
Scientific Research and Essays Vol. 5(24), pp. 3994-4001, 18 December, 2010 
Available online at http://www.academicjournals.org/SRE 
ISSN 1992-2248 ©2010 Academic Journals 
 
 
 
 
 
Full Length Research Paper 
 

An improved architecture design of shared repository 
database model 

 
Mu'tasam Okasheh1, Adnan I. Al Rabea1* and Ibrahiem M. M. El Emary2 

 

1Al-Balqa Applied University, Al Salt, Jordan. 
2King Abdulaziz University, Jeddah, kingdom of Saudi Arabia. 

 
Accepted 24 November, 2010 

 
For many years ago, the term repository has been used in a restricted manner, since it only addressed 
metadata management in the context of database management systems. Nowadays it is used in a much 
broader sense and covers multiple services supporting design applications. Our concern is to make 
well customized repositories available for users. To reach this goal, we present this paper which has a 
main objective of improving the performance of shared database pattern in the Repository Model. 
Accordingly, the presented work aims to increase the level of performance of the shared repository 
pattern when large amounts of data are to be shared by reducing the number of times that is required to 
access the central database and also to save the cost rather than increasing the speed of response for 
the subsystems requests to access their desired data. Accordingly, the idea of improvement was based 
on the establishment of buffer where repository model is an organization model used as a storage 
medium of a huge database. Also, it is used in interactions between the subsystems of the system in 
architectural design showing the exchange of data between the subsystems in the system as a whole. 
The proposed model to achieve the required enhancement was simulated, and the output simulated 
results show its capability of reducing the access time of data, increasing the speed of accessing the 
data, increasing the system performance, and also increasing the efficiency of the system work. Also, 
the proposed model was compared with the approach of shared repository pattern and the results 
showed that the proposed approach outperforms better through making enhancement in reducing the 
access time and increasing the speed of accessiing the data.  
 
Key words: Database repository model, buffer, subsystem, RDBMS, central database, shared database.  

 
 
INTRODUCTION AND MOTIVATION 
 
Two kinds of technology can be found which aim at an 
adequate support of design applications: frameworks 
(Shaw et al., 1995; Shaw and Paul, 1997; Somerville, 
2007) and repositories (Van der, 1994; Wakeman and 
Jowett, 1993; www.eric.ed.gov). Although the goals of 
both are pretty close, we think, there are some 
differences between the underlying approaches. 
Frameworks focus on providing basic services, which 
may be adapted to special application needs, and, thus, 
help   to   provide    corresponding   design  environments  
 
 
 
*Corresponding author. E-mail: adnan_alrabea@yahoo.com, 
omary57@hotmail.com. 

capable of supporting the (special) design application. 
Repositories or, more precisely, repository managers, on 
the other hand, emphasize the data control aspect of a 
certain class of design applications, e. g. software 
development applications, and offer predefined, generic 
services. We think the two approaches may be integrated 
in a way beneficial to both, system providers and system 
users. In simple words, we want to provide a framework 
allowing the generation of repository managers. 

In Vander (1994), the term repository is defined as a 
shared database of information about engineering 
artifacts. Thus, a common repository allows (design) tools 
to share information so they can work together. A 
corresponding repository manager provides services for 
modeling,   retrieving,    and    managing    objects    in    a  



 
 
 
 
