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In this paper, a state feedback controller is designed to stabilize a class of fractional order unified 
systems at their unstable equilibrium points. The fractional-order chaotic Chen system is chosen to get 
stabilized in two cases of commensurate and incommensurate orders. An observer based technique is 
used to identify an unknown parameter of the unified system. The system with identified parameter is 
stabilized at their unstable equilibrium points using two different methods of; a classical feedback 
scheme and so called the enhanced one. According to the Routh-Hurwitz and relevant stability theorem 
for fractional system, the stability criteria are discussed whilst they are theoretically proven. Simulation 
results are demonstrated for the Chen system to illustrate the effectiveness of the proposed control 
scheme. Simulation result verifies using the proposed control technique increases the stability region 
of the unified fractional system regardless for commensurate or incommensurate orders. Considering 
the simplicity in the structure of the controller, the convergence speed is found satisfactory. 
 
Key words: Unified chaotic system, state feedback, uncertainty principle, chaos stabilization, equilibrium 
points. 

 
 
INTRODUCTION 
 
Chaos theory, as a new branch of physics and 
mathematics, has provided a new way of viewing the 
world. It gives an important tool to truly develop the 
traditional approach. Chaotic behaviors have been 
observed in different areas of science and engineering 
such as mechanics, electronics, physics, medicine, 
ecology, biology, and economy. To avoid problems 
arising from unusual behaviors of a chaotic system, 
chaos control has gained increasing attention. In recent 
years, a new direction of chaos research has emerged, in 
which fractional order calculus is applied to dynamic 
systems (Wang and Yu, 2008). 

Fractional calculus, in essence is an extension of the 
classical calculus, with almost 300-year history. In spite 
of the long history, applications of the  fractional  calculus  
 
 
 
*Corresponding author. E-mail: a.ranjbar@nit.ac.ir. Tel:  +98 
911 214 3879. Fax: (+98) 111-3234201. 

to physics and engineering have just attracted recent 
focus of interest (Podlounby, 1999). It has been found 
that the behaviour of many physical systems can properly 
be described using the fractional order system theory. 
For example, heat conduction (Jenson and Jeffreys, 
1997), quantum evolution of complex systems (Kusnezov 
et al., 1999), and diffusion waves (EI-Sayed, 1996) are 
known of such systems which are concerned by the 
fractional order equations. In fact, real world process is 
most likely of the fractional order system (Torvik and 
Bagley, 1984). Recently, there is a new trend to 
investigate the control and dynamics of fractional order 
dynamical systems. It is shown that nonlinear chaotic 
systems can behave chaotic when their models become 
fractional (Ahmad and Sprott, 2003). In (Ahmad and 
Harba, 2003), controllers have been designed using 
„„backstepping‟‟ method of nonlinear control design. 
Investigation and control the chaotic behavior of 
fractional-order Coullet system, including the necessary 
condition for appearance of chaos  is  studied  (Shahiri  et  
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al., 2010). In Li et al. (2003), chaos synchronization of 
fractional order chaotic systems is also investigated.  

A unified chaotic system is a category of systems in 
which different chaotic attractors will be expressed by a 
different parameter (Wang and Song, 2008). Several 
researchers have focused on control and synchronization 
of the unified chaotic system.  In Park et al. (2009) the 

problem of adaptive Η
 synchronization for unified 

chaotic systems with uncertain parameter and external 
disturbance is studied. Lü et al. (2004) used linear state 
feedback and adaptive control to synchronize an identical 
unified chaotic system with only one input controller. In 
(Park, 2005, 2007; Lee et al., 2010) based on the 
Lyapunov method, different controllers are designed to 
achieve a synchronization of unified systems. In some 
other papers, for example, (Junwei and Yanbin, 2006; 
Xian et al., 2008; Weihua and Changpin, 2008; Wang 
and He, 2008), fractional dynamic of unified systems has 
been studied. Chaotic behavior of fractional-order unified 
system is discussed in (Junwei and Yanbin, 2006; Xian et 
al., 2008; Weihua and Changpin, 2008). Whilst a 
synchronization of fractional-order unified system, using 
the Laplace transform and the final-value theorem, has 
also been reported (Junwei and Yanbin, 2006; Xian et al., 
2008). In (Wang and He, 2008), a projective 
synchronization of fractional order unified system based 
on linear separation is studied.  

