Full Length Research Paper

# Bivariate lognormal distribution model of cutoff grade impurities: A case study of magnesite ore deposit

# Suheyla Yerel and Adnan Konuk

<sup>1</sup>Civil Eng. Department, Bilecik University, Bilecik, Turkey. <sup>2</sup>Mining Eng. Department, Eskisehir Osmangazi University Eskisehir, Turkey.

Accepted 26 October, 2009

One of the most important aspects of magnesite ore deposits is for assessment of the cutoff grade impurities. The impurities in the magnesite ore deposit with grade higher than cutoff grade is waste, which is sent to the waste dump; the impurities lower than the cutoff grade are sent to the processing plant. The bivariate lognormal distribution will serve as an important tool for analysis impurities. In this paper, the Beylikova magnesite ore deposit impurities in Eskisehir (Turkey) were assessed by bivariate lognormal distribution model. This article presents a procedure for using the bivariate lognormal distribution of correlated SiO<sub>2</sub>% and Fe<sub>2</sub>O<sub>3</sub>% rates of ore deposit. Through the results from the model, it was determined that there are magnesite tonnage rate, mean of SiO<sub>2</sub>% and mean of Fe<sub>2</sub>O<sub>3</sub>% involves the identification of cutoff SiO<sub>2</sub>% and cutoff Fe<sub>2</sub>O<sub>3</sub>%. These analyses are believed to assist the management of magnesite ore deposits and determine priorities to improve mining issues.

**Key words:** Magnesite, cutoff grade impurity, bivariate lognormal distribution, beylikova magnesite ore deposit, Turkey.

# INTRODUCTION

Cutoff grade is defined as the grade, which discriminates between ore and waste (Dagdelen, 1992). However, it is critical that the ore deposit classified as waste today could become economical to be process in future (Asad, 2005). Mine planning of ore deposits that contain more than one mineral are generally done on the basis of parametric cutoff grade (Cetin and Dowd, 2002).

In the literature, there are many studies based on cutoff grade theories developed by Lane (1964) and Taylor (1972), which are applicable to multiple ore deposits. Some studies conducted in multiple ore deposits by using cutoff grade theories are as follows; Cetin and Dowd (2002) describe the general problem of cutoff grade optimization for multi-mineral deposits and outline the use genetic algorithms for optimal cutoff grade schedules for deposits with up to three constituent minerals. Ataei and Osanloo (2003) presented an optimum cutoff grade of multiple metal deposits by using the golden section search method. Osanloo and Ataei (2003) selected cutoff

\*Corresponding author. E-mail: syerel@gmail.com; suheyla.yerel@bilecik.edu.tr. Tel.: 90-228-2160292. Fax: 90-228-2160026. grades with the purpose of maximizing net presented value subject to the constraints of mining, concentrating, and refining capacities of multiple metal deposits will be discussed. Asad (2005) presented the ease of operation for the second case becomes a reason of choice for the development of the cutoff grade optimization algorithm with a stockpiling option for deposits of two economic mineral. But all of above studies weren't considering the grade distribution of the ore deposits.

In magnesite ore deposit, cutoff impurity rates such as  $SiO_2\%$  and  $Fe_2O_3\%$  rates have more importance than the rate of MgO%. In this study, the case in which two important impurities  $SiO_2\%$  and  $Fe_2O_3\%$  rates are joint grade distributed is considered. To achieve this goal, a bivariate lognormal distribution model was developed and the application of the model was made by drillholes data of a Beylikova magnesite ore deposit in Eskisehir, Turkey.

