0.9 0.8 0.5558 0.4886 0.4832 0.4735 0.4699 0.4119
1 1 0.4341 0.3333 0.3241 0.3151 0.3100 0.2492
1 0 0.8271 0.8095 0.8092 0.8065 0.8080 0.7745
16 0.9 0.7 0.7771 0.7474 0.7467 0.7439 0.7431 0.7071
0.9 0.8 0.7614 0.7276 0.7267 0.7238 0.7229 0.6853
1 1 0.6886 0.6360 0.6346 0.6314 0.6298 0.5833
1 0 0.9210 0.9139 0.9138 0.9138 0.9130 0.8994
24 0.9 0.7 0.8938 0.8806 0.8804 0.8795 0.8793 0.8617
0.9 0.8 0.8855 0.8702 0.8700 0.8691 0.8688 0.8499
1 1 0.8486 0.8244 0.8241 0.8230 0.8225 0.7978

numerical results have illustrated our theoretical analysis.
For example the spectral radius of the classical Gauss-
seidel and Ganawardena's preconditioner with N = 8, are
0.4341, 0.3333, while the spectral radius of our fifth
preconditioner for Gauss-seidel is 0.2492.

CONCLUSION

In this paper, we have proposed some new
preconditioners from the class of (I + S)-type based on
the AOR method. Also, we let the coefficient matrix of
linear system be Z-matrix or M-matrix that often occur in
a wide variety of area including numerical differential
equation, growth models in economics and physical and
biological sciences (Berman and Plemmons, 1994).

Finally, from theorems and numerical examples, it may
be concluded that the convergence rate of our proposed
methods are superior to the basic AOR Method and
better than some preconditioner of (I + S)-type.
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