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In this paper we apply the improved Riccati equation mapping method to construct many families of
exact solutions of a nonlinear partial differential equation involving parameters of a special interest in
nanobiosciences and biophysics which describe a model of microtubules as nonlinear RLC
transmission lines. As results, we can successfully recover the previously known results that have been
found using other methods. This method is straightforward and concise, and it can be applied to other
nonlinear PDEs in mathematical physics. Comparison between our new results and the well-known
results are given. Some comments on the well-known results are also presented at the end of this
article.
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INTRODUCTION

In recent years, the exact traveling wave solutions for
nonlinear partial differential equations (PDEs) has been
investigated by many authors who are interested in non
linear physical phenomena. Many powerful methods have
been presented, such as the inverse scattering transform
method (Ablowitz and Clarkson, 1991), the Hirota’s
bilinear method (Hirota, 1971), the Painleve expansion

method (Weiss et al., 1983; Kudryashov, 1988, 1990,
1991), the Backlund truncated method (Miura, 1978;
Rogers and Shadwick, 1982), the exp-function method
(He and Wu, 2006; Yusufoglu, 2008; Zhang, 2008; Bekir,
2009, 2010; Aslan, 2011), the tanh-function method
(Abdou, 2007; Fan, 2000; Zhang and Xia, 2008;
Yusufoglu and Bekir, 2008), the Jacobi elliptic function



method (Chen and Wang, 2005; Liu et al., 2001; Lu,
2005), the (G'/G )-expansion method (Wang et al.,
2008; Zhang et al.,, 2008; Zayed, 2009, 2010; Bekir,
2008; Ayhan and Bekir, 2012, Kudryashov, 2010a,b;
Aslan, 2010, 2011, 2012a,b), the generalized Riccati
equation mapping method (Zhu 2008; Zayed and Arnous,
2013, Zayed et al., 2013), and so on.

In the present paper, we shall use the improved Riccati
equation mapping method to find the exact solutions of a
nonlinear PDE of nanobiosciences. The main idea of this
method is that the traveling wave solutions of nonlinear
equations can be expressed by polynomials in g, where
Q=Q(¢) satisfies the generalized Riccati equation
Q' =r+ pQ+qQ? where &=kx+at, where I, p,K,® and
g are constants. The degree of this polynomial can be
determined by considering the homogeneous balance
between the highest order derivatives and the nonlinear
terms appearing in the given nonlinear equation, the
coefficients of this polynomial can obtained by solving a
set of algebraic equations resulted from the process of
using the proposed method.

The objective of this paper is to apply the improved
Riccati equation mapping method for finding many
families of exact traveling wave solutions of the following
nonlinear PDE of special interest in nanobiosciences,
namely, the transmission line models for microtubules as
nonlinear RLC transmission line (Sekulic et al., 2011a,
Sataric et al., 2010):

RC,Lu, +Lu, +2RC,ouu, —RC U, =0 (1)

xxt

where R, =10°Q and R, =7x10°Q stand for longitudinal

and transversal component of
Elementary rings and parameter

resistance of an
5(5<1) describes

nonlinearity of ER capacitor in MT. Here L=8x10"m
while C, =1.8x10™°F is the total maximal capacitance of

the ER. The physical details of the derivation of Equation
(1) can be elaborated in Sataric et al. (2010). For further
references about electrical models of microtubules, see
for example llic et al. (2009), Sekulic et al. (2011b, 2012),
Sataric et al. (2009); Freedman et al. (2010), and Sekulic
and Sataric (2012). Recently, Equation (1) has been
discussed in (Sekulic et al. 2011a) by using the modified
extended tanh-function method, where its exact solutions
have been found.

The rest of this paper can be organized as follows: First
is description of the improved generalized Riccati
equation method. Many families of exact traveling wave
solutions for Equation (1) are next obtained. This is
followed by illustrations on physical explanations for
some obtained results. Thereafter, conclusions and
comments on Sekulic et al. (2011a) as well as
comparison between our new results and the well-known
results obtained in Sekulic et al. (2011a) are investigated.
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Description of the improved generalized Riccati
equation mapping method

We suppose that a nonlinear PDE is in the following from:

P(u,u,u,,u,,Ug,..)=0 ()

XX 1
where u=u(x,t)is an unknown function , P is a
polynomial in u=u(x,t) and its partial derivatives in
which the highest order derivatives and nonlinear terms
are involved. Let us now give the main steps for solving
Equation (2.1) using the improved Riccati equation
mapping method (Zhu 2008; Zayed and Arnous, 2013;
Zayed et al, 2013):

Step 1: We look for its traveling wave solution in the form

u(x,t)=u(é), <&=kx+at (3)

where K,® are constants. Substituting (3) into Equation
(2) gives the nonlinear ODE for y(&) as follows:

H@u,u'u".)=0 (4)

where H is a polynomial in U(&) and its total derivatives

[ATLATLS ' du " d2U
u,u,u”,... suchthat u'=—.,u =y
dg dé

Step 2: We suppose that the solution of the ODE (4) can
be expressed as follows:

m

u@)=> aQ'«), (5)

I=—m

where a,(i=0,+1,£2,..,£m)are constants to be
determined later such as a_ =0 ora =0 and Q=Q(¢)

is the solution of generalized Riccati equation
Q'=r+pQ+0qQ’ (6)
where r, p and q are constants, such that #0.

