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The aim of this study is to investigate the critical speed analysis and response of a rotating machinery. 
The search for increasingly high performances in the field of the vibration phenomena which is subject 
rotor are increasingly important and can lead to system instability. The use of the finite element method 
makes to establish dynamic equations of the movement. Numerical calculations of the model 
developed, can extract the natural frequencies and modal deformed of the rotor, and this reduce is 
nonlinear. The Campbell diagram plot used to determine the critical speeds. Experimentally the study of 
the rotor in transient system allowed the determination of the spectral responses due to the unbalances 
and various excitations.  
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INTRODUCTION 
 
A detailed understanding of vibration problems 
associated with rotating systems is currently a major 
issue in the industrial field. To optimize the dynamic 
behavior of rotors and dimension to the best of such 
systems, Stodola (1972) worked out an iterative method 
to calculate the fundamental frequency of a vibrating 
system based on a standard form of eigen mode; it has 
been noted that the gyroscopic effect is a factor 
impacting the critical speed of a rotor. Si-Chaib et al. 
(2008) presented models based on the finite elements of 
flexible rotors to calculate the critical speeds and the 
eigen modes. In these models, the gyroscopic effects and 
the axial loadings are not taken into account. In the last 
few years, the most employed model has been 

developed based on the finite element method (Nelson, 
1980; Tran, 1981); which allowed the determination with 
good precision the eigen frequencies and the damping 
ratios, as well as the response to the various excitations. 
Moreover, this approach is modular because each 
element of the rotor is defined separately. Elements can 
thus be added or withdrawn according to the studied 
phenomena. The finite element method was thus used to 
study the embarked phenomena of damping in dynamics 
of the rotors (Duchemin, 2003). It was also applied to the 
study of the rotors whose shaft turns at variable speed (Al 
Majid, 2003). Many results concerning the dynamics of 
the rotors, whose support is fixed, have been reported for 
the models of Rayleigh-Ritz and the finite elements 
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(Lalanne, 1998). 

The experimental studies concerning the dynamics of 
the rotors are concentrated on inaccessible points by the 
theoretical way; these are the characteristics of bearing, 
dampings, actual stiffnesses, coefficients of sealing of the 
labyrinths and finally the flexibility of the foundations. 
Vance et al. (1987) compared the numerical and 
experimental results of the "free-free" modes and 
evaluate the precision of the model according to the 
coupling of the rotor with the discs. The Rayleigh-Ritz 
method is used to set up a model making it possible to 
treat simple cases and to highlight basic phenomena. A 
finite element model is developed to treat real systems. 
The equations of motion of the rotor are obtained by 
application of Lagrange equations.   

The vibration indicators are used for fault detection and 
can track its evolution to manage the predictive 
maintenance 

A fault diagnosis approach has been proposed by Wei 
et al., (2015) for rotating machines based on a new 
method for extracting and evaluating the statistical 
function;  health  condition is classified as the threshold 
corresponding is exceeded. 

In this work, the dynamic behaviour of a rotor is 
discussed. The numerical study determines the deformed 
modes, evaluate Campbell’s diagram and the response 
to the unbalance of the rotor in the vicinity of critical 
speeds. 

The result for the estimation of the term vibration 
source on a particular line is shown in this paper, and the 
terms source estimated by both experimental and 
numerical methods are in excellent agreement with the 
theory. 

 
 

Modelling of the rotors 
 
The finite element method is very much used for the 
calculation of the complex structures is also efficient in 
dynamics of the rotors (Lalanne, 1998).  

The elements of a rotor are: Disc, shaft and bearing. 
The kinetic energy T, the strain energy U and virtual work 
δW of external forces are calculated for all system 
elements to obtain the general equations of motion of a 
rotor. 

It is necessary to define the finite elements making it 
possible modelling the rotors: discs, shaft, bearing and to 
represent external forces in particular those due to the 
unbalances.  
 
 
The disc 
 
The disk is assumed to be rigid. Only its kinetic energy is 
considered. The coordinate system x, y and z is 
connected to the coordinate system X, Y and Z through 

the angles  ,  and . 
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The angular velocity vector reflecting the position of the 
disc is written as: 
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x , y and z  are the components of the angular 

velocity vector according to x, y and z . considering u and 
w coordinates of the center O of the disc along OX, OZ; 
the following coordinated OY remaining constant. 