repository. For that purpose, a repository manager has to 
provide the standard amenities of a DBMS (data model, 
queries, views, integrity control, access control, and 
transactions) as well as value-added services (Van der, 
1994): checkout/check in, version control, configuration 
control, notification, context management and workflow 
control. Shared databases are used for knowledge 
exchange in groups. Whether a person is willing to 
contribute knowledge to a shared database presents a 
social dilemma: Each group member saves time and 
energy by not contributing any information to the 
database and by using the database only to retrieve 
information which was contributed by others. But if all 
people use this strategy, then the database will be empty 
and, hence, useless for every group member. Based on 
theoretical approaches, two models for fostering the 
information-sharing behavior of database users were 
presented in (www.techgenie.com): one for enhancing the 
quality of database contents, and one for enhancing the 
quantity of those contents. The models take into account 
the following factors: the kinds of rewards the participants 
obtain for contributing information, the individual costs 
associated with this contribution, the prospective 
metaknowledge about the importance of one's own 
information to the others, and the retrospective 
metaknowledge about how much others contributed to 
and retrieved from the database. These factors enhance 
the quantity of database contents as well as their quality. 
A highly controlled experimental setting for testing the 
models is presented. Results of three experiments 
support some expectations derived from the models. 

Dealing with a huge volume of data within a system 
which contains subsystems is essential for making 
interaction between subsystems, and shared central 
database in order to obtain data. This process is needed 
or required to provide service to the subsystem 
requesting service from the central database (Philippe, 
1998). The importance of this paper is regarding the data 
repository model and improving the shared database 
return to the benefiting of each subsystem in getting the 
service so as to address the problems encountered when 
somebody requests for data from the central database 
using one or all of the subsystems. Here, if the first 
subsystem asked for data from the central database and 
got it, and after that another subsystem asked for the 
same data, then it is forced to move to the central 
database again, and this will be applied to all subsystems, 
the thing that will lead to low performance, slow speed in 
getting the requested data, long time in obtaining the data 
and therefore lack of efficiency, which all together make 
getting the service slow. 
 
 
Problem formulation 
 
Relational database management systems (RDBMS) are 
complex server applications that solve the problems of 
information management. The RDBMS reliably manage 
large amount of  data  in  a  multi-user  environment  such 

Okasheh et al.          3995 
 
 
 
that users can concurrently access shared data. While it 
is required to maintain consistent data between users, it is 
also required to deliver high performance. All these 
requirements (of managing large amount of data for multi-
user environment and concurrently access shared data) 
need high-quality infrastructure provided by the operating 
system. Some of the examples that can achieve these 
targets are: virtual memory management for managing 
vast amount of physical memory, scalable I/O subsystem, 
robust / high performance storage subsystem, light-
weight inter-process communication, and robust / high 
performance networking subsystem. Another type of 
enhancement that we used in order to outperform the 
system performance is to improve the performance of the 
database repository model functions (which is the main 
contribution of this paper), where the repository model is 
a model that is used in architectural design for the system 
in software engineering when the data are too huge. It 
shows the interactions between the subsystems to access 
the data. So, our main objective is to enhance the first 
method of the repository model that is called shared 
database.  

The problem of shared database in repository model 
occurs when a certain subsystem requests for data from 
the central database. Such problems include: it takes a 
long time accessing data, like in case of making multiple 
requests from another subsystems at the same time, and 
also it is costly and getting data is slow (Philippe, 1998). 
When large amounts of data are to be shared, the 
repository model of sharing is mostly using our system to 
enhance the first method of repository model. When 
using the repository model mostly, we have to take into 
consideration that if there is a subsystem that accesses 
the shared data, then it will take time unless another 
subsystem requests for the shared database. If multi 
subsystems request for the central database to be 
shared, then the following problems will arise: time 
consumption and less speed, and also starvation or 
deadlock that is solved by Hofmeister et al. (1999) and 
Philippe (1998). Accordingly, the questions that this study 
hopes to answer are: 
 
i. How to reduce the cost of saving the data? 
ii. How to increase the performance (speed) of retrieving 
the data? 
iii. How to reduce the time of manipulating and serving the 
subsystems in a less time? 
 
 
Major objectives of the proposed solution approach 
 
Modern databases allow for enormous depth and breadth 
of information to be stored and easily shared where 
enabling protocols and settings are in place. Email, 
portable data devices and shared portals further enable 
information not only to be stored but also accessed and 
exchanged quickly. This is not to say that achieving good 
technological arrangements is straightforward or 
affordable.  Getting  protocols  and  settings to a point that 



3996           Sci. Res. Essays 
 
 
 

�

��������

	���
����

�
������� �

��
�
�����

� ���

�
�

������ ���
�
������ �

��

�
������� ���

 
 
Figure 1. Shared repository model before the suggested 
enhancement approach. 
 