Step 3: We determine the positive integer m in (5) by
balancing the nonlinear terms and the highest order

derivatives of U(&) in Equation (4).

Step 4: Substituting (5) and along with Equation (6) into
Equation (4) and then equating all the coefficients of

Q'(i=0,£1,+2,...,+m) to zero yield a system of
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algebraic equations which can be solved by using the
Maple or Mathematica to find the values of the constants

a,(-m,..,m) and K,®.

Step 5: It is well-known (Zhu 2008; Zayed and Arnous,
2013; Zayed et al., 2013) that Equation (6) has many
families of solutions as follows:

Type 1: When A=p®-4qr>0 and pq=0 or qr=0
we have

(&) =—%[p+JZ tanh(%f)],

@, (£) =—%[p+JK coth(%g)],

®:(6) = ‘%[ p+ VA (tanh(vAE) xisech(VAE)], iV-1

,(8) = —2—1q[ p+ VA (coth(+/AE)  csch(VAZ))],

@, () = —%[Zp +JZ(tanh(£§) icoth(ﬁg»l.

1 W/A(A +B?2) —AA cosh(v/A&)
CI)6(5):2_[ ],
q Asinh(v/A&) +B
o)=L _JABZ-A )+AJZcosh(JX§)]

™ P Asinh(v/A&) + B ’

where A and B are two non-zero real constants satisfying
BZ-A%0,

Jr-cc-sh[ﬁ-f}
(&) = = :
\Esiﬂhiﬁ -f}—PW'-‘JE[ﬁ:}

Fr

Ny

=2rsinh(—4)

o (F)= :
psirmc£:>—£cushc£:}

].?'-:I}Sh(g.f} ‘J_
‘:b.-. f = = . ;. _ _1
w8 Asinh(+fAZ£) — p cosh(+/AZ) T iyA
Jrsﬁlh(é.f}
®, (£ = - = :
—psinh(~/A£)+ /A cosh(vaZ) x4/
ar Siﬂhli% £)co shlig £)

&, (&)=

-2p s,mh(‘E ._f}cu}sh[% £)+2facosh? [ﬁ;}— Ny

Type 2: When A=p°—4qr<0 and pg=0 or

gr #0 we have

() =§[—p +-A tan(@af)],

1 _
(D14(§) = _E[p + MCOt(%g)],
4 (&) = %[—p + VA (tan(vV=AE) £ sec(V_AE))],

D,(&) = —%{p +=A (Cot(V=AE) £ csc(V=AE))],

D, (&)= %[—2 p+v-A (tan(E &)- cot(E )
o (g)zi[_FH_i‘/_A(AZ B?) - Ax/_cos(x/_cf)]
' 2q Asm(\/_ AE)+B
® (5)_i[_p +-A(A? - Ax/_sm(«/_é)
B 2q A5|n(\/_§)+B

where A and B are two non-zero real constants satisfying
A?-B*>0,

2r cos(—'_A &)
®20(§):_ (_—A 2 /_—A )
V-A sin(T E+p cos(T &)
2r sin(gé)
q’m(f) = \/—A 2 \/—A B
-p sin(%é) + x/zcos(% &)
2r cos(E &)
chz (5) == A 2 )
V=Asin(V=A&E) + p cos(v-AE) £/-A
2r sm(£ &)
TR v S ary cos(J_ AE)£N-A
4r sin(£ &) cos(£ &)
CD24(§) = 4 4
2. A Nary

-2p sm(T &) cos(T &)+ 2+/-A cos? (T &) —v-A

Type 3: When r=0and pg#0 we have

_pd
chs = . !
(&)= J1d  cosh(pe) —sinh(p2)]
o (£) - _PIEOsh(pE) +sinh(pE)]

q[d + cosh(p&) +sinh(pé)]’



where d is an arbitrary constant.

Type 4: When r=p=0and q=0 we have

-1
gé+c¢,

27(5) =

where ¢ is an arbitrary constant.

Step 6: Substituting the well known solutions of Equation
(6) listed above in Step 5 into (5) we have many families
of exact solutions of Equation (2).

MANY FAMILIES OF EXACT TRAVELING WAVE
SOLUTIONS FOR EQUATION (1)

Here we apply the proposed improved generalized
Riccati equation mapping method to find many families of
exact traveling wave solutions of Equation (1). To the end
we use the wave transformation

1 ¢

ux,t)=u(é), <&=—x--t, (7)
L =

where 7=RC,=132x10°, and c¢ is the

dimensionless velocity of the wave, to reduce Equation
(1) into the following ODE:

u”—gu'+£u2—yu=0 (8)
c 2

r RS R
RZCO RZ RZ

where ¢ =

By balancing u"with u?, we have m=2. Hence the
formal solution of Equation (8) takes the form:

u()=a,Q*+aQ+a, +a Q" +a,Q” (9)

where a,, a,,8,, a_;,a_, are constants to be determined,

suchthat a,#0 or a,#0.

