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An adaptive trajectory-tracking controller is developed for a single flexible-link manipulator with 
presence of friction in the joint and parametric uncertainties. The distributed-parameter dynamic 
modeling approach is used to design the controller. To eliminate large steady-state tracking error, an 
adaptive friction compensation technique is proposed based on general static friction model. Reduction 
of effects of data corruption by noise is obtained using a filtering technique. The global asymptotic 
stability is guaranteed using the Lyapunov stability theorem. The position tracking performance and 
link vibration attenuation is verified through experimental results. It also shows that the steady-state 
joint error is significantly eliminated and the noise effect in the control signal is efficiently reduced. 
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INTRODUCTION 
 
Power consumption is an important criterion in several 
industrial applications and this leads to use of lightweight 
robot manipulators. In addition, reducing the weight of the 
manipulators makes it possible to achieve lower manu-
facturing costs, better response times and improved 
energy efficiency. However, lightweight manipulators tend 
to be flexible. For instance, in satellites, lightweight robots 
are desirable and they may be used to carry heavy pay-
loads.  

Furthermore, with the increasing demand of fast and 
accurate control of force and position, compensation of 
nonlinearities which are inherent in mechanical systems 
has gain more interest. Most positioning systems, often 
accompanied by substantial link flexibility, are subjected 
to nonlinear friction and hence, require advanced fric-
tional compensation. Modeling and compensation of fric-
tion is a difficult task for precise motion control of robotic 
manipulators and it would be even more difficult when a 
robot has flexible arms. However, controlling flexible 
arms is a theoretically challenging problem and compen-
sating effects of friction; in a controller this has practical 
ramifications. 
 
 
 
*Corresponding author. E-mail: erfanian@aut.ac.ir. Tel: +98-
2164543456. Fax: +98-21-66419736. 

Major approaches to control flexible-link manipulators 
can be classified into two categories: discretized and 
distributed-parameter modeling schemes. Many contro-
llers have been constructed based on discretized dyna-
mic modeling approach where the dynamics of flexible 
link is approximated by a set of finite dimensional equa-
tions (that is ordinary differential equations). This approxi-
mation technique facilitates the application of finite 
dimensional control strategies. A robust sliding mode 
observer was developed in (Chalhoub and Kfoury, 2005) 
that estimates state variables of the system. In (Knani, 
2002) a robust control was designed for flexible mecha-
nisms by a deterministic approach. An observer-based 
inverse dynamic control strategy was proposed in 
(Moallem et al., 2001) maintaining robust closed-loop 
performance. In (Tso et al., 2003) a controller was pro-
posed based on an optical sensing system to measure 
the flexible link deflection to damp out the tip oscillations 
and regulate the endpoint of the flexible robot� In fact, 
discretized methods are with some problems. Due to 
neglected high frequency dynamics, spillover may occur 
in the control and observation. To increase accuracy, 
higher order controllers of a model with more flexible 
modes are used and from an engineering point of view, 
these controllers might be difficult to implement since full 
state measurement or observation are often required. 

Due to the flexibility, the system described  by  finite  di- 
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mensional equations (that is partial differential equa-
tions) in the second approach is actually a distributed-
parameter system. Despite the complexities, this 
approach is free from spillover problem and many re-
search efforts have been addressed. A model-based 
control law was designed in (Queiroz et al., 1999) that 
comprise a distributed-parameter and dynamic boundary 
equations. In (Zhang et al., 2005) a partial differential 
equation model was used to design a controller for a non-
linear infinite dimensional system consisting of a flexible 
two-link manipulator� A moment-feedback trajectory-
tracking control for a single flexible link robot was pro-
posed in (Lee, 2004). An outstanding research was per-
formed in (Lee and Prevost, 2005), where a coupled 
sliding-surface method was proposed for the design of 
trajectory control of a single flexible link robot. A robust 
trajectory control scheme was proposed in (Lee and 
Liang, 2007) for a two-link rigid/flexible robot based on a 
distributed-parameter dynamic model and a coupled 
sliding-surface.  