# METHODOLOGY

### **Bivariate lognormal distribution**

A positive random variable x is said to be lognormally distributed

with two parameters mean  $(\mu)$  and standard deviation  $(\sigma)$  if y = log(x) is normally distributed with  $\mu$  and  $\sigma$ . The probability density function of the random variable x is given equation 1.

$$f(x) = \frac{1}{x\sigma_y \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\log(x) - \mu_y}{\sigma_y}\right)^2\right] \quad x > 0$$
(1)

where  $\mu_y$  and  $\sigma_y$  are the mean and standard deviation of y, respectively. The cumulative distribution function of x can be computed through the normal distribution as follows

$$F(x) = \Phi\left[\frac{\log(x) - \mu_{y}}{\sigma_{y}}\right] \quad x > 0$$
(2)

In which  $\Phi$  is the cumulative distribution function of the standard normal distribution. As there is no analytical form of the cumulative distribution function, it can be calculated by directly integrating the corresponding probability density function (Yue, 2002).

If two correlated continuous random variables  $X_1$  and  $X_2$  are lognormally distributed with different parameters (mean and standard deviation) as follows

$$f(x_{1}) = \frac{1}{x_{1}\sigma_{y_{1}}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\log(x_{1})-\mu_{y_{1}}}{\sigma_{y_{1}}}\right)^{2}\right] \quad x_{1} > 0$$
(3)

$$f(x_{2}) = \frac{1}{x_{2}\sigma_{y_{2}}\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\log(x_{2})-\mu_{y_{2}}}{\sigma_{y_{2}}}\right)^{2}\right] \quad x_{1} > 0$$
(4)

Then the joint distribution of these two variables can be represented by the bivariate lognormal distribution. The probability density function of the bivariate lognormal distribution can be derived using the Jacobian of the transformation and is given by

$$f(x_{1},x_{2}) = \frac{1}{2\pi x_{1}x_{2}\sigma_{y_{1}}\sigma_{y_{2}}\sqrt{1-\rho^{2}}} \left( \exp\left(\frac{1}{2(1-\rho^{2})} \times \left[ \left(\frac{\log(x_{1})\cdot\mu_{y_{1}}}{\sigma_{y_{1}}}\right)^{2} \cdot 2\rho\left(\frac{\log(x_{1})\cdot\mu_{y_{2}}}{\sigma_{y_{1}}}\right) \left(\frac{\log(x_{2})\cdot\mu_{y_{2}}}{\sigma_{y_{2}}}\right) + \left(\frac{\log(x_{2})\cdot\mu_{y_{2}}}{\sigma_{y_{2}}}\right)^{2} \right] \right)$$
(5)

Where  $\mu_{y_i}$  and  $\sigma_{y_i}$  are mean and standard deviation of  $y_i$ (i = 1, 2) and they can be derived using the following formulae (Stedinger et al., 1993).

$$\mu_{y_i} = \log\left(\mu_{x_i}\right) - \left(\frac{\sigma_{y_i}^2}{2}\right)$$
(6)

$$\sigma_{y_i} = \left[ \log \left( 1 + \frac{\sigma_{x_i}^2}{\mu_{x_i}^2} \right) \right]^{\frac{1}{2}}$$
(7)

Here  $\mu_{x_i}$  and  $\sigma_{x_i}$  are the mean and standard deviation of  $x_i$ and  $\rho$  is the correlation coefficient of  $y_1$  and  $y_2$ , and  $\rho$  is estimated by equation 8.

$$\rho = \frac{E\left[\left(y_{1} - \mu_{y_{1}}\right)\left(y_{2} - \mu_{y_{2}}\right)\right]}{\sigma_{y_{1}}\sigma_{y_{2}}}$$
(8)

For conditional probability density function of  $X_2$  given  $X_1$  can be derived as follows

$$f(x_{1} \mid x_{2}) = \frac{1}{x_{1} \sigma_{y_{1} \mid y_{2}} \sqrt{2\pi}} \left( exp \left[ -\frac{1}{2} \left( \frac{\log(x_{1}) - \mu_{y_{1} \mid y_{2}}}{\sigma_{y_{1} \mid y_{2}}} \right)^{2} \right] \right)$$
(9)

$$\boldsymbol{\mu}_{y_1 \setminus y_2} = \boldsymbol{\mu}_{y_1} - \left( \rho \frac{\boldsymbol{\sigma}_{y_1}}{\boldsymbol{\sigma}_{y_2}} \left[ \log(x_2) - \boldsymbol{\mu}_{y_2} \right] \right)$$
(10)

$$\sigma_{y_1 y_2} = \sigma_{y_1} \sqrt{(1 - \rho^2)}$$
 (11)