 
 
enables transfer of information between agency systems 
can require considerable people skills and analysis or 
purchase of expensive hardware.  

Response time and the throughput time are the two 
scales on which any database server performance can be 
measured and Microsoft’s SQL server is of no difference. 
Regularly some monitoring tools to measure the 
performance of Microsoft’s SQL sever can be used and it 
can be measured in seconds for response time and 
transactions per second for throughput time. Response 
time is the time which is spent between the initiation and 
completion of any SQL Query. On the other hand, the 
throughput time is the number of transactions the server 
can handle in a given period of time which is usually one 
second. The performance of SQL server depends upon a 
number of factors ranging from the hardware to the 
software. When we talk about the hardware it could be 
the hard drive on which the database is stored or the 
server processor. It could also be the physical connection 
and the network speed; and when we talk about the 
software it could be the way the application is coded, not 
only the applications coding but also the SQL queries 
themselves (http://www.ieee.org). 

Our suggested solution that is presented in this paper 
tries to solve the above mentioned problems in section 2 
aiming to achieve the following privileges: 
 
i. Reducing the cost: The buffers are not already 
created permanently, but we create it according to 
request, so this will save the cost of the system because 
there may be this probability that many buffers are 
created without being useful. Accordingly, this will 
increase the level of performance by reducing the number 
of times to access the central database, and it does not 
make copy of the data that the first subsystems requests 
for. We store it in the buffer since we save only in the 
buffer the address reference of a location. 
 
ii. Increasing the performance (speed): In case another 
subsystem requests for the same data that the first 
subsystem has requested for, we store it in a buffer, so it 
can  be  accessed  directly  on  the  buffer  with  no   need  

 
 
 
 
to create another buffer.   
 
iii. Reducing the time of manipulating and serving the 
subsystems: if multi subsystems request for the central 
database  to be shared, we put them in a queue and use 
an algorithm based on the time the first subsystem 
requests for it, and then begins the response as they are 
sorted in that queue. We use the shortest path algorithms 
which give the optimal solution and less time execution 
and present the services to all subsystems, thereby 
avoiding the problems like starvation or deadlock. 
 
 
Structure of the proposed method 
 
A centralized database system operates by having all 
participating nodes send their data to a single, centrally-
located data repository where it is organized and stored. 
Instead of going directly to the original source of 
information (e.g., a county database), users request 
information from the central repository. The data are 
brought to a common format that all nodes participating in 
the sharing initiative need to be able to read or send in. 
Historically, this was the first architecture model, largely 
because of limited connectivity and low availability of 
advanced information systems in local jurisdictions. As 
these constraints are disappearing, the centralized 
systems are being replaced or supplemented by other 
architectures; however, it is too early to completely 
discount them. 

Centralized models are typically associated with a 
higher overall level of security. By storing data within one 
large database it is easier to account for data integrity 
than if the data items were distributed among multiple 
partners. However, the centralized data pool presents a 
security challenge in the event that a malicious user does 
gain access: while the potential for rogues gaining entry 
into centralized systems is lower than for federated 
systems, the amount of damage that these users can 
inflict is potentially higher. Relatively minute changes that 
are hard-to-track pose a great threat to the integrity of 
criminal record data. Furthermore, there is higher 
potential for large scale identity theft and unauthorized 
data mining. 

In Figure1, we illustrate the mechanism of dealing with 
repository model that is currently used before our 
development. In this case, the cost is high and the speed 
of accessing the data is low as a result of the big 
pressure on the central database, and because search 
within the central database takes a very long times to 
obtain the required data from the subsystem. This type of 
problems exists in the shared database type of the data 
repository model.  
 