Apart from the problem related to the flexibility, friction 
is an inevitable nonlinear phenomenon in all mechanical 
systems and the presence of friction turns out to be the 
main obstacle to achieve good positioning and trajectory-
tracking performance. Friction can cause a substantial 
deterioration of the performance of control. Typical 
effects are steady-state errors in PD controllers and limit 
cycles in PID controllers (Olsson et al., 1998). It is well 
known that steady-state errors of a controlled positioning 
system can be removed by adding integral actions in the 
feedback scheme. However, in controlled frictional me-
chanical systems such integral actions often lead to 
undesirable stick-slip behavior. Specifically, failing to 
compensate the friction may cause large tracking errors 
and oscillations in low speed or velocity reversal con-
ditions. Therefore, high performance tracking control of 
flexible-link robots cannot be achieved if friction compen-
sation is not properly taken into consideration. In (Lee 
2004), it is acknowledged that the steady-state joint track-
ing errors cannot be reduced to zero due to the friction 
inside the joint. Accordingly, the steady-state torque of 
the motor is not zero while it is not rotating. This trouble is 
noticeably evident in (Tso et al., 2003; Zhang et al., 2005; 
Lee and Prevost, 2005; Lee and Liang, 2007) where the 
large steady-state error and non-zero steady-state motor 
torque still exist. 

Friction is a problematical phenomenon to model be-
cause it is difficult to describe by a single general model. 
Many models have been proposed to capture some charac-
teristics of the friction. Those models can be classified as: 
static models and dynamic models [10]. A static friction 
model gives a static map between position, velocity and 
frictional force, whereas a dynamic frictional model gives 
a dynamics relation between velocity and frictional force, 
that is, it has an internal state which describes the dyna-
mics of the friction. Dynamic frictional models give a bet-
ter description of the frictional phenomenon at low velo- 
cities, especially when crossing zero velocity. The  LuGre 

 
 
 
 
model is a standard dynamic frictional model presented in  
(Canudas de Wit et al., 1995) that is used in several 
studies. Despite the complexity of the dynamical frictional 
models, several simple static frictional models are usually 
adopted. For example Coulomb-viscous model is by far 
the most popular and common one. Other models may 
incorporate the Stribeck effect additionally to do so as 
well at low velocity. Finally, more complete models are 
so-called general models that include previous ones as 
especial cases. In (Ge et al. 2001), a general model-
based frictional compensation technique is used to 
investigate adaptive frictional compensation.  

On the other hand, unavoidable noise in control pro-
cess deteriorates behavior of the system because it 
influences the actuator driving the joint. This usually 
increases the bandwidth of the torque control loop and 
may excite high vibration modes of the flexible-link robot. 
Moreover, the transient performance is limited because 
the noise is also amplified in the control process. Conse-
quent ramifications are evidenced in (Tso et al., 2003; 
Lee, 2004; Lee and Prevost, 2005; Lee and Liang, 2007). 
A filtering technique is introduced in (Alonge et al., 2007) 
for rigid robotic manipulators which can be extended for 
trajectory tracking of flexible-link arms. 

In this paper, using particular advantages of the distri-
buted-parameter modeling scheme, an adaptive 
trajectory-tracking controller is proposed for a horizontal 
flexible-link robot with parametric uncertainties. An adap-
tive friction compensation technique is developed to re-
solve the problem of large steady-state. To obtain a ge-
neral solution based on the simple method, a general 
static friction model is used through the linear parameter-
rization technique. To overcome the problem of data cor-
ruption by noise, a filtering technique is proposed. The 
asymptotic stability proof and convergence of the tracking 
error and flexible link vibration to zero is given using 
energy dynamics and a suitable Lyapunov design techni-
que. In addition, experiments were carried out to validate 
the proposed controllers. 
 
 
System model 
 
Dynamic model of a flexible robot 
 
A horizontal single flexible-link robot with friction in the 
joint is illustrated in Figure 1 where 00YX  and 11YX  are 
the fixed and rotating reference frames, respectively. Varia-
bles θ , x  and ),( txw  are the joint angle, position along 
the link and link deflection at x , respectively. The flexible 
link has total length l , mass per unit length ρ , Young’s 

modulus E , constant moment of inertia I , a hub at one 
end with moment of inertia hJ  and a payload mass  

pM  at other end with moment of  inertia pJ . The flexible 

link is assumed to be long and slender. Transverse shear 
and rotary inertia effects are also neglected. vThis  allows  



 
 
  
 

 
 
Figure 1. Schematic diagram of a planar flexible-link 
robot  

 
 
 
Bernoulli-Euler beam theory which has infinite number of 
natural modes of vibration, resulting in an infinite-
dimensional dynamic model for the flexible link. The 
model is as: 
 