The disk mass is dm  

The inertia tensor is noted: 
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dxI , dyI and dzI   are the moments of inertia along the axis 

x, y and z respectively. 
The general expression of the kinetic energy of the 

disc dT  is then written: 
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Or this expression can be simplified when the disc is 

symmetrical dxI = dzI . And when the angles  and  are 

small and the angular velocity is constant, the Equation 
(3) becomes: 
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The term 2

2

1
dyI , which is constant, has no influence on 

the equations of motion and represents the kinetic energy 
of the rotating disc at the rotational speed Ω, if all other 
displacement are zero. The last term dyI  is the 

gyroscopic effect (Coriolis). 
 
 

The shaft 
 

The shaft is assimilated to a beam of circular section and 
characterized by its kinetic and potential energies. 

The expression of the kinetic energy is: 
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 is the density, and S is the shaft section, I is the 

moment of inertia transverse (diametric). 
The first integral of Equation 5 corresponds to the 

expression of the kinetic energy of a beam in bending, 
the second to the inertia effect due to the rotation and the 
last integral represents the gyroscopic effect. 

The strain energy depends only on the stress and 
therefore the strain of the shaft relative to the support. In 
this calculation, one neglects the shear effects. 

E is the Young modulus of the material,   and 

 represent respectively the strain and the stress, u* and 

w* are the displacements of the geometric center along 
the axes x and z (in the moving coordinate system). 

The strain in bending of a point of the shaft with 
coordinate x and z in the reference frame R is 
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The non linear strain is given by: 
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The general expression for the strain energy of the rotor 
in bending is then: 
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Where  is the volume of the shaft and  is the stress in 

bending. 
The relationship between the stress and the strain 

is  E , are: 
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Because of the symmetry of the shaft relative to the axes 
x and y, are obtained: 
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The third term of the integral (9) represents the effect of 
an axial force and is not considered in this study. Using 
the Equation 6 gives: 
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By symmetry, the third term of Equation 12 is zero and, 
introducing the inertia of section: 
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We find 
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To avoid periodic terms, explicit function of time, it is 
necessary given considering the properties of bearings, 
to express the strain energy depending on u and w 
components of the displacement in the initial frame. 

The passage of u*, w* at u, w is: 
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Replacing u * and w * by their values (15): 
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For a symmetrical shaft, the expression of the strain 
energy becomes: 
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 Finally:  
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Bearings 
 
A bearing has the characteristics of stiffness and 
damping in the two planes. The forces applied by the 
bearings are due to displacement of the  shaft  relative  to 



 
 
 
 
the support. 

The virtual work PW of external forces acting on the 

shaft of the first bearing is written as: 
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Similarly to the second bearing 
 
 

Mass unbalance  
 

The initial unbalance is generally distributed so as 
continuous on the rotor. The expression of the kinetic 
energy Tb of the unbalance is: 
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mb  Is the unbalance mass. 

The term 2/22 d is constant and will not intervene in 

the equations. The mass of the unbalance is negligible 
compared to the rotor mass; the expression of the kinetic 
energy can be approximated by: 
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The terms of the kinetic energy, strain energy and virtual 
work being established. The expressions of 
displacements in the X and Z directions are respectively 
set in the (separation of variables method): 
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Where 1q and 2q  are generalized independent 

coordinates. 
The second order derivative of u and w displacements 

is necessary to express the elastic energy of the shaft: 
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The functions )(yg and )(yh  represents the first 

derivative and the second derivative respectively. 
Given that the angular displacements,  and  are small, 

they are approached by: 
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The displacement function f is chosen to represent 

exactly the form of the first mode of a constant section 
beam in bending on two simply supported situated at its 
ends. 
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Substituting in the expressions of (25) where (4), we find: 

The kinetic energy of the disk DT  can be written as 

follows: 
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The expression for the kinetic energy of the shaft Ts is: 
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The strain energy of the shaft is: 
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The kinetic energy of the ensemble disk - rotor is given 
by: 
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The kinetic energy of the unbalance is: 
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disc, shaft, of the unbalance. 

The application of Lagrange equations: 
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avec i=1, 2. 