In this paper, a systematic state feedback controller is 
used to asymptotically stabilize commensurate and 
incommensurate fractional-order unified chaotic systems. 
Primarily, based on observer identification technique, an 
uncertain parameter of the unified system is shown 
identifiable. The work will be followed when two different 
methods of; the classical feedback control and the 
enhanced feedback control methods, are used to 
stabilize unstable equilibrium points of the system. 
Stabilization methods are fulfilled in two steps of; locating 
the eigenvalues on the negative real axis and then 
locating them in the imaginary axis, of course in pair(s) of 
pole(s). Finally, Numerical simulations show the 
performance of the procedure. 
 
 

PRELIMINARIES  
 

Among several definitions of fractional derivatives, the 
following Caputo-type definition is more of interest 
(Matignon, 1996): 
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Theorem 1 (Matignon, 1996): The following fractional-
order system: 
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With 0 1, n

iq x R    is asymptotically stable if and only if 

the following equation is met: 
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Where 's are the eigenvalues of the following Jacobian 

matrix J, at the equilibrium point. 
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Figure 1 shows the corresponding the stability region of 
the fractional order systems (Matignon, 1996). 
 
Definition 1: The same order of derivative in the state 

equation (2), i.e.
1 2 iq q q  , constructs a 

commensurate order system, and vice versa for 

1 2( )iq q q  which is called an incommensurate order 

one. 
 
Theorem 2 (Tavazoei and Haeri, 2008): Consider an n-
dimensional nonlinear incommensurate fractional order 

system in Eq. (2) in which all
iq ‟s are rational numbers 

belonging to [0, 1]. Assume M  be the lowest common 

multiple of the denominators
iu ‟s of

iq ‟s, where /i i iq v u , 

which means ,i iv u  have no common factor, 

for 1,2, ,i n  . A necessary condition to create a chaotic 

attractor is mathematically equivalent to: 
 

 ( / 2 ) min arg( ) 0i
i

M   (4) 

 

Where;
i ‟s are roots of the characteristic polynomial of: 
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In which   is the set of equilibrium points of the system, 

surrounded by scrolls. The term  ( / 2 ) min arg( )i
i

M   

is called the Instability Measure for equilibrium points in 
Fractional Order Systems (IMFOS). 
 
Definition 2: (Basu et al., 2003). The discriminant of a 

polynomial 1 2

1 2( ) n n n

nf x x a x a x a      is defined as: 
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Figure 1. The stability region of fractional-order system with order 

0 1q 
.
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Where 
ir  and 

jr  are the roots of the polynomial ( )f x .     

 
If ( ) 0D f  then ( ) 0f x   has even numbers of pair of 

complex roots. For ( ) 0D f  then equation ( ) 0f x   has 

odd numbers of pair of complex roots. Meanwhile 
for 3n  , the discriminant of ( )f x is described as: 

 
2 3 3 2

1 2 3 1 2 3 1 2 3( ) 18 ( ) 4 4 27D f a a a a a a a a a    
                   

(5) 

 
Proposition 1 (Xiang-Yuan et al., 2009): For 3n  , if the 

discriminant ( )D P of 3 2

1 2 1( )P a a a        is positive, 

then the Routh-Hurwitz conditions (Dorf and Bishop, 

1957) i.e.
1 2 3 1 2 30, 0, 0,a a a a a a    , are the necessary 

and sufficient stability conditions for Eq. (3). In this case, 
eigenvalues are located in the negative axisx  .   

 
Proposition 2 (Xiang-Yuan et al., 2009): For 3n  , if the  

discriminant ( )D P of 3 2

1 2 1( )P a a a        is 

negative, when 
1 2 1 2 30, 0, ,a a a a a    0,1 ,   then all 

eigenvalues of ( ) 0P    satisfy Eq. (3). In this case, all 

complex eigenvalues are located in the imaginary axis.      