                         (1)                                                                 
 
and the governing equation of motion at the joint is (Lee 
and Prevost, 2005) 
 

                                                     (2)                                                                    

For simplification, it is assumed that and 

. Also, the subscripts 0 and l  denote the 
value of the corresponding variables at 0=x  and lx = , 
respectively. F  denotes friction torque in the joint, which 
is described afterwards. 
 Geometric boundary conditions at 0=x  are: 
 

0=′= ww                                                                     (3)    
                                                                                                        

and the dynamic boundary conditions at lx =  are: 
 

                                                    (4)                                                                                                                        
 

                                                   (5) 
 
Frictional modeling 
 
A static frictional model is described by a map between 

positionθ , velocity  and friction torque F . Hence, the 

frictional model is defined as  and described by 
the general form (Ge et al., 2001): 
 

                                        (6)                                                                                      
 
Where ε  is the modeling error that is assumed bounded 
and: 
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                                              (7)   
  
Equation (7) is linear-in-the-parameters (LIP) model for 
friction where ),( θθ &S  is a vector of known basis func-

tions and fp  is the vector of corresponding parameters 

which is assumed to be unknown but constant. The LIP 
form, (7), is a more complete presentation and is very 
desirable for model-based frictional compensation.  
 
Remark 1. A more complete general static frictional 
model may consist of the following components: stiction, 
Coulomb, viscous friction torque and Stribeck effect 
which can be presented as an exponential combination 
form (Ge et al., 2001): 
 

                                                                                       
                                                                                      (8) 
 
Where the level of Coulomb frictional coefficient is CF , SF  
is the maximum frictional constant (level of stiction tor-
que) and VF  is the viscous frictional coefficient. The Sri-
beck effect is represented by the exponential term in (8) 

and the empirical parameter  known as Stribeck velo-
city. This classic model is widely used for uncompli-cated 
and general purpose applications and can approximate 
the real frictional torque with good precision. Therefore, in 
this paper, the model expressed by (8) is used as a 
sample to general frictional static models for experimental 
verification. 

Based on the above discussion, this frictional model 
can be presented in the LIP form: 
 

                 (9)                                         
 

,][ T
VSCCf FFF=p                                              (10)                                                                                                

 
Where CSSC FFF −= .  
 
 
Remark 2. Several effects may influence the frictio-nal 
model. For example, the normal load in the joint may vary 
due to geometrical conditions changing the friction tor-
que. However, if the structure of the effect is known, it 
can be simply handled by increasing the space of regres-
sor function and adding the correspondent components. 
 
 

Assumption 1. The frictional model and the 

regressor vector are assumed bounded for each 

bounded θ  and  
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Energy dynamics of the flexible link 
 
payload shown in Figure 1. It can be written as (Lee and 
Prevost, 2005): 
 

                                                    
                                                                                     (11) 
The time rate of the change of LE is computed as: 
 

                                                                        
                                                                                     (12) 
 
Subsequent integration by parts along with the boundary 
conditions (3)-(5) results in the time derivative of LE to: 
 

                                                           (13)                                                       
 
Remark 3. The total energy of the flexible link and 
payload defined in (11) and its time rate of change (13) 
shows that LE  and hence its link of vibration can be 

reduced asymptotically to zero if and are 

controlled such that with 0>mk , thus 

resulting in 0≥LE  and . Conse-
quently, the link vibration can be controlled asymptotically 

to zero if a sliding surface is driven 
asymptotically to zero (Lee and Prevost, 2005). 
 
 
Controller design 
 
Considering dθ  as a desired trajectory ofθ , the joint-
tracking error e  is defined as: 
 

de θθ −=                                                                    (14)                                                  
 
 
Assumption 2. The desired joint trajectory dθ  and its  

first and second derivatives, and are assumed to 

be uniformly bounded. In addition, and  
are assumed for a period of fm ttt ≤≤  with some 

finite 0>> mf tt . 

By coupling the proportional-integral-derivative, joint-
tracking error and the arm bending strain at the joint, the 
coupled sliding-surface )(ts is defined as: 

 
                                                  
 
 

                          (15) 
 
In which Ie  is the integration of tracking error defined as: 
 

  �=
t

I dtee
0

                                                                (16)                                                    

 

In (15), k and mk  are positive gains and Λ  is a non-
negative gain.  
 

