
 

 

 

 
Vol. 8(31), pp. 1522-1531, 18 August, 2013 

DOI 10.5897/SRE12.763 

ISSN 1992-2248 © 2013 Academic Journals  

http://www.academicjournals.org/SRE 

Scientific Research and Essays 
 

 
 
 
 
 
 

Full Length Research Paper 
 

A collection of new preconditioners for solving linear 
systems 

 

H. Saberi Najafi1 and S. A. Edalatpanah1,2* 
 

1
Department of Applied Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran. 

2
Young Researchers Club, Lahijan Branch, Islamic Azad University, Lahijan, Iran. 

 

Accepted 17 January, 2012 
 

In this paper, new preconditioners from class of (I+S)-type for solving linear systems are developed and 
preconditioned, accelerated overrelaxation (AOR) method is used for the systems. The proposed 
algorithms have a simple and graceful structure. Asymptotic convergence of the sequence generated 
by the methods to the unique solution of linear systems is proved, along with a result regarding the 
convergence rate of the preconditioned methods. Finally, computational comparisons of the standard 
methods against preconditioned methods based on examples are presented which illustrate the merits 
of simplicity, power and effectiveness of the proposed algorithms. 
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INTRODUCTION 
 
Science history indicates that substantial improvements 
and huge jumps in science and technology require 
interaction between mathematicians with different 
scientists. Meanwhile, solving linear equation system play 
the role of a catalyst for further connection of this 
interaction between mathematics and the sciences. 
Consider the following linear system: 
 

Ax = b,                                                                   (1) 
 

Where A Rn n , , nb x R , we proposes to use 

the iterative method as: 
 

)2(,1,0111   ibMNxMx ii

               (2)
 

 

For splitting A = M - N with the nonsingular matrix M. Lets 
consider the following preconditioned linear systems: 

FYxbAFY

or

RpPbPAx nn



 

;
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                                         (3) 
 
 
Where p and F are respectively called left and right 
preconditioners. Therefore we have: 
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Where PA = MP - NP and MP is nonsingular. And 
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Where AF = MF - NF and MF is nonsingular.
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These kind of preconditioned methods have been 
discussed and used by many researchers [Milaszewicz, 
1987;

 

Gunawardena et al., 1991; Kotakemori et al., 1997, 
2001; Kohno and

 
Kotakemori, 1997; Evans et al., 2001; 

Sun, 2006; Wang, 2006; Wang and Song, 2009; Najafi 
and Edalatpanah (2011a, 2011b, 2012)]. 

For example, Milaszewicz (1987) presented the 
preconditioner (I + S), where the elements of the first 
column below the diagonal of A eliminate. Consider:
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Where 
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Then ASIA )ˆ(ˆ   can be written as follows:
 

 

)ˆˆ(ˆˆˆ USSUELDIA   

 

Where ED ˆ,ˆ  are the diagonal and strictly lower triangular 

parts of LŜ , respectively  and  also  A = I – L - U,  where 

I,  is the identity matrix, L and U are strictly lower and 
strictly upper triangular matrices of A, respectively. 

Gunawardena et al. (1991) considered the 

preconditioner ( SI  ), which eliminates the elements of 

the first upper diagonal. Kohno and Kotakemori (1997) 
extended Gunawardena et al. (1991) work to a more 
general case as: 
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Kotakemori et al. (2002) used: 
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Then ASIA )(
~

max
 
can be written as: 
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Where FED
~

,
~

,
~

 are the diagonal, strictly lower and strictly 

upper triangular parts of LSmax
, respectively. We also 

present some new preconditioners, by using the 
aforestated preconditioners. 
 
 
THE AOR ITERATIVE METHOD FOR NEW 
PRECONDITIONER 
 
Consider the preconditioned form of (3) as: 
 

bxA                                                           (6) 
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Let A be split as: 
 
A = I – L – U = 
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Where I, -L, -U are respectively identity, strictly lower and 
upper triangular matrices. 

Now we consider the splitting of (6) as: 
 

A D L U     

 
Where, 
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Generally, 
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In 1987, the accelerated over-relaxation iterative method 
(AOR) in Hadjidimos (1978) was defined as: 
 

)12(,.1,0)( 1)(

,

)1(   iwbrLIxLx i

wr

i

      (12)
  

With iterative matrix: 

 

)13(])()1[()( 1

, wULrwIwrLIL wr     
         (13) 

 
Where (w, r) are real parameters with w≠0. Then, the 
iterative matrix with preconditioner of (6) is defined as: 

 

)14(])()1[()( 1

, UwLrwDwLrDL wr  

      (14)
 

 
 
 
 
REQUIRED DEFINITIONS AND LEMMAS 
 
Definition 1: [Berman and Plemmons (1994), Poole and 
Boullion (1974) and Najafi and Edalatpana (2011)]: 
 
(a) The matrix A = [aij] is nonnegative (positive) if  aij 

≥ 0(aij > 0). In this case we write A ≥ 0(A>0). Similarly, for 
n-dimensional vectors x, by identifying them with 
n×1matrices, we can also define x ≥ 0 (x>0); 

(b) A matrix A = 
ija  is called a Z-matrix if for any 

, 0iji j a 
;
 

(c) A Z-matrix is a nonsingular M-matrix, if A is 

nonsingular, and if 
1 0A   . 