 
The system description 
 

Lü in (Lü et. al., 2002) considered a class of unified 
chaotic form of the following: 
 

(25 10)( )

(28 35 ) (29 1)

8

3

dx
y x

dt

dy
x xz y

dt

dz
xy z

dt



 




  




    



 

                                   (6) 
 

Where 
1 2 3, ,x x x  are state variables and  0,1  is a key 

parameter of the system. The system (6) is found chaotic 

for any  0,1 . When 0, 0.8    and 1,  it is called 

the Lorenz, the Lü and the Chen chaotic attractors 
respectively. In order to construct a fractional order of the 
unified system, standard derivatives of equation (6) will 
be replaced by the following fractional differentiation:  
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Figure  2. Chaotic attractors of the fractional order unified system (3) with 1 2 3( , , ) (0.85,0.95,0.9)q q q  : (a) 

0.3  (the Lorenz system), (b) 0.8  ( the Lu system), (c) 1  ( the Chen system). 

 
 

 

Where / , ( 1,2,3) i i iq q q

td dt D i . The order
1 2 3( , , )q q q q , 

is subjected to
1 2 30 , , 1q q q  , specifically when  0,1 . 

However system (7) has three equilibrium points of: 
 

(0,0,0)

( (8 )(9 2 ) , (8 )(9 2 ) , 27 6 )

O

C     
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Where O  (Tavazoei and Haeri, 2008) includes a saddle 

point of index 1 and C  are of a saddle point of index 2. 

Therefore, all three equilibrium points of unified system 
are unstable. The chaotic behaviour of fractional order 
unified (the Chen, Lü and Lorenz) systems for 

1 2 30.91 1q q q     are plotted in (Xian et al., 2008). 

From theorem 2 will be shown that for a set of 

parameter  0.3,1  of
1 2 3( , , ) (0.85,0.95,0.9)q q q  , the 

fractional-order unified system displays chaotic attractors. 
For 0.25  , the instability measurement will be found as 

IMFOS= 49.2 10 0   . Therefore, for order 

of
1 2 3( , , ) (0.85,0.95,0.9)q q q  , the system in (3) will not yet 

comply with the necessary requirement. However, for:  
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    System (3) meets the 

necessary condition to show chaotic attractor 

when
1 2 3( , , ) (0.85,0.95,0.9)q q q  . Numerical results which 

are depicted in Figure 2, illustrate the existence of the 
chaotic attractor for the given fractional orders.  
 

 

Identification of the unknown parameter  
 
In this study, an observer is designed to identify the key 
parameter in system (6) when the parameter of the 
system is assumed unknown. From the prior knowledge, 

parameter b  is assumed constant. This means: 

 

0b                                                                                 (9) 
 

Where: 

8

3
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However, to estimate b , the following observer is 

proposed: 
 

3ˆ ( )
q

e kz bz xy D z   
 


                                                 

(11) 

 

Where k  is a positive constant gain. It will be shown that 

the observer in (11) fulfil the estimation. Let: 
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Assuming b̂  as an estimation of the unknown 

parameter b . Then: 

 

ˆ ˆ( )e t b b b   
 

                                                               
(13) 

 
Candidate the Lyapunov functions V as: 
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The first derivative of Lyapunov function is: 
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According to the third equation of system (7), we have: 
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Substitution of the observer adaptation law in equation 
(11) into Equation (16) achieves the following derivative 
of the Lyapunov function: 
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2
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Since negative sign of the first derivative of the Lyapunov 

function is satisfied; ˆ( )b t  finally converges to the real 

parameter b . It is now of an aim to proof that ˆ( )b t  

converges to b  with an exponential rate. From Equations 

(11) and (13), it is obtained: 
 

3ˆ ( )
q
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 


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By the third equation of system (7), we have: 
 

3q
D z xy bz 

                                                                  
(19) 

 
By substitution of (19) in (18), the following equation is 
achieved: 
 

e(t) + kz2e(t) = 0                                                             (20) 
 
For 0k   immediately follows that ( )e t  converges to zero. 

Therefore, ˆ( )b t  converges to b  with an exponential rate 

when t  . This means, the identification of the 

parameter of the system 3 8b    is achieved. The 

functionality of the proposed observer is shown in Figure 
3 for different values of unknown parameter   that 

is ( 0,0.8,1)  . Figure 3 shows the quality of the 

designated observer in Equation (11) when the estimated 
parameter approaches the exact value. 