Remark 4. The coupled sliding-surface defined in (15) is 
based on the sliding surface described in Remark 3. 
Additionally, to accomplish a joint trajectory control, the 

desired joint velocity , joint-tracking error e , and 
integrated joint-tracking error Ie  were incorporated in the 
sliding surface. 
Additionally, appropriate reference velocity and 
acceleration signals are defined as: 
 

                                                                  (17) 
                                                                                                           

                     (18)                                            
 
Based on the definition (15), the sliding-surface dynamics 
is derived from the joint dynamics (2): 
 

                                                      (19)                                                      
 
Where the parameter vector p and the regressor vector 
y  are defined as: 
 

TT ][ fh EIJ pp =                                                    (20)   
 

                                                  (21)                                    
 
Here a trajectory-tracking control scheme, minimizing the 
sliding surface asymptotically to zero, is designed based 
on the distributed-parameter dynamic model, which is 
described in the following theorem.   
 
Theorem 1. Consider a flexible-link robot presenting fric- 
tion in the joint where the model of friction is described by 
(6)-(7) satisfying Assumption 1 and the dynamics of 
flexible-link is described by (1)-(5) with parametric uncer-
tainties. Suppose that the control objective is to have a 
flexible-link robot track a desired trajectory under 
Assumption 2 as accurately as possible while promptly 
suppressing the resulting link vibration asymptotically to 
zero and attenuate the influences of data corruption by 
noise. Then the following control law (22) with adapta-
tions law (23) and filter dynamic (24) can achieve the 
objective while keeping all internal signals bounded.  



 
 
 
 

 
                                                                                     (22) 
 
And 
 

                                             (23) 
 

where  p̂  is the estimation of p and 
 

                                                                  (24) 
 

In (22), ru  is a robust control term for suppressing any 
modeling uncertainty that will be explained, subse-
quently rk , Dk  and T  are also positive constant gain. In 

(23), �  is a gain matrix correspondent to p  which is 
assumed to be a positive definite diagonal matrix and is 
defined as: 
 

),,(diag fEIJ ��
h

�� = .                              (25)                                
 

Where f�  a positive definite diagonal gain matrix corres-

ponding to fp  as well; 
hJ�  and EI� are positive con-

stant gains. 
 
 
Remark 5. The proposed control is a filtered PIDS 
(proportional integral derivative and strain) control with 
friction compensation and dynamics feed-forward. It is 
also a collocated trajectory control since the actuator 
generating τ  and the sensors measuring θ  and 0wEI ′′  
are all collocated at the joint hub. Consequently, based 
on the distributed-parameter dynamic model, the pro-
posed control scheme is robust to the spillover instability 
(Lee and Prevost, 2005). 
 At this point, to prove the above mentioned theorem, it 
is convenient to give the following assertion: 
 
 
Assertion1. Let consider the strictly proper and asympto-
tically stable linear system (24). If input s  is bounded and  
uniformly continuous, and output 0ˆ →s  asymptotically  
as ∞→t , then ∞→s  asymptotically as ∞→t . 
 
Proof of Assertion 1. If s  is bounded then ŝ  is bound-
ed and uniformly continuous (Slotine and Li, 1991). As s  
is uniformly continuous, ŝ  is uniformly continuous. As 

0ˆ →s  asymptotically as ∞→t  and ŝ  is uniformly 
continuous, using Barbalat lemma, it follows that  
asymptotically as ∞→t  and consequently, 0→s  
asymptotically as ∞→t .  
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Proof of Theorem 1. A candidate Lyapunov functional 

)(tV  is considered: 
   

( ) p�p ~~
2
1ˆ

2
1

)(
2
1

2
1 1T222 −++Λ+++= sTkee

k
k

sJEtV DI
m

hL
  

                                                                                     (26)     
                                                                                                          
Where ppp −= ˆ~  is the vector of estimation error of 
system parameters 
 
 
Remark 6. The weight of the joint-tracking control 

Iee Λ+  relative to the flexible link energy LE  is 

described by the ratio mkk /  in )(tV . As a consequence, 

larger values of mkk / which deals with emphasizing the 
joint-tracking control, result in faster suppression of the 
joint-tracking errors. Smaller values of mkk /  stressing 
the flexible link energy, lead to faster suppression of the 
link vibration. 
The time derivative of the candidate of Lyapunov function 
(26) is computed as: 
 

                                                                                    
                                                                                     (27) 
 