 
Suggested policy to enhance the model  
 
Searching data records for connections and existing 
relationships      is      essential     for    law    enforcement  



Okasheh et al.          3997 
 
 
 

 
 
Figure 2. Repository model after the enhancement approach. 

 
 
 
investigations. Information overload and confusion are 
common impediments to efficient analysis, especially 
when the investigation takes data from different systems 
and regions (which is essential in preventing drug cartels 
and terrorist groups). The degree of ease with which the 
individual user is able to navigate the information sharing 
network has been a serious concern, for it is the users 
who ultimately drive (or resist) the system adoption.  

In Figure 2, we show the model of shared database 
after improvement and the mechanism of exchanging 
data between the sub-systems and the central database, 
which proves that the speed of accessing the data is high 
and the time to reach the data is short, making the 
system overall efficiency high. The specification to build 
an interoperable digital repository capable of working and 
sharing information with many databases should cover:-  
 
•  Search/Find: The capability to search/find a learning 
object from the repository Visualization ability can be 
included.  
• Request: To request for a learning object that has 
been located.  
• Retrieve: A located learning object can be retrieved.  
• Submit: Sending and storing a learning object to a 
repository.  In other words, adding a learning object to a 
specific repository.  

• Store: Saving a learning object to a specific repository 
with a global unique identifier in order to assure its 
localization and manipulation. 
• Gather (push/pull): Obtaining metadata  
• Information concerning learning objects located in 
another federated repositories.  
• Publish: Providing metadata information about learning 
objects from a repository to others repositories and 
systems. 
 
The subsystem requests for data from the central 
database and searches for data. If it finds the data, it will 
put it in the buffer then the model will move the data from 
the buffer to the subsystem number 1. If the subsystem 
number 2 needs to get data it will go to the data in the 
buffer and check the data; if it finds it, the model will 
respond to the subsystem number 2, but if it does not, it 
will search the central data base. When it finds it, it will 
put it in buffer 2 after creating it, and then there will be a 
response to the data in the subsystem number 2. 
   If the subsystem number 3 requests for the same data, 
it will search for it in the buffers. If found, the repository 
model will respond to the subsystem number 3, noting 
that the size of all the buffers is much less than the size of 
the central database. There are two cases: the best case 
is   in   dealing   with   data  between the sub-systems and  



3998           Sci. Res. Essays 
 
 
 
the central database. The best case is where all the 
systems request for the same data stored in one buffer. In 
this case, the time for data accessing is as short as 
possible, speed as less as possible, and cost of 
transferring data as less as possible, leading to improved 
performance. The worst case takes place when a 
subsystem requests for data that differ from the data 
requested by other subsystems; in this case a buffer is 
established for every subsystem. In this case, it takes 
longer time to access data and the cost is very high. This 
leads to reduction in performance. Therefore, the 
presence of a buffer makes access to the data easier and 
faster, which leads to better performance. 
 
 
Implementation of the proposed technique 
 
We designed a simulation tool to achieve the ideas for the 
proposed approach to achieve the enhancement. So, we 
will develop our application from two sides: The first one 
is the server side and the second is from subsystem side 
where we can use the oracle application server or SQL 
server 2000/2005 to complete the server side techniques 
each one installed on MS windows server 2003 and we 
can use the .net or Oracle forms to complete the client 
(subsystem) side application (Garlan et al., 1995). In this 
section, we describe and explain the new tool that will be 
used to support the main objective of our approach for 
enhancement to update the repository model where we 
describe the main structure of this technique and 
compare between this work, and previous studies in this 
field.� In server side we decided to use the oracle 
application server because it supports all things that will 
be used in developing operation of our application from 
speed in executing any DML (Data Manipulation 
Language) statement like select, insert, update or delete 
where the speed of executing these statements is triple of 
any another database server like SQL server 2000/2005 
(from Microsoft corporation). 