Which in general form are written: 
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Solving this system of equations provides the 
expressions of frequencies and deflections of the tree line 
in each of its points. 
                     
 
Modal analysis and numerical simulation  
 
It is about the calculation of the dynamic behaviour of a 
rotor step by step in time. The objective is to present   a 
model of calculation using a simplified approach. The 
construction of the grid is made with ANSYS software 
starting from the characteristics of the various elements 
of the rotor. Modelling by finite elements requires the 
supply of data relating to the geometry (coordinated 
nodes),   boundary conditions,   and description of the 
elements (disc, bearing, and additional elements) of 
mechanical characteristics of materials and bearing, 
function of the rotation speed and on the information 
relative to the excitations. 

The finite element Model of the rotor is carried out with 
the code ANSYS.   The shaft is discredited by the beam 
element to 4 degrees of freedom by node: two 
displacements U and W and two rotations according to Y 
and Z. The disc is supposed to be rigid. This model 
makes it possible to carry out temporal simulations of the 
dynamic behaviour of the rotor.  

The disc is assumed to be perfectly rigid and it’s 
modeling using a pipe element (Pipe16). To model the 
shaft using the beam element (Beam189). For modeling 
the bearings are used spring-damper element 
(Combin14). 

The finite element model of the rotor consists of a shaft, 
disc and bearings. The length and outer diameter of the 

shaft is mL 4.1  r = 0.15 m respectively. The inner 

diameter and outer diameter of the disc is r1 = 0.15 m and  
r2 = 0.625 m respectively. 

 
 
 
 

The material is a special steel assumed homogeneous 

and isotropic, with density
3/7850 mkgd  , Poisson's 

ratio 3.0 and elastic Young's 

modulus GPaEa 248  . 

The disc is a special steel assumed to be 

homogeneous, isotropic and having 
3/7850 mkgd  ,  

Poisson's ratio 3.0 and elastic Young's 

modulus GPaEa 248  . 

The stiffness and the damping for the first bearing is: 
 

msNcmsNc

mNkmNk

zzyy

zzyy

/.10.8,/.10.2,1

,/10.8,/10.1

34

78




 

 

The stiffness and the damping for the second bearing is: 
 

msNcmsNc

mNkmNk

zzyy

zzyy

/.10.6,/.10.8

,/10.5,/10.7

33

78




 

 

The calculation is made from the discretization of the 
shaft into several elements, once the data is entered the 
geometric model is established and it resulted in the rotor 
mesh (Figure 1). All numerical data on the mesh of the 
rotor is summarized in Table 1. The model comprises 51 
nodes, or 204° of freedom and ale modal base consists 
of five modes. 
 
 

Boundary conditions 
 
The characterization of the rotor can be made by its 
decomposition into flexible finite element and therefore 
study node by node boundary conditions. 

During the movement, the center line of the shaft does 
not remain confused with the original right are (Ux, Uy, 
Uz) displacements of the shaft, Uy and Uz are variables 
while Ux is considered as constant since only the shaft 
deflection movements are studied. 

So for the nodes of the two bearings we annul all 
degrees of freedom, for the nodes of  the rotor we annul 
the degrees of freedom of translation and rotation along 
the x axis (Figure 2), there are only four degrees of 
freedom per node, two rotations according  y and z, and 
two translations according y and z. 
 
 
Evolution of the stress 
 

A force is applied on the disc, and thereafter 
determines the equivalent Von Mises stress in static 
analysis (Figure 3). The concentration of stress is 
observed at the connection between the shaft and the 
disc. The maximal stress is 201 Mpa; this is a sensitive 
area for the appearance of defects. 
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Figure 1. Rotor meshing. 

 
 
 

Table 1. the number of element, nodes and degrees of freedom of the rotor. 
 

Structure Element Nodes Degrees of freedom 

Rotor 30 51 204 

 
 
 

 
 

Figure 2. Boundary conditions of the rotor. 

 
 
 
Modal analysis 
 
The modal base consists of five modes. The objective of 
this study is to determine the eigen frequencies and 
eigen modes and the stresses of bending vibration of the 
rotor. The eigen frequencies are represented on the 
Table 2. 