Where (13) and (24) are used, by substituting sliding-
surface dynamics (19) into (27) it follows: 
 

                     
                                                                                     (28) 
 
Using (15) it follows that: 
 

                                      
                                                                                     (29) 
 
By substituting (29) and (20)-(21) in (28) it results that: 
 

                           
                                                                                     (30) 
 
Extracting the adaptation laws (23) of system para-
meters: 
 

                                                           (31)                                
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                                                              (32) 
 

                                                     (33) 
                                                                                                          
and inserting (31)-(33) into (30), it outcomes 
 

                                  
                                                                                     (34) 
 

Since the robust term ru  is chosen as:  
 

)sgn(sKu rr =                                                            (35)                                                                                                                 
 

Where rK  is a constant gain and ε≥rK , (34) follows: 
 

                                                                                    
                                                                                     (36) 
 

then is guaranteed for all )(ts  satisfying that 

rks /12 > . This implies the bounded ness of )(tV and 

hence the bounded ness of variables s , ŝ , )( Iee Λ+  

and LE  involved in (26). Then, follows from filter 

dynamics (24) with the boundedness of s  and ŝ . The 
bounded ness of LE  guarantees that of 0wEI ′′ , and the 

boundedness of )( Iee Λ+  guarantees that of e  and Ie . 

Then the boundedness of  and hence follows from 
the sliding surface (15) with the boundedness of s , e , 

Ie , and 0wEI ′′ . The boundedness of and follows 

from that of LE  with the boundedness of . In addition, 

the boundedness of  and wEI ′′  implies . Then,  

 follows from the sliding surface dynamics (19) and 
control law (22);  follows from the joint dynamics 

(2) and control law (22) since  is uniformly bounded. 

Integration of obtained in (36) yields ŝ , 

. Since  as a 

consequence of Barbalat lemma, ŝ ,  

asymptotically as ∞→t , which guarantees ¸ 0→e  
asymptotically as ∞→t . Therefore, Assertion 1 
provides 0→s  from ∞∈ Ls  and 0ˆ →s . Then the 
definition of the sliding surface (15) yields 

00 →′′+Λ wEIkek mI  asymptotically as ∞→t .  

 
 
 
 

vibration to zero in the steady state while  is 
assumed for time period fm ttt ≤≤  with some finite 

0>> mf tt . Since Ie  is bounded and , 0→e  

asymp-totically as ∞→t , Ie  approaches a finite 

constant, which implies 0wEI ′′  also approaches a finite 

constant since 00 →′′+Λ wEIkek mI  asymptotically as 
∞→t . When non-zero for a horizontal flexible robot, the 

link is 0wEI ′′ , will vibrate and hence oscillate since the 
joint hub will not rotate in the steady state. Due to 
existence of structural damping, even neglected, 0wEI ′′  

should be zero for a horizontal flexible robot when 0wEI ′′  
remains constant in the steady state, which implies 

0→Ie  asymptotically as ∞→t . Asymptotic stability of 

0wEI ′′  implies that of link deflection w .� 
The above control laws differ from that proposed by 

(Lee and Prevost, 2005) in the following aspects: (i) the 
presence of adaptive compensation of general static 
frictional model, (ii) the PIDS control action is obtained 
from the output of a low pass filter supplied by s  

 
Remark 7. The presence of the )sgn(⋅  function in the 
control inevitably introduces chattering, which is undesira- 
ble as it may excite mechanical resonance. To alleviate 
this problem, many approximation mechanisms have 
been used, such as boundary layer, saturation functions, 
and hyperbolic tangent function )tanh(⋅  which have the 
following property (Ge et al., 2001): 
 
 

Rs
s

ss ∈∀≤��
�

�
��
�

�
−≤ ,2785.0tanh0 1

1

γ
γ

                (37)                                                                   

 
By smoothing the )sgn(⋅  function, the closed-loop sys-
tem is also stable but with a small residue error. For 
example, if )tanh( 1γsKu rr = , where 01 >γ  is a con-
stant, then (36) becomes: 
 

                  
                                                                                     (38) 
 

Using (37) and reconsidering that ε≥rK , (38) can be 

further simplified as: 
 
 

                                                                                                        
                                                                                        (39) 



 
 
 
 

 
 
Figure 2. Experimental setup 
 
 
 

 Obviously,  whenever the system state variable 
vector r  is outside the compact set: 
 

                      
                                                                                     (40) 
 
Thus, the closed-loop system is stable and tracking error 
will converge to a small neighborhood of zero, whose 
size is adjustable by the design parameters rK  and 1γ . 
Additionally, to get rid of discontinuity problem in the 
control law due to compensation of dry friction, the above 
modification should also be utilized. For instance, the 
frictional compensation feed forward for the model (7) 
respect to (9)-(10) is modified as: 
 

                                                   (41)                                                                     
 

Where 1S  is the modification of S  as: 

        (42)                                                                                    
 

Where 02 >γ  and p̂  is the vector of estimated friction 
parameters correspondent to (10).  