 
 

The proposed algorithm 
 
In algorithm description phase, we will focus on main 
(database repository) side steps summarized as: 
 
i. Viewing the system global area. 
ii. Viewing the buffer size. 
iii. Using the shared pool repository. 
iv. Using the log buffer. 
v. Using the buffer cache pool. 
 
After we have analyzed the storage system, we can make 
the following decisions to improve the performance: 
 
i. Using automatic sizing of Buffer space. 
ii. Adjusting shared pool size for optimal performance. 
iii. Increase performance of the log buffer. 

 
 
 
 
iv. Calculating the performance average. 
v. Sizing the buffer cache. 
 
The data flow diagram which shows the details about our 
mechanism is shown in Figure 3. Important data 
management aspects of scientific dataflow include: 
 
i. Support of complex data structures, such as records 
containing different attributes of a data object, and sets 
(collections) of data objects. When combining, merging, 
and aggregating data, complex compositions of records 
and sets can arise. 
ii. It must be possible to iterate operations over all 
members of a set. 
iii. It must be possible to call external resources and 
services. 
iv. Sub data flows must be supported, that is, one 
dataflow can be used as a service in another dataflow. 
v. Data flows must be specified in a clean, high-level, 
special purpose programming formalism. 
vi. A dataflow can be run several times, often a large 
number of times, on different inputs. 
vii. The data of these different runs must be kept, 
including input parameters, output data, intermediate 
results (e.g., from external services), and metadata (e.g., 
dates). 
 
The last item above is of particular importance and leads 
to the notion of a dataflow repository: a database system 
that stores different data flows together with their different 
runs. Dataflow repositories can serve many important 
purposes like:- 
 
i. Effective management of all experimental and workflow 
data that float around in a large laboratory or enterprise 
setting. 
ii. Verification of results, either within the laboratory, by 
peer reviewers, or by other scientists who try to reproduce 
the results. 
iii. Tracking the provenance (origin) of data values 
occurring in the result of a dataflow run, which is 
especially important when external service calls are 
involved. 
 
 
Comparison between our Proposed Approach and 
others 
 
In this section, we will illustrate the difference between 
proposed study and Philippe’s (1998) study from many 
different ways like memory usage, response time where 
we will specify the use of general formulas, and then we 
use graphs and charts that approximately determine the 
output ratios. Most of graphs and charts that will be added 
in this chapter will be drawn by new software application 
called (Insider 2.1) from (Fourth Elephant company). 
Notice that the size of data in the all buffers might be 
equal   to   the  size  of  data  in  the central database, and  



Okasheh et al.          3999 
 
 
 

 
 
Figure 3. Data flow diagram. 

 
 
 

Table 1. Response time related to the proposed simulation tool. 
 

Approach Average response time in 
seconds 

Maximum response time 
in seconds 

Cumulative response 
time in seconds 

Philippe (1998) 817 5751 58821 
Proposed approach 30 275 2131 

 
 
 
there are several conditions to be considered while 
comparing this study with Philippe’s (1998) study to 
measure the performance as a whole: 
 
i. Size of requested data. 
ii. Type of requested data (same, different). 
iii. Number of requested data. 
iv. The starting time to request for data. 

The deletion of the data in the buffer in general occurred 
when the server made restart, so the buffer became clean 
from data. 

Table 1 and Figure 4 show the relation between queries 
and times about response time in this study such that the 
number of queries consumes low execution time. 
     Table 2 shows the summary results of the comparison  
between proposed study and Philippe’s (1998). 



4000           Sci. Res. Essays 
 
 
 

�

10000 
 

1000 

 
100 

 
10 
 
1 

������������������������������������������������������������������������������������������������������������������

Ti
m

e 
(s

) 

Queries  
 
Figure 4. Response time related to Philippe’s (1998) study. 

 
 
 

Table  2. Comparison between proposed study and Philippe’s (1998). 
 