Ghotb et al.          5941 
 
 
 
The feedback control  
 

In this section, we primarily assumed that the parameter 
of the unified system has already been identified with the 
prescribed method discussed earlier on. As a cones-
quence of the certainty equivalence principle, the goal is 
to design a controller to stabilize the system at their 
unstable equilibrium points, after the unknown parameter 
is off-line identified. Suppose that the identified parameter 
in section 3 is 1  which means the Chen unified system 

is being dealt, the equilibrium point will be of the target to 
get stabilized in both cases of; commensurate and 
incommensurate fractional order. The performance of the 
proposed controller will be compared with that of the 
classical state feedback controller. 
 

 

Classical state feedback control technique 
 

For the classical feedback control, state variables of the 
system are often multiplied by a coefficient as a feedback 
gain to be added in the right-hand side to construct a 
control effort. The controlled fractional order Chen system 
is accordingly given by: 
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Whereu  is an external control input which derives the 

trajectory of Equation (7) towards the unstable 
equilibrium point. The control effort consists of a single 
variable state feedback control law of the following form: 
 

( )u k y y 
                                                            

(22) 

 
Where; y  is the equilibrium point of the second state 

variable and k  is the feedback gain. Substituting 

Equation (22) into (21) yields: 
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Stabilizing the origin equilibrium point 
 
Replacement of the coordinate of the origin O  into 

Equation (23) yields: 
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Figure 3. Identification of the unknown parameter of the fractional order unified chaotic system via 

designated observer in Eq. (11) for (a) 0   (b) 0.8   (c) 1  .   
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The Jacobian matrix of system (24) is therefore obtained 
by: 
 

35 35 0
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The characteristic polynomial of the Jacobian matrix is 
accordingly found as: 
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While the discriminant of the system is shown in Equation 
(6). It immediately follows that: 
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The selection 23.3438 31.695k   or 94.305k   

causes 1 2 3 1 2 3( ) 0, 0, 0, 0,D P a a a a a a     ; this, 

according to proposition 1, emphasizes that all of the 
eigenvalues are found real and negative. Consequently, 

the Routh-Hurwitz criterion meets the necessary and 
sufficient conditions in Theorem1.  
 
 

Stabilizing the unstable equilibrium point C  
 

The case 1  forms the C coordinates in (8) to:  

 

( 7.94, 7.94,21)C   
                                                   

(27) 

 

Substitution of the C coordinate into Equation (23) 

provides:  
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The relevant Jacobian matrix of system (28) is found by: 
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Accordingly, the corresponding characteristic polynomial 
is found as: 
 

3 2( ) ( 10) (38 84) 105 4410P k k k         
           

(29) 



 
 
 
 
This provides the coefficients of the Routh-Hurwitz as: 
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When 125.48k  , we 

have 1 2 3 1 2 3( ) 0, 0, 0, 0,D P a a a a a a     , and from 

proposition 1 all of the eigenvalues are also found real 
and negative. This means the trajectory of the controlled 
fractional order of system (24) is asymptotically stabilized 

at the equilibrium point C . The same procedure 

asymptotically stabilizes the equilibrium point C . In 

addition for 6.0587k  , we have 

1 2 1 2 3( ) 0, 0, 0,D P a a a a a    , which means the real 

parts of the complex conjugate eigenvalues are zero, 

namely for any  0,1Q  , all the eigenvalues satisfy 

theorem 1. Therefore, the trajectory of the controlled 
fractional order of system (24) is asymptotically stabilized 

at the equilibrium point C .          
 
 

Enhancing the feedback control scheme, via multi 
control inputs 
 

It is less likely to control a complex system by only one 
variable state feedback or might be of large value. Thus, 
multi variables state feedback is of interest as a feedback 
gain. This method is so called “enhancing the feedback 
control” (Zhu, 2009). The control method will be 
expressed in the following:  
Consider the dynamics: 
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Where
1 2 3, ,u u u  are the external control inputs. These are 

designed so as to derive the trajectory of Eq. (7) towards 
the unstable equilibrium point. In fact, the control laws are 
defined as follows: 
 

1 1

2 2

3 3

( )

( )

( )

u k x x

u k y y

u k z z

 

 

 
                                                               

(32) 

 

Where the coordinate ( , , )x y z  is the desired unstable 

equilibrium point of the chaotic Equation. (7), and 
1 2 3, ,k k k  

are the feedback gains. Substituting Equation (32) into 
(31) provides the dynamic as: 

Ghotb et al.          5943 
 
 
 

1

1

2

2

3

3

1

2

3

35( ) ( )