It should be mentioned that these modification may 
cause the estimated parameters growth. To deal with this 
problem, other modification schemes can be used to 
modify the adaptive laws to guarantee the robustness of 
the closed-loop system in the presence of approximation 
error (Ge et al., 2001). 
 
 
Experimental Validation 
 
Now, it is necessary to prove the convergence  of  link to 
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evaluate the proposed adaptive control laws and frictional 
compensation schemes practically, a horizontal flexible-
link robot was set up, shown in Figure  2.  Experiments 
have been carried out using a horizontal flexible-link 
robot and its payload mass consisting of a DC motor 
equipped with a 400 PPR encoder and driven by the 
PWM control with a base frequency of 20 kHz. A full-
bridge strain gauge is used to measure the bending strain 
at the neck of the flexible arm through a strain amplifier 
and an A/D converter, under the assumption of small link 
deflection. A hardware low-pass filter having a bandwidth 
of 1 kHz is used to filter the high-frequency noises. A 
gear-box with the ratio of 1/37 is used. A PC with a 
Pentium III CPU is used to process data with a sampling 
period of 1 kHz. 
 
Remark 8. Although the flexible arm is considered as a 
distributed-parameter system, in practice while verifying 
the performance of the controllers, it is inevitably some 
computation and then the amplifier producing a current 
for the motor has finite bandwidth. Therefore, to reduce 
the effects of digital computation, the sampling period of 
data processing is chosen 1 kHz where higher natural 
frequencies of the flexible arm are comprised. The expe-
rimental setup features a flexible arm driven by a 
permanent magnetic DC motor. The self-inductive effect 
of the DC motor is neglected. Therefore, a mathematical 
model for the DC motor torqueτ  is: 
 

aT iK=τ                                                                      (43)   
                                                                                                                    

                                                       (44)                                                         
 

where ai , TK , emfK , R  and E are motor current, 

torque constant, back EMF, resistance and input voltage 
of the DC motor, respectively. Coupling (43) and (44) with 
equation of motion (2) results in: 
 

                                                (45) 
 
Where 
 

hTh JRKJ 1−
∗

=                                                              (46)                                                       
 

EIRKEI T
1−

∗
=                                                              (47) 

                                                                                                                

                                                (48) 
 

E=
∗
τ                                                                           (49) 
 
The obtained equation of motion (45) is identical to its 
the original (2). The  characteristic  of  EMF is  similar  to  



246     Sci. Res. Essays 
 
 
 

Table 1. True values of system parameters measures 
practically 
 

Parameter True Values 
Jh 0.28 V.s2.rad-1 
El 6.50 V.m 
FC 5.47 V 
FSC 0.73 V 
FV 0.96 V.s.rad-1 

 
 
 

Table 2. Constant gain 
 

Gain Value 

Λ  10-7 s-1 

k  5.0 s-1 

mk  0.87 V-1.s-1.rad 

rk  55.4 s2.rad-2 

rK  0.97 V 

T  0.01 s 

Dk  1.15 V.s.rad-1 

EI�  5.87 V.m2.rad-1 

hJ�  6.38×10-3 V.s4.rad-3 

CF�  11.48 V.rad-1 

SCF�  0.45 V.rad-1 

VF�  1.28 V.s2.rad-3 
 
 
 

viscous friction and hence is considered as a supple-
menting term to the frictional model. Based on (46)-(49), 
the true values of  the  coupled  system  parameters  are 
practically measured and shown in Table 1. Normal nota-                                                                                   
tion is used to show the parameters instead of using star 
superscription.  

The flexible arm was made of spring steel strip with 
thickness of 1.1mm. The first and second natural fre-
quencies of the flexible link and payload mass are 2.5 
and 36.2Hz, respectively. The Stribeck velocity constant 

was measured rad/s. The modification factors 

1γ  and 2γ  are both chosen as 0.01 rad/s. The constant 
gains are chosen as in Table 2. 