 
Definition 2: A matrix A is irreducible if the directed 
graph associated to A is strongly connected (Varga, 
2000). 
 
Definition 3: Let A be a real matrix (Varga, 2000; 
Woznicki, 2001). The representation A = M – N is called a 
splitting of A, if M is a nonsingular matrix. The splitting is 
called: 
 

(a) Convergent if ρ (
1M N

) <1; (we denote  the  spectral 

 
radius of A by ρ(A)); 

(b) Regular if
1 0M   , 0N   ; 

(c) Nonnegative if 
1 0M N   ; 

(d) M-splitting if M is a nonsingular M-matrix and 0N   ; 
 
Clearly, an M-splitting is regular and a regular splitting is 
non-negative. 
 

Definition 4: A square matrix A = ( )ij n na   is called 

(nonsingular) M-matrix (Berman and Plemmons, 1994), if  
 

A I B   ; 0B   And ( ( )B   ) ( )B    

 

Lemma 1: Let A Rn n be nonnegative and irreducible 
n × n matrix (Varga, 2000; Theorem 2.7). Then, 
 
(i) A has a positive real eigenvalue equal to its spectral 

radius ( )A ; 

(ii) For ( )A , there corresponds an eigenvector x >0; 

(iii) ( )A is a simple eigenvalue of A; and 

(iv) ( )A increases when any entry of A increases. 

 
Lemma 2: (Li and Sun, 2000) Let A = M − N be an M-

splitting of A. Then ρ (
1M N

) < 1 if and only if A is a 

nonsingular M-matrix. 



 
 
 
 
Lemma 3: (Berman and Plemmons, 1994; Theorem 2.2]. 
Let A be a non-negative matrix. Then: 
 

(1) If x Ax   for some non-negative vector x, 0x   , 

then ( )A  ; 

(2) If x x  for some positive vector x, 

then ( )A  . Moreover, if A is irreducible and if 

0 , ,x Ax x x Ax Ax x         for some non-

negative vector x, then ( )A    and x is a positive 

vector. 
 
Lemma 4: (Berman and Plemmons, 1994, Theorem 6-
2.3] Let A be a Z-matrix. Then A is a nonsingular M-
matrix if and only if there is a positive vector x such that 
Ax>0. 
 

Lemma 5: (Varga, 2000; Theorem 3.16). If 0A is a 

n n  matrix, then the following are equivalent: 

 

(1) ( )A 
;
  

(2) I A   Is nonsingular, and .0)( 1  AI  

 
 
COMPARISON THEOREM 

 
Let A be a Z-matrix, therefore, L ≥ 0 and U ≥ 0. Then we 
have: 
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And this means that Lr,w ≥ 0. Also, it is easy to see that 

Lr,w is irreducible when A is irreducible. For wrL ,  the proof 

is as follows: 

 

If 1)( , wrL then by Lemma 2, A is a nonsingular M-

matrix and from Lemma 4:
 

 

0)(0.0  AxsIAxTSx . 

 
It is easy to see that  is a Z-matrix and then by Lemma 

4, we conclude that  is a nonsingular M-matrix; so 

 

0)/1(1,01 11,11,   nniiiii aakaa .       So       by 
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Equations (7) and (11), we have  and if:
 

 

1)( , wrL and 
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We have the aforestated conclusion. Also by (8), (9), 

. So: 
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Thus, we have proved the following corollary. 
 

Corollary 1: Let A and  are respectively the coefficients 

matrix of (1) and (6), if 10  wr , 1,0  rw and A 

be a nonsingular Z-matrix and 







 

kaak
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nn
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,11,
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1&1
 ,  

then the iterative matrices Lr,w and wrL ,  of AOR methods 

applied to the linear systems (1), (6), respectively, are 
nonnegative.

 Now we show the improvement of 
convergence for this new preconditioner. 
 