The modal base contains five modes. The allure of the 
three modes of the rotor and their orbits of mode shapes 

at any rotational speed is shown in Figures 4 to 6. These 
modes are characterized by local bending. 
 
 
Campbell diagram  
 
The critical speeds are given by the intersection points of 
the excitation sources (Harmonics 1, 4, 5 ...) with the 
natural modes to direct precession and reverse precession.  
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Figure 3. Evolution of the Von Mises equivalent stress. 

 
 
 

Table 2. Eigen frequencies of the rotor. 
 

Mode 1 2 3 4 5 

Frequency (Hz) 27 42 120 220 310 

 
 

         
(a)                                                                   (b) 

 

 

 
 

Figure 4. The first mode (a) The first mode shapes (f=27Hz, Dmax =0.0051); (b) The   orbits of mode shapes 
at 258 rpm. 

 
 
  

             
(a)                                                                   (b) 

 
 
 
 

 
 

Figure 5. The third mode (a) The third mode shapes (f = 120 Hz, Dmax = 0.0062); (b) The   orbits of mode 
shapes at 1146.5 rpm. 
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                             (a)                                                            (b) 
 
 

 
 

Figure 6. The five mode (a) The five mode shapes (f = 310 Hz, Dmax = 0.042); (b) The   orbits of mode 
shapes at 2262 rpm. 

 
 
 

 
 

Figure 7. The diagram of Campbell.   

 
 
 
We get Campbell diagram (Lalanne, 1998; Genta, 1992; 
Muszynska, 1996; Mogenier, 2012; Saad and Seamus, 
2011). 

The diagram of Campbell (Figure 7) shows that the first 
critical speeds (for the harmonic in the order 1, 4 and 5). 
For the harmonic of order 1, which corresponds to the 
first mode of the shaft at the speed of 2500 rev/min (40 
Hz)? For the harmonic of order 4, the first critical speed is 
600 rev/min (40 Hz); the second critical speed   is   4000 
rev/min (270Hz) and finally 4500 rev/min (310 Hz). 

 
 
Spectrum of frequency response 
 
The results in the Fourier spectrum Figure 8 are obtained 
from the numerical simulation. The rotor is subject to an 
unbalance of 0001 kg and an asynchronous force with 

the intensity is 1 N placed at node number 19 for L = 1.4 
m, for a rotational speed equal to 500 rpm. After running, 
the responses of each node is obtained, the results of the 
responses at the node Number 19 are presented as 
graphs showing the spectral response. 

Figure 8 represents the frequency response curve for 
speeds of rotation from 0 to 500 RPM .The frequency at 
which the peak response occurs 18 and 37 Hz is. The 
first frequency is explained by an initial shock due to the 
applied force. The second frequency corresponds to the 
frequency of the critical speed of the associated linear 
system, it amounts to the initial unbalance. 
  
 
MATERIALS AND METHODS       
 
Vibration monitoring generally used to monitor in real time and 
without interruption the vibration behavior  of  rotating  machines.  A  
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Figure 8. Spectrum of frequency response. 
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Figure 9. The combustion air ventilator components. 

 
 
 
wide variety of techniques have been used for fault detection and 
diagnosis in rotating machinery. These techniques can be classified 
into frequency domain, time domain, time-frequency domain and 
other and techniques (Kumar et al., 2013; Kumar and Kumar, 2014; 
Jalan and Mohanty, 2009; Yang and Court, 2009, Chellil et al., 
2015). This study will primarily investigate techniques based on the 
time domain, frequency domain and time-frequency domain [Ding 
et al., 2016] detailed spectral analysis is presented by Yamamoto et 
al. (2016), the results clearly show the feasibility of this 
experimental intelligent diagnostic approach for measuring vibration 
and unbalance fault detection in rotating machinery. 

A case of industrial survey was treated for validate the approach 
and to show that in some cases exceeding the thresholds imposed 
by the standards represent a defect synonymous. We will make the 
establishment of the rotor vibration analysis following the method of 
OFF LINE system. The measurements are performed at regular 
time intervals (periodically) by portable systems increasingly 
informatics. The aim of this work is to do a vibration analysis 
(monitoring and diagnostic) to study vibration phenomena emerged 

 
 
 
 
the rotor. 