Where  $\mu_{y_1y_2}$  and  $\sigma_{y_1y_2}$  are the mean and standard deviation of  $X_2$  given  $X_1$  and they can calculated using the equations 10 - 11. For the standard values (Z) corresponding to cutoff  $X_2$  given cutoff  $X_1$  can be presented as equation 12 (Yerel, 2008).

$$z = \frac{\log(x_{c1}) - \mu_{y_1 | y_2}}{\sigma_{y_1 | y_2}}$$
(12)

Which is the product of dependent probabilities, gives the total joint probability of cutoff impurity rates correspond to the tonnage rate  $(T_c)$  of ore deposit given by equation 13.

$$T_{c} = T_{x_{1} \mid x_{2}} \cdot T_{x_{2}}$$
 (13)

Mean  $X_1$  and  $X_2$  of ore deposit under cutoff  $X_1$  and  $X_2$  values, can be calculated by the equations 14 - 15 (Clark, 2001).

$$\mu_{c_{x_1}} = \frac{B}{T_c} . \mu_{x_1}$$
(14)

$$\mu_{c_{x_2}} = \frac{B}{T_c} . \mu_{x_2}$$
(15)

From the above equations corresponding of the parameters B and  $\sigma_{v_1v_2}$  are calculated equations 16 - 17.

$$\mathbf{B} = \Phi(\mathbf{z} - \boldsymbol{\sigma}_{\mathbf{y}_1 \mathbf{y}_2}) \tag{16}$$

**Table 1.** Descriptive statistics of SiO<sub>2</sub>% and Fe<sub>2</sub>O<sub>3</sub>%.

| Parameters                       | n   | Min. | Max. | Mean  | Std. deviation | Variance |
|----------------------------------|-----|------|------|-------|----------------|----------|
| SiO <sub>2</sub> %               | 135 | 0.01 | 1.21 | 0.224 | 0.278          | 0.077    |
| Fe <sub>2</sub> O <sub>3</sub> % | 135 | 0.01 | 0.27 | 0.048 | 0.053          | 0.003    |



Figure 1. The correlation coefficient between the logSiO<sub>2</sub>% and logFe<sub>2</sub>O<sub>3</sub>%.

$$\sigma_{\mathbf{y}_1\mathbf{y}_2} = \rho \cdot \sigma_{\mathbf{y}_1} \cdot \sigma_{\mathbf{y}_2} \tag{17}$$

#### Description of the study area

Eskisehir is an industrialized city located in the western part of Central Anatolia Region which has a population exceeding 600 thousand habitants and covers an area of approximately 13,700 km<sup>2</sup> (Orhan et al., 2007). The city is located at equal distance from the primary metropolitan city Istanbul and the capital Ankara (Uygucgil, et al., 2007). In this study area is Beylikova magnesite ore deposit is located in the southeast part of Eskisehir city, Turkey. The geological units are not complex in the study area. Metamorphic, volcanic and sedimentary rocks from Triassic to Quaternary age are the main geological units in the area (Gozler et al., 1997).

#### Dataset

The bivariate lognormal distribution model was applied to a Beylikova magnesite deposit in Eskisehir. In magnesite deposit,  $SiO_2\%$  and  $Fe_2O_3\%$  of the ore body have more importance than the MgO% (Yerel, 2008). In this study,  $SiO_2\%$  and  $Fe_2O_3\%$  data were obtained from 40 vertical drillholes. Of the 60 irregular drillholes perpendicular to the magnesite deposit, 40 penetrated drillholes. The drillholes contains information about the rock type and magnesite. Descriptive statistics of the  $SiO_2\%$  and  $Fe_2O_3\%$  were presented in Table 1.