Theorem 1: Let Lr,w and
wrL ,

 are the iterative matrices of 

(13), (14) of AOR method. If A is a Z-matrix which is 
nonsingular and irreducible and conditions of corollary (1) 
are satisfied. Then we have: 
 

1) If 1)( , wrL )()( ., wrwr LL  
 

2) If 1)( , wrL )()( ., wrwr LL  
 

3) If 1)( , wrL )()( ., wrwr LL  
 

 
Proof: If A is irreducible then by proof of corollary(1) ,Lr,w 
is nonnegative and irreducible. Therefore from Lemma 1 
(Perron-Frobenius), there exists a vector x>0 such that 

)(, ,, wrwr LxxL  
 
from (13) we have: 
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Also from (6), we have: 
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To continue, we used lemma 3. Then, we have: 
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M is nonsingular M-matrix. 

Now, let 
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Hence from (26) we have: 
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Thus, by Lemma 3, we obtain the required results. 
 
 
OTHER PRECONDITIONERS 
 

The preconditioners which are presented here, are sort of 
extension of the previous preconditioner. Therefore, the 
proof of improvement in the convergence process is 
similar as that one, but we show that the iterative 
matrices are nonnegative. 
 
 
The second preconditioned form 
 

In this case, the preconditioned form of bxA
~~
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By direct computation we obtain that: 
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The third preconditioned form 
 