The combustion air ventilators have the task of feeding the steam 
generator combustion area required in power plants. They aspire 
outside air and do to the burners through air preheater. In this case 
the ventilator is composed of a shaft, impeller and two bearings 
(Figure 9). The high quality steel shaft, the impeller is high quality 
steel; it is mounted on a cylindrical seat on the shaft by means of an 
interference fit oil seal. The shaft is mounted in two bearings at 
bearings type FAG SN 328 and FAG 22328 ES. 
 
 
Equipments used for test 
 
The measurements were realized using the following equipment. 
 
 

Vibration sensor 
 
This is an AS-065 piezoelectric accelerometer connected to the 
VIBROTEST 60 analyzer manifold. This sensor is used to measure 
vibration acceleration (Figure 10b).  
 
 
Vibrotest 60 analyzer 
 
The VIBROTEST 60 (Figure 10c) is a practical acquisition 
apparatus for making: global vibration measurements, process 
parameter, time signals and spectral signals.   

The implementation of the accelerometer on the machines is very 
important. Each measurement companion must be performed at 
specific points and always the same. We try to close as possible 
points of measurements of bearings; it allowed us to get the most 
loyal mechanical defects images. 

 
 

RESULTS AND DISCUSSION 
 
Figure 11a and b represent the measurements of 
vibrations in the horizontal direction (Bearing 1) and the 
vertical direction (Bearing 2) of the pump.  

The first spectral line in the first spectrum (Figure 4a) 
has an amplitude of 0.47 mm/s, this value exceeds the 
warning threshold, the frequency of this line is 9.88 Hz 
(95 rev / min), the speed is the rotational speed of the 
rotor. 

The 2nd spectral line in the same spectrum (Figure 4a) 
has amplitude of 0.9 mm/s and a frequency 153.76 Hz. 
This value is below the alert threshold and not a danger. 

The first spectral line in the first spectrum (Figure 4b) 
has an amplitude of 0.235 mm/s when it exceeds the 
threshold. The frequency of this line is 50 Hz (477.70 rev 
/ min), the speed is the speed of rotation of the rotor. 

The 2nd spectral line in the same spectrum (Figure 4b) 
has an amplitude of 0.14 mm/s and a frequency 153.76 
Hz. This value is below the alert value and is not 
dangerous. 

The 1st two spectral lines on the two spectra (Figure 4a 
and b) are on the same frequency of rotation of the shaft 
and we have high vibration speed on the three directions 
of measurements, so this symptom tells us about the 
existence of a defect unbalance. 

The two spectral lines that follow have frequencies 
equal to  twice  the  rotation  frequency  of  the  shaft,  the 



 
 
 
 
 

 
                                  (a)  

 
                                (b) 

 
                               (c) 
 

 
 

Figure 10. Equipments used for test (a) Equipments used for 
test measurement of vibration; (b) Accelerometer AS-065; (c) 
Vibrotest 60. 
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 Signal of Bearing 1 (Horizontal direction) 
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Figure 11. Spectral responses of the bearings (a) Horizontal 
bearing1 spectrum; (b) Vertical bearing 2 spectrums. 

 
 
 
amplitude of the vibration levels are below the warning 
threshold, they are due to the significance of this 
imbalance in the two bearings of the pump shaft. Once 
the fault is repaired the vibration must disappear. 

 
 
Conclusion 
 
The model of finite elements of the rotor was designed 
starting from a well defined geometry. An effective 
interpretation of the frequencies and modal  deformations  



212          Sci. Res. Essays 
 
 
 
of the model were simulated. The distribution of the 
stress along the rotor was identified.  In the present case, 
the maximum stress is 201 Mpa were concentrated at the 
connection between the shaft and the disc.  The 
differences on the level of the maximum amplitude of the 
vibrations can be easily reduced significantly with the 
geometrical model. Nevertheless, as the critical speed 
depends on the considered shape, one can determine 
the intensity of the amplitude on the response curve to 
unbalance. The layout of the response to an unbalance 
presents brutal increases in the amplitude of vibration of 
the rotor. In this article, an detection system based on 
industrial signals treated in the frequency domain is 
proposed. The results were presented to identify and 
detect unbalanced faults in bearing. The analysis of 
measurement results shows the presence of an 
unbalance fault on the rotating machinery. This defect is 
the cause of a long shutdown and poor conditions 
present during shutdown, it is recommended to remedy a 
bearing balancing the rotating machinery. 
 