7 28 ( )

3 ( )

q

q

q

q

q

q

d x
y x k x x

dt

d y
x xz y k y y

dt

d z
xy z k z z

dt


   




     



   
                          

(33) 

 
 
Stabilizing the origin equilibrium point,O  
          
Substituting the coordinate of the origin, O  into Eq. (33), 

yields: 
 

1

1

2

2

3

3

1

2

3

35( )

7 28

3

q

q

q

q

q

q

d x
y x k x

dt

d y
x xz y k y

dt

d z
xy z k z

dt


  




    



  
                                    

(34) 

 
The Jacobian matrix of system (34) is accordingly found 
by: 
 

1

2

3

35 35 0

7 28 0

0 0 3

k

J k

k

  
   
 
   

 

 
This establishes the corresponding characteristic 
equation as: 
 

3 2
1 2 3

2 3 1 1 2 1 3 2 3

2 3 2 3 1 1 3 1 2 1 2 3

( ) ( 10)

( 714 38 7 25 )

2205 105 735 35 84 28 3

P k k k

k k k k k k k k k

k k k k k k k k k k k k

  



    

       

           

(35) 

 
This obtains: 
 

1 1 2 3

2 2 3 1 1 2 1 3 2 3

3 2 3 2 3 1 1 3 1 2 1 2 3

10

714 38 7 25

2205 105 735 35 84 28 3

a k k k

a k k k k k k k k k

a k k k k k k k k k k k k

   


       
          

(36) 

 

Choosing 1 23, 25k k    and 32 14.2345k   , 

results 1 2 3 1 2 3( ) 0, 0, 0, 0,D P a a a a a a     . These 

again mean all eigenvalues are real and negative. 
Therefore the trajectory of the controlled fractional order 
of system (33) is asymptotically stable at the equilibrium 

pointO . When 1 3 3 210, 3k k k k       

and 212.3475 43.6525k  , we 

have 1 2 1 2 3( ) 0, 0, 0,D P a a a a a    , then from 
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 proposition 2  0,1Q   the controlled fractional order of 

system (33) is asymptotically stable. 
 
 

Stabilizing the unstable equilibrium point C  

          

From Equation (27), by substituting the coordinate of C  

into Equation (33), yields the Jacobian matrix as: 
 

1

2

3

35 35 0

28 28 7.94

7.94 7.94 3

k

J k

k

  
    
 
   

 

 
The characteristic equation of the Jacobian matrix is 
accordingly obtained by: 
 

3 2
1 2 3

2 3 1 1 2 1 3 2 3

2 1 2 3 1 3 1 2 1 2 3

( ) ( 10)

(84 38 7 25 )

4413 105 21 35 28 3

P k k k

k k k k k k k k k

k k k k k k k k k k k

  



    

      

           

(37) 

 
This immediately follows that: 

 

1 1 2 3

2 2 3 1 1 2 1 3 2 3

3 2 2 3 1 1 3 1 2 1 2 3

10

84 38 7 25

4413 105 35 21 28 3

a k k k

a k k k k k k k k k

a k k k k k k k k k k k

   


      
            

(38) 

 
When 1 23, 1k k   and 3 58.3k   we 

have 1 2 3 1 2 3( ) 0, 0, 0, 0,D P a a a a a a     . This verifies 

that all of the eigenvalues are real and located in the left 
half of the s-plane. Then the Routh-Hurwitz conditions 
are the necessary and sufficient conditions for the 
existence of Eq. 3. The selection of 

1 3 210, 31.5238k k k     and 3 23k k    leads 

to 1 2 1 2 3( ) 0, 0, 0,D P a a a a a    . Hence, from 

proposition 2, the real part of the complex conjugate 
eigenvalues are zero and the controlled fractional order 
Chen system (33) is asymptotically stable at the 

equilibrium point C .     

 
 
SIMULATION RESULT 

 
A simulation procedure has been carried out using 
MATLAB SIMULINK in two individual cases of the 
commensurate and incommensurate order. Dormand-
Prince solver is used during the numerical simulation. 
The order of the fractional system is set to 0.98q   for 

commensurate order and 1 2 3( , , ) (0.85,0.95,0.9)q q q   for 

incommensurate type. This setting is chosen to ensure 
the occurrence of the chaos in absence of the control 
effort.   Initial   conditions   of   states   are  also  selected  

 
 
 
 

as  ( (0), (0), (0)) 15,10,6x y z   for the same reason.   