Consider the preconditioned system bxA
~~~~

  as: 
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By direct computation we obtain that: 
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And with this process we can make up preconditioners by 
the following models; the 4

th
 and 5

th
 preconditioned forms 

(29), (30) respectively: 
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The sixth preconditioned form 
 
Similar to Kotakemori et al. (2002), we consider the 
following preconditioner; 
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Then, the AOR preconditioned matrix is as follows: 
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Theorem 2: let Lr,w be the iterative matrix of (13) and 

wrL ,


be an iterative preconditioned matrix of AOR method 

by any of our preconditioned models and A is an 
irreducible and nonsingular Z-matrix. If by the aforestated 

conditions 0, wrL


. Then, we have: 
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Table 1. The results of example 1. 
 

w r   ̂  
~

 


 

1 0 0.7352 0.6774 0.6709 0.5890 

0.9 0.4 0.7188 0.6549 0.6519 0.5696 

0.9 0.5 0.7058 0.6369 0.6351 0.5501 

0.9 0.6 0.6912 0.6163 0.6160 0.5279 

0.9 0.8 0.6553 0.5635 0.5679 0.4716 

1 1 0.5604 0.4210 0.4380 0.3119 
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Thus by Lemma 3, we obtain the required results. 
 
Remark 2: In (13) by choice special parameters can be 
obtained, similar results about popular method from the 
aforestated theorems. Evidently: 
 
1) Jacobi method for w = 1, r = 0. 
2) JOR (Jacobi Over relaxation) method for r = 0. 
3) Gauss-seidel method for r = w = 1. 
4) SOR method for r = w. 
 
 
NUMERICAL EXAMPLES 
 
Here, we give two examples to illustrate the results 
obtained earlier. 
 
Example 1: The coefficient matrix A of (1) is given by: 
 

 

 

 1 -0.2 -0.023 -0.18 -0.27 -0.031 -0.1 
 -0.1 1 -0.31 -0.18 -0.07 -0.1 -0.2 
 -0.01 -0.1 1 -0.1 -0.2 -0.17 -0.0098 
A = -0.021 -0.2 -0.03 1 -0.3 -0.01 -0.1 

 -0.1 -0.014 -0.09 -0.03 1 -0.1 -0.1 
 -0.2 -0.023 -0.1 -0.27 -0.03 1 -0.1 
 -0.18 -0.0081 -0.1 -0.019 -0.1 -0.2 1 

 

 

If we apply all the last methods for A and compute the 
spectral radius in each case we have the following 
results. In Table 1, we reported the spectral radius of the 
corresponding iterative matrix with different parameters 
w, r. We denote spectral radius of the AOR method by  . 

Also ̂ , ~ , 
 
are spectral radius of iteration matrix with 

preconditioners (4), (5) and (31), respectively. 
 
Example 2: The coefficient matrix A of (1) is given by: 
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In Table 2, we reported the spectral radius of the 
corresponding iterative matrix with different parameters 
w, r. We denote spectral radius of the AOR method by 

)( ,wrL and )( ,WRL
; 

)( ,wrL , )( ,wrL , )
~

( ,wrL  are 

spectral radius of the Ganawardena's preconditioner, 
first, second, fourth and fifth preconditioners as stated 

earlier. Also, we take 1,, tk ii   in proposed 

preconditioners. From Table 1, we can see that all the
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Table 2. The spectral radius of the AOR method with different preconditioners. 
 

N w r )( ,wrL  )( ,WRL  )( ,wrL  )
~

( ,wrL  )( ,wrL  )
~

( ,wrL  

8 

1 0 0.6470 0.6028 0.5999 0.5875 0.5845 0.5170 

0.9 0.7 0.5794 0.5184 0.5137 0.5035 0.5001 0.4410 

0.9 0.8 0.5558 0.4886 0.4832 0.4735 0.4699 0.4119 

1 1 0.4341 0.3333 0.3241 0.3151 0.3100 0.2492 

         

16 

1 0 0.8271 0.8095 0.8092 0.8065 0.8080 0.7745 

0.9 0.7 0.7771 0.7474 0.7467 0.7439 0.7431 0.7071 

0.9 0.8 0.7614 0.7276 0.7267 0.7238 0.7229 0.6853 

1 1 0.6886 0.6360 0.6346 0.6314 0.6298 0.5833 

         

24 

1 0 0.9210 0.9139 0.9138 0.9138 0.9130 0.8994 

0.9 0.7 0.8938 0.8806 0.8804 0.8795 0.8793 0.8617 

0.9 0.8 0.8855 0.8702 0.8700 0.8691 0.8688 0.8499 

1 1 0.8486 0.8244 0.8241 0.8230 0.8225 0.7978 

 
 
 
numerical results have illustrated our theoretical analysis. 
For example the spectral radius of the classical Gauss-
seidel and Ganawardena's preconditioner with N = 8, are 
0.4341, 0.3333, while the spectral radius of our fifth 
preconditioner for Gauss-seidel is 0.2492. 
 
 
CONCLUSION 
 
In this paper, we have proposed some new 
preconditioners from the class of (I + S)-type based on 
the AOR method. Also, we let the coefficient matrix of 
linear system be Z-matrix or M-matrix that often occur in 
a wide variety of area including numerical differential 
equation, growth models in economics and physical and 
biological sciences (Berman and Plemmons, 1994). 

Finally, from theorems and numerical examples, it may 
be concluded that the convergence rate of our proposed 
methods are superior to the basic AOR Method and 
better than some preconditioner of (I + S)-type.

 

 
 
REFERENCES 
 
Berman A, Plemmons RJ (1994). Nonnegative Matrices in the 

Mathematical Sciences. New York. Academic (1994). 
Evans DJ, Martins MM, Trigo ME (2001). The AOR iterative method for 

new preconditioned linear systems. Comput. Appl. Math. 132:461-
466. 

Gunawardena A, Jain S, Snyder L (1991). Modified iterative methods 
for consistent linear systems. Linear Algebra Appl. 154/156:123-143. 

Hadjidimos A (1978). Accelerated Overrelaxation method. Math. 
Comput. 32:149-157. 

 
 
 
 
 
 

Kohno T, Kotakemori H (1997). Improving the modified Gauss–Seidel 
method for Z-matrices. Linear Algebra Appl. 267:113-123. 

Kotakemori H, Harada K, Morimoto M, Niki H (2002). A comparison 
theorem for the iterative method with the preconditioner (I + Smax). J. 
Comput. Appl. Math. 145:373-378. 

Kotakemori H, Niki H, Okamoto N (1997). Convergence of a 
preconditioned iterative method for H-matrices. J. Comput. Appl. 
Math. 83:115-118. 

Li W, Sun WW (2000). Modified Gauss–Seidel type methods and Jacobi 
type methods for Z-matrices. Linear Algebra Appl. 317:227-240. 

Milaszewicz JP (1987). Improving Jacobi and Gauss–Seidel iterations, 
Linear Algebra Appl. 93:161-170. 

Najafi HS, Edalatpanah SA (2011). Some Improvements. In PMAOR 
Method For Solving Linear Systems. J. Inf. Comput. Sci. 6:15-22. 

Najafi SH, Edalatpanah SA (2011b). On the Two SAOR Iterative 
Formats for Solving Linear complementarity Problems. Inter. J. Info. 
Technol. Comput. Sci. 3:19-24. 

Najafi HS, Edalatpanah SA (2012) On the Convergence Regions of 
Generalized AOR Methods for Linear Complementarity Problems. J. 
Optimization Theory and Applications doi: 10.1007/s10957-012-0135-
1. 

Poole G, Boullion T (1974). A Survey on M-Matrices. SIAM Rev. 
16:419-427. 

Sun LY (2006). Some extensions of the improved modified Gauss–
Seidel iterative method for H-matrix.Numer. Linear Algebra 13:869-
876. 

Varga RS (2000). Matrix Iterative Analysis. second ed. Berlin, Springer. 
Wang L (2006). Comparison Results for AOR Iterative Method with a 

New Preconditioner. Int. J. Nonlinear Sci. 2:16-28.  
Wang L, Song Y (2009). Preconditioned AOR iterative method for M-

matrices. J. Comput. Appl. Math. 226:114-124. 
Woznicki I (2001). Matrix splitting principles. IJMMS 28:251-284. 

Hindawi Publishing Corp. http://ijmms.hindawi.com. 
 
 