 
Conflict of Interests 
 
The authors have not declared any conflict of interests. 
 
 
REFERENCES 
 
Al Majid A, Allezy A, Dufour R (2003). Metric of MDOF systems in high 

transient motion, Proceedings of ASIVIE Design Engineering 
Technical Conferences, 2-6 September. Chicago. USA. P 6. 

Chellil A (2015). Condition Monitoring for Controlling the Stability of the 
Rotating Machinery. Int. J. Mech. Aerosp. Ind. Mech. Man. Eng. 
9(12):2030-2035. 

Ding Y, He W, Chen B, Zi Y, Selesnick IW (2016). Detection of faults in 
rotating machinery using periodic time-frequency sparsity. J. Sound 
Vib. 382:357-378. 

Duchemin M (2003). Contribution à l’étude du comportement 
dynamique d’un rotor embarqué. Thèse de doctorat de l’INSA-Lyon. 

Genta G (1992). A fast modal technique for the computation of the 
Campbell diagram of multi-degree-of-freedom rotors”. J. Sound Vib. 
155(3):385-402. 

Jalan AK, Mohanty AR (2009). Model based fault diagnosis of a rotor 
bearing system for misalignment and unbalance under steady state 
condition. J. Sound Vib. 327:604-622. 

Kumar PS, Abraham A, Bensingh RJ, Ilangovan S (2013). 
Computational and Experimental analysis of a Counter-Rotating Wind 
Turbine system. J. Sci. Ind. Res. 72(05):300-306. 

Kumar SS, Kumar MS (2014). Condition Monitoring of rotating 
machinery through Vibration Analysis. J. Sci. Ind. Res. 73(04):258-
261. 

Lalanne M, Ferraris G (1998). Rotordynamics prediction in engineering. 
2

nd 
Edition. Chichester, John Wiley. P 254. 

Mogenier G, Baranger T, Ferraris G, Dufour R, Durantay L (2012). The 
problem of complex shape tracking in a Campbell Diagram or how to 
overcome crossing/veering phenomena. 10th International 
Conference on Vibrations in Rotating Machinery.  pp. 257-267. 

Muszynska A (1996). Forward and backward precession of a vertical 
anisotropically supported rotor. J. Sound Vib. 192(1):207-222. 

Nelson HD (1980). A Finite Rotating Shaft Element Using Timeshenko 
Beam Theory.  J. Mech. Des. Trans. ASME 102:793-803. 

Saad SA, Seamus DG (2011). Modal correlation approaches for general 
second-order systems: Matching mode pairs and an application to 
Campbell diagrams.  J. Sound Vib. 330(23):5615-5627. 

 
 
 
 
Si-Chaib M, Chellil  A,  Nour A, Saci R, Chikh N, Chevalier Y (2008). 

Numerical and experimental investigation of the dynamic behavior a 
vertical rotor. 15

th
 International Congress on Sound and Vibration.  

Daejeon. Korea. Proceed. ICSV 15:2347-2354. 
Stodola A (1927). Steam and Gas Turbines. McGraw-Hill.  New York. 

Vol. I. 
Tran DM (1981). Etude du comportement dynamique des rotors 

flexibles. Thèse Université C. Bernard. Lyon. 
Vance JM, Murphy BT, Tripp HA (1987). Critical speeds of turbo 

machinery; computer predictions versus experimental measurements. 
J. Vib. Acoust.  109:1-7. 

Wei L, Zhencai Z, Fan J, Gongbo Z, Guoan C (2015). Fault diagnosis of 
rotating machinery with a novel statistical feature extraction and 
evaluation method. Mech. Syst. Signal Process. 50(51):414-426. 

Yamamoto GK, da Costa C, da Silva Sousa JS (2016). A smart 
experimental setup for vibration measurement and imbalance fault 
detection in rotating machinery. Case Stud. Mech. Syst. Signal 
Process. 4:8-18. 

Yang W, Court R (2013). Experimental study on the optimum time for 
conducting bearing maintenance. Measurement 46:2781-2791. 

 