## **RESULTS AND DISCUSSION**

The evaluation of cutoff grade impurities for multiple ore deposits is significantly more complex than for a single mineral ore deposits. The most significant impurities of a magnesite ore deposits are the SiO<sub>2</sub>% and Fe<sub>2</sub>O<sub>3</sub>%. The calculation of magnesite tonnage rate, mean of SiO<sub>2</sub>% and mean of Fe<sub>2</sub>O<sub>3</sub>% involves the identification of cutoff SiO<sub>2</sub>% and cutoff Fe<sub>2</sub>O<sub>3</sub>%.

In this study, correlation coefficient was calculated by using equation 8. A value of correlation coefficient indicated that 88% of the  $\log Fe_2O_3$ % variability is explained by the linear regression analysis. On the other hand, there is close correlation between  $\log SiO_2$ % and  $\log Fe_2O_3$ % (Figure 1). Thus, we assume that these parameters are mutually dependent.

The magnesite tonnage rate, mean of SiO<sub>2</sub>% and mean of Fe<sub>2</sub>O<sub>3</sub>% estimates can be used in mine planning. In cutoff grade policy, mean of dependent variables may be estimated by bivariate model. Investigation in the  $T_c$ , mean of SiO<sub>2</sub>%, and mean of Fe<sub>2</sub>O<sub>3</sub>% with the Beylikova magnesite ore deposit may be determined by using bivariate lognormal distribution model. This model for the Beylikova magnesite ore deposit can be evaluation of dependent variables.

Considering that cutoff SiO<sub>2</sub>% and cutoff Fe<sub>2</sub>O<sub>3</sub>% was joint bivariate lognormal distribution model,  $T_{\rm c}$ , mean SiO<sub>2</sub>% and mean Fe<sub>2</sub>O<sub>3</sub>% of the ore deposit were calculated by using the equations 13 - 15. These calculations were graphed and presented in Figures 2 - 4. The Figure 2 shows that, cutoff SiO<sub>2</sub>% and Fe<sub>2</sub>O<sub>3</sub>% increases as the  $T_{\rm c}$  increases, but over 0.4 cutoff SiO<sub>2</sub>% not considerable variations is seen in  $T_{\rm c}$ . Thus, the cutoff Fe<sub>2</sub>O<sub>3</sub>% exceeds



Figure 2. Cutoff SiO<sub>2</sub>% versus T<sub>c.</sub>



Figure 3. Cutoff SiO<sub>2</sub>% versus mean SiO<sub>2</sub>%.

0.15%, not variations at  $T_{\rm c}$  is seen due to variations in cutoff SiO\_2%.

Figure 3 indicates that cutoff SiO<sub>2</sub>% and cutoff Fe<sub>2</sub>O<sub>3</sub>% increases as the mean SiO<sub>2</sub>% increases, but over 0.2 SiO<sub>2</sub>% not important variations are seen in mean SiO<sub>2</sub>%. In addition these, the cutoff Fe<sub>2</sub>O<sub>3</sub>% increases, mean SiO<sub>2</sub>% is seen due to increases in cutoff SiO<sub>2</sub>%. Similarly, cutoff SiO<sub>2</sub>% and cutoff Fe<sub>2</sub>O<sub>3</sub>% increases as the mean Fe<sub>2</sub>O<sub>3</sub>% increases, but over 0.2 SiO<sub>2</sub>% not considerable variations are seen in mean Fe<sub>2</sub>O<sub>3</sub>% (Figure 4). Thus, with mean SiO<sub>2</sub>% and mean Fe<sub>2</sub>O<sub>3</sub>% increases, the quality of the magnesite ore deposits are decreases.