To generate the desired signal, the basis function dΘ is 
defined: 
 

�
	

�



�

<≤

<≤+−
=Θ

fm

m
mmmd

ttt

tt
t
t

t
t

t
t

,1

0,)(10)(15)(6 345

     (50)                                         

 
 
 
 
Where fm tt < . The following periodic function is chosen 

for the desired joint trajectory:  
 

ΚΚ ,5,3,1,,4,2,0,
1/),(1

1/),(
==

�	

�


�

+<≤−Θ−

+<≤−Θ
= ba

bttbtbt

attaatt
R

ffd

ffd

dθ                                                                                      

                                                                                     (51) 
 
Where mt , ft  and R  are chosen 2 s, 3 s and �/2 rad, 

respectively. 
Experiments were carried out with zero initial value for 

the estimated parameters. Figure 3 shows the experi-
mental results. 
The desired joint trajectory angle dθ  and the joint 

tracking angle θ  are shown in Figure 3(a) and the joint 
tracking error e  is shown in Figure 3(b). The test is sub-
ject to parameter uncertainty due to zero initial values for 
estimated parameters. This temporarily increases the 
tracking error as shown in Figure 3(b), but the tracking 
error reduces eventually because the frictional and dyna-
mical feed forward terms in the control law are augmented 
during parameter estimation progression. The estimation 

of frictional parameters SF̂ , SCF̂  and VF̂  are shown in 

Figure 3(e) and that of dynamical parameters hĴ  and 
^

EI are shown in Figure 3(f). As it is shown, all estimated 
parameters are bounded. However, due to values of the 
constant gain � , the rate of estimation can be adjusted. 
The effect of frictional compensation feed forward in the 
control signal is obvious where the direction of the joint 
velocity changes. The tracking error approximately con-
verges to zero in local steady-state durations of the de-
sired input and reasonably, this shows achievement to 
main objective of this paper to eliminate large steady-
state tracking errors, Figure 3(b). Reasonably, it shows 
the proper frictional modeling and compensation techni-
que had been proposed. Consequently, the trouble of 
existence of large steady-state control signal and tracking 
error during local stationary desired input signal is re-
solved. In (Tso et al. 2003; Zhang et al. 2005; Lee 2004; 
Lee and Prevost 2005; Lee and Liang 2007) because of 
existence of significant friction in the mechanical system 
and in absence of appropriate dominative friction com-
pensation they were not able to eliminate the large 
steady-state motor torque and tracking error. 

The bending curvature at neck of flexible arm, 0w ′′  is 
shown in Figure 3(d). As it is shown, reduction of bending 
curvature of flexible arm during transient state denotes 
satisfactory performance. Particularly, bending curvature 
during local steady-state desired input converges appro-
ximately to zero that implies acceptable link vibration can-
cellation. It must be realized that the most serious source 
of inaccuracy in vibration elimination of the flexible arm is 
due to the backlash in  the  reducing  gearbox. As  it  was  
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Figure 3. Experimental results. (a) Trajectory tracking. (b) Tracking error. (c) Control signal. (d) Bending curvature of the flexible 
link. (e) Estimation of frictional parameters. (f) Estimation of dynamical parameters. 

 
 

mentioned in Remark 6, smaller mkk / leads to faster link  
Vibration cancellation. In addition, Figure. 3(c) denotes  

 

that the control scheme allows obtaining good behavior,  
because it is able to attenuate the effects of  data  corrup- 
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ted by noise. This signifies reduction of high frequency 
harmonics of the signal s used to generate the control 
torque gained by ŝ . 
 
 
Conclusion 
 
An adaptive frictional compensation approaches has 
been theoretically and experimentally investigated for a 
single flexible-link manipulator. The used of distributed-
parameter modeling approach was free from the spillover 
instability. Experimental results carried out on a flexible-
link robot; show that the problem of large steady-state 
joint tracking error was resolved. It also denoted the 
proper used general static model of friction. The vibration 
attenuation of the flexible link during transient and steady 
state signifies the acceptable performance of the con-
trollers. The effects of noise in data corruption were also 
reduced by the filtering technique. Finally, as a future 
study, dynamic frictional models will be researched fur-
ther to take into consideration the dynamic behavior 
friction. 
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