 
 
Simulation of the classical feedback control 

 
1. System (23) stabilizes the unstable equilibrium 
point (0,0,0)O  , as depicted in Figure 4. The selection 

25k  results 1 2 3 1 2 3( ) 0, 0, 0, 0,D P a a a a a a     and 

assigns the three roots of polynomial equation at: 

1 2 33, 5.23, 26.77        which showing system (23) 

is asymptotically stable at (0,0,0)O  .  

2. The simulation is fulfilled for the unstable equilibrium 

points ( 7.94, 7.94,21)C     using a classical feedback 

method. 127k  , makes ( ) 0D P  and 

1 2 3 1 2 30, 0, 0,a a a a a a     which causes the three roots 

of polynomial equation to 

be 1 2 34.0604, 73.4, 59.54        for

( 7.94, 7.94,21)C    .This verifies that system (23) is 

asymptotically stable at C . Figure 5 confirms the 

stabilization of the equilibrium point C whereas Figure 6 

shows the stabilization of the equilibrium point C . The 

simulation results are shown in Figures 5a and 6a, for the 
commensurate order whereas, Figures 5b and 6b, show 
the case for the incommensurate order of fractional 
system.  
3. Similarly, the selection 6.0587k   causes 

1 2 1 2 3( ) 0, 0, 0,D P a a a a a     which forces the roots of 

( ) 0P    are 1 2 331.5223, 32.1026 , 32.1026j j       . 

This confirms system (21) is asymptotically stable at C  

for any  0,1Q . Likewise Figures 7 and 8 prove the 

stabilization of the equilibrium points C  and 

C respectively.  

 
 
Simulation of the enhancing feedback control 
 
The simulation is similarly carried out for the multi input 
control case to stabilize the unstable equilibrium points in 
two individual cases of the commensurate and 
incommensurate order respectively. 

 
- The results for the stabilization of the origin equilibrium 
point (0,0,0)O  , are shown in Figures 9 and 10. While 

Figures 9a and 10a show for commensurate and Figures 
9b and 10b for incommensurate fractional order system. 

The selection 1 2 33, 25, 2k k k      provides ( ) 0,D P   

and 1 0,a  2 0,a   3 0,a  1 2 3a a a which make the three 

roots of polynomial equation to 

be: 1 1,  
2 6.67,   3 22.32   . This confirms that 
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Figure 4. Time response of the , ,x y z  states of the controlled Equation (23) during the stabilization of the unstable 

equilibrium point (0,0,0)O   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

1 2 3( , , ) (0.85,0.95,0.9)q q q   
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Figure  5. Time response of the , ,x y z states  of the controlled Equation (23) during the stabilization of the unstable 

equilibrium point (7.94,7.94,21)C   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate 

order 1 2 3( , , ) (0.85,0.95,0.9)q q q     
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Figure  6. Time response  of the , ,x y z states  of the controlled Equation (23) during the stabilization of the unstable 

equilibrium point ( 7.94, 7.94,21)C     for ( ) 0D P   (a) with commensurate order 0.98q   (b) with 

incommensurate order 1 2 3( , , ) (0.85,0.95,0.9)q q q 
.
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Figure 7. Time response of the , ,x y z states  of the controlled Equation (23) during the stabilization of the unstable 

equilibrium point (7.94,7.94,21)C   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate 

order 1 2 3( , , ) (0.85,0.95,0.9)q q q 
.
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Figure 8. Time responses of the , ,x y z states  of the controlled Equation (23) during the stabilization of the unstable equilibrium 

point ( 7.94, 7.94,21)C     for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

1 2 3( , , ) (0.85,0.95,0.9)q q q 
.