# Conclusion

The one of the most significant impurities of a magnesite

ore deposits are the SiO<sub>2</sub>% and Fe<sub>2</sub>O<sub>3</sub>%. The determination of  $T_{\rm c}$ , mean of SiO<sub>2</sub>% and mean of Fe<sub>2</sub>O<sub>3</sub>% involves the identification of cutoff SiO<sub>2</sub>% and cutoff Fe<sub>2</sub>O<sub>3</sub>% are very important. In the ore deposit, as the cutoff impurity rates increase,  $T_{\rm c}$  of the deposit also increase. But over 0.4 cutoff SiO<sub>2</sub>% and exceeds 0.15% cutoff Fe<sub>2</sub>O<sub>3</sub>% aren't considerable variations in  $T_{\rm c}$ . In addition, cutoff SiO<sub>2</sub>% and mean SiO<sub>2</sub>% are increased. However, with mean Fe<sub>2</sub>O<sub>3</sub>% and mean SiO<sub>2</sub>% increase, the quality of the magnesite ore deposit is decreased.

This study shows that bivariate lognormal distribution model provide useful information for the cutoff impurities in helping them plan their ore deposits. These methods are believed to assist decision makers assessing cutoff impurities in order to improve the efficiently of mining



**Figure 4.** Cutoff SiO<sub>2</sub>% versus mean  $Fe_2O_3$ %.

planning.

# ACKNOWLEDGEMENT

This paper constitutes part of the PhD thesis of Suheyla Yerel.

#### REFERENCES

- Asad MWA (2005). Cutoff grade optimization algorithm with stockpiling option for open pit mining operations of two economic minerals. Int. J. Surf. Min. Reclamation Environ. 19: 176-187.
- Ataei M, Osanloo M (2003). Determination Of optimum Cutoff Grades Of Multiple Metal Deposits By Using The Golden Section Search Method. J. S. Afr. Inst. Mining and Metallurgy. 103: 493-499.
- Cetin E, Dowd PA (2002). The use of genetic algorithms for multiple cutoff grade optimization. Proceedings of the 32<sup>nd</sup> International Symposium on Application of Computers & Operations Research in the Mineral Industry, USA.
- Clark I (2001). Practical geostatistics, Geostokos, Scotland, pp. 50-119.
- Dagdelen K (1992). Cutoff grade optimization. Proceeding of the 23<sup>rd</sup> International Symposium on Application of Computers & Operation Research in Minerals Industries. pp. 157-165.
- Gozler MZ, Cevher F, Kucukayman A, Asutay H J (1997). Orta Sakarya ve Guneyinin Jeolojisi. MTA Report No. 9973, Ankara.
- Lane KF (1964) Choosing the optimum cut-off grade. Quarterly of the Colorado School of Mines. 59: 811-829.
- Orhan A, Seyrek E, Tosun H (2007). A probabilistic approach for earthquake hazard assessment of the province of Eskisehir, Turkey. Nat. Hazards Earth Syst. Sci. 7: 607-614.
- Osanloo M, Ataei M (2003). Using equivalent grade factors to find the optimum cut-off grades of multiple metal deposits, Miner. Eng. 16: 771-776.

- Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993). Frequency analysis of extreme events, In Handbook of Hydrology, Maidment, D.R. (ed.), McGraw-Hill, New York.
- Taylor HK (1972) General background theory of cut-off grades. Institution of Mining and Metallurgical Transactions. pp. A204-216.
- Uygucgil H, Yerel S, Konuk A (2007) Estimation of Liquefaction Potential using Geostatistics in Eskisehir. WSEAS Transactions of Systems. 6: 780-786.
- Yerel S (2008) Determination of cutoff grade decision variables in multivariate ore deposits,. Eskisehir Osmangazi University (Ph. D. Thesis), Eskisehir. pp. 69-140.
- Yue S (2002). The bivariate lognormal distribution for describing joint statistical properties of a multivariate storm event. Environmetrics 17: 811-819.