 CPU cost Disk cost Database bottleneck Time cost 
Proposed approach Less Less Less Less 
Philippe (1998) More More More More 

 

 

Table 3. Workload criteria. 
 

 Low Medium High 
Users 2 5 13 
Transactions 12000 19500 43000 
Exec. time 1 h 1.25 h 2 h 

 
 
 

The proposed simulation tool or any tool that depends 
on SGA principles that can be used in Oracle database 
has been tested with three workload setting criteria: Low, 
Medium, and High, as described in Table 3. Transactions 
have been executed by each user independently and 
simultaneously against a single CPU P-IV 1.8GHz/512 
MB of RAM, on Personal edition Oracle 10 g database 
server. Table shows the transactions between users in 
many cases by viewing users, transactions and execution 
time: 
 
 
Concluded observations  
 
The purpose of this paper is to present a new 
architectural pattern for the shared repository pattern. 
This pattern defines a model of communication for 
software components based on the use of a shared 
repository. It is a very popular pattern in industrial settings 
that has been used in numerous and various domains. 
So, in this paper, the problem of shared database in 
repository model occurs when a certain subsystem 
requests for data from the central database. Such 
problems include: longer time to access data especially in 

multiple requests from another subsystems at the same 
time; also high cost and delay in getting data. When large 
amounts of data are to be shared, the repository model of 
sharing mostly uses our system to enhance the first 
method of repository model. If a subsystem accesses the 
shared data, then it takes time unless another subsystem 
requests for the shared database to be accessed. We put 
the data in a buffer which is like a temporary storage that 
is used to store the data that the first subsystem needs. 
Then the shared database responds to the request of the 
other subsystem and begins the response.  

In case other subsystem requests for the same data 
that the first subsystem has requested for, we store them 
in the buffer, where it can accessed directly without need 
to create another buffer. In this paper, a new approach to 
solve the problem of shared database model using a 
buffer and the proposed model was compared the 
Philippe’s (1998) study. The results showed that the 
proposed approach makes enhancement by reducing the 
time, and increasing the speed of access to the data. So, 
proposed study added an enhancement to shared 
database pattern. Finally, this paper provides a new 
approach to access the data efficiently by improving the 
time,  cost  and  speed  to  share  the data between those  



 
 
 
 
subsystems and also to guarantee, that the data will be 
stored temporarily in the buffer until a new request on 
data occurs on the buffers. 
 
 
References 
 
Douglass BP (2005). Software engineering for students,Harlow: 

Addison-Wesley, 4th edition. 
Garlan D, Allen R, Ockerbloom J (1995). Architectural Mismatch or 

Why it’s hard to build systems out of existing parts. Proceedings of 
17th International Conference on Software Engineering, Seattle 
Washington. 

Hofmeister C, Robert N, Dilip S (1999). Applied Software Architecture. 
Addison-Wesley. 

Philippe L (1998).Shared repository pattern. Thomson-CSF Corporate 
Research Laboratory, Domaine de Corbeville,  France. 

Shaw M, DeLine R, Klein D, Ross T, Young D (1995). Abstractions for 
Software Architecture and Tools to Support Them. IEEE 
Transactions on Software Engineering, 21(4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Okasheh et al.          4001 
 
 
 
Shaw M, Paul C (1997). A Field Guide to Boxology: Preliminary 

Classification of Architectural Styles for Software Systems. 
Proceedings of COMPSAC’97, 21st Int'l Computer Software and 
Applications Conference, Washington, D.C. 

Somerville I (2007). Software Engineering. Harlow: Addison-Wesley, 
8th edition. 

Van der W (1994). CAD Frameworks - Principles and Architecture, 
Kluwer Academic. 

Wakeman L, Jowett J (1993). PCTE - The Standard for Open 
Repositories, Prentice Hall. 

www.eric.ed.gov/ERICWebPortal/recordDetail 
www.techgenie.com/.../how-to-improve-microsoft-sql-server-database-

performance. 
http://www.ieee.org.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