 
 
 

              
0 1 2 3 4 5

-5

0

5

10

15

20

25

30

time(s)

st
at

e
 v

a
ri

ab
le

s 
(x

,y
,z

)

(a)

 

 

x

y

z

0 1 2 3 4 5
-5

0

5

10

15

20

25

30

time(s)

st
at

e
 v

a
ri

ab
le

s 
(x

,y
,z

)

(b)

 

 

x

y

z

 
 

Figure 9. Time response of the , ,x y z states  of the controlled Equation (33) during the stabilization of the unstable equilibrium 

point (0,0,0)O   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

1 2 3( , , ) (0.85,0.95,0.9)q q q 
.
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Figure 10. Time response of the , ,x y z states  of the controlled Equation (33) during the stabilization of the unstable 

equilibrium point (0,0,0)O   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

1 2 3( , , ) (0.85,0.95,0.9)q q q   
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Figure 11. Time responses the , ,x y z states of the controlled Equation (33) during the stabilization of the unstable 

equilibrium point (7.94,7.94,21)C   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

. 1 2 3( , , ) (0.85,0.95,0.9)q q q 
.
 

 
 

 

system (33) is asymptotically stable at (0,0,0)O  . 

Furthermore 1 22,k    2 15,k   3 12k   

cause 1 2 1 2 3( ) 0, 0, 0 ,D P a a a a a    . This again makes 

the three roots of polynomial equation are: 1 15,    

2 8.72 ,j   
3 8.72 j   which means system (33) is 

asymptotically stable at (0,0,0)O   for any  0,1Q  .  

- The simulation is continued to stabilize the equilibrium 

points ( 7.94, 7.94,21)C     of system (33) using the 

enhancing feedback method. The 

selection 1 2 33, 1, 60k k k    , provides ( ) 0,D P   

1 0,a  2 0,a  3 0,a  1 2 3a a a . This accordingly 

produces the three roots of polynomial equation to 

become 1 2 33.9, 63.2, 6.9        ,  

for ( 7.94, 7.94,21)C    . This also confirms the 

asymptotical stability at C  for the system in (33). Figures 

11 and 12 show the stabilization of the equilibrium 

pointsC and C  respectively. 

- Similarly, 

1 2 338.5238, 31.5238, 28.5238k k k    produce

1 2( ) 0, 0, 0,D P a a  
1 2 3a a a . Therefore, the roots of 

( ) 0P    are 1 2 36.0706, 19.669 , 19.669j j       , 

which show the asymptotical stability of system (33) at  

C  for any  0,1Q  . Figures 13 and 14 show the  

stabilization of the equilibrium points C  and 

C respectively.  

The proposed control technique is found comparable 
with respect to  a  Lyapunov  based  stabilization  method  
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Figure 11. Time responses the , ,x y z states of the controlled Equation (33) during the stabilization of the unstable 

equilibrium point (7.94,7.94,21)C   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

. 1 2 3( , , ) (0.85,0.95,0.9)q q q 
.
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Figure 12. Time responses for the , ,x y z states of the controlled Equation (33) during the stabilization of the unstable 

equilibrium point ( 7.94, 7.94,21)C     for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

1 2 3( , , ) (0.85,0.95,0.9)q q q   
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Figure 13. Time response of the , ,x y z states of the controlled Equation (33) during the stabilization of the unstable 

equilibrium point (7.94,7.94,21)C   for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

1 2 3( , , ) (0.85,0.95,0.9)q q q 
.
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Figure 14. Time response of the , ,x y z  states of the controlled Equation (33) during the stabilization of the unstable 

equilibrium point ( 7.94, 7.94,21)C     for ( ) 0D P   (a) with commensurate order 0.98q   (b) with incommensurate order 

1 2 3( , , ) (0.85,0.95,0.9)q q q 
.
 

 
 
 
(Ahmad et al., 2004). The Lyapunov theory is used 
(Ahmad et al., 2004) to prove the stability of the system 
by a state feedback controller only at (0, 0, 0) equilibrium 
point. However, the state feedback gain was found less 
likely to become small (Ahmad et al., 2004). The 
stabilization was also achieved with price of losing the 
stability speed in some cases. 

 
 
Conclusion 

 
This paper deals with the classical feedback and the 
enhancing feedback control methods to reach the 
stabilization of unstable equilibrium points in the fractional 
order Chen system. On the basis of the Routh-Hurwitz 
and the relevant stability theorems for fractional-order 
systems, the authors get the sufficient conditions for 
achieving stabilization of unstable equilibrium points in 
the fractional order Chen system with commensurate and 
incommensurate order theoretically. Simulation results 
show the effectiveness of the control methods that can 
stabilize the chaotic trajectory of the fractional order Chen 
system with commensurate and incommensurate order to 
unstable equilibrium points.  
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