Inserting (9) with the aid of Equation (6) into Equation
(8) we get the following system of algebraic equations:

Q*: 6a2q2+§a§:0,
Q™: 6a_,r? +§afz =0,
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Q® : 10a,pq +2aq? —Z(j:—aaz + paja, =0,

Q7° 10a_,pr +2a ,r* + 2::—0[&_2 +faja, =0,

Q? :  8aqr+3apq +4a,p’ —%(Zazp +alq)+§(a12 +2a,,)-ya, =0,

Q7 : 8a,gr+3a,pr+4a,p’ +%(2a,zp +a,r) +§(af1 +2aa,)-ya, =0,

Q : 6a,pr+2a.gr +a1p2—3(2a2r +a,p)+paa, +aa)—-ra =0,
Q™*': 6a,pg-+2agr+a,p +7(2a,2q +a,p)+paa,+aa,)—-ya, =0,
Q° :  2a,r’+apr+a,pg+2a,9’ —C—(alr —a,lq)+5(a0 +2a_,a, +2a,a,)—ya, =0.

By solving these algebraic equations with the aid of
Maple or Mathematica we have the following cases:

Casel
1% -p)
2 10pyc 5
r=—— —2 A = ,
p=p,q=a, 4q(y 6p”), a = ﬁ,(p &= F;
=_lzqz C =g\/§, a,=a,=0
B S\y
Case 2

&+ p)(r-6p)

1 1 10pyc 5
=p,q=q, r=—— —62,=——62—73,7:
p=p.g=q,r 24q(}’ p)a"Zﬂ(p a+7)al 2
_(r-6p° a6
2T By |C—5 }/'al_az_o
Case 3
D=0,q=q I’——— an :12q0( _ _—12q2

T AT e T e T g

7/ a |6

a,= ,C= :
76850 5\y

Exact traveling wave solutions of Equation (1) for
Case 1

By using the case 1 and according to the values of
solutions of type 1 in the proposed method, we obtain the
following exact traveling wave solutions for Equation (1):

d
ﬂ h( %)

Sc_Say afey
u(x,t) = 2/3+2 P 2 5x) 5 5) >

z(xt)—37 2p[57° ﬁ "‘f (f H-L Z(f 5
20 200
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{tanh(\f &) +i sech(\f 5)}
L [Z5ti sechi [Z
2’B{tanh(\/; E)xi sech(\/; é)},

U, 1) =L pp - 32y & {coth(\ff:)ﬂ Cosch(\fﬁ)}
28 ""2a 54 54
_&[coth(\/zg)ii cosch(\/zé)} ,

3y 5yc _ 6a _
us(x,t) = 72/; p[fﬂ 5jc 75[10.} { h(,/ §)+00th(,1 5)}
_r /L }L
8ﬂ[tanh( % &) £ coth( % 5)} ,

2 2 _ Y | [ 2 2 _ Y |
" t),;’l E%_Gﬁ a\/—;/ (\/A +B Acosh(\ﬁcf) _Zl WA*+B Acosh(\fscf) |
b pra T S (Asinh(\/%f)JrB) & (Asinh(\/%g)JrB)
2_p2 4 1 I 2_p2 4 1
" t),;)’l B[SLC_@] o y (VB A +Aoosh(\/;§) _ZL WB*-A +Aoosh(\/;§) ’
B P (Asinh(\/%cfﬂB) & (Asinh(\/%cfﬂB)

where A and B are two non-zero real constants satisfying
B*-A”>0,

(—p+ﬁ)cosh(ﬁ B)
Us(x t)——[ -2p*+ P s 24‘“

(Jismh(\/ii) \/7005“(\/75))
48q2rzcosh2(\/7§)
[\/75|nh(\/7§) \/7005h(\/7§)]

(p+Zysinh([2.)
S = 2p? + 1DIC AN

3 s
¢ <psinh(\/;§)—£cosh< 7.9
202 cop20 |V
) 489 °r<sinh (\/;5) |
inn( [ 2 &) - 2 cosh( [Z-
ﬁ[psmh(\/;é) \fs cosh(J;aJ

_P_E‘u-asl'_{ J_ 5 |
{Jam:‘fz-- _m;(z. Jf
48 ;r;-:ast;{\(:g:.
- 24 .
o st [f - post [ =i [

LN "4:.71‘
o {“"'?[‘ EP

a, . 14
<fp+§)smh<&§)
H V4 V4 V4 V4
- psnnh(\/gé)f\fgcosh(\fgai\/g)
48qzrzsinhz(\/zg)
[ psmh(\/75) [cosh([.ﬁﬁ(]

24qr ( p+7)5|nh(\/7§)
(- psmh(\/7§)+\fcosh(\/7§))

48q°%r?sinh? (\/\;5)

ﬁ[—psinh(\/%fh\/%cosh(\/z—:f)]
1 a |6t
—X -, [——.
L 5Vyr

Remark 1. If y=6p?, then
Consequently we have

2, 10pyc 24qr
U, (X, t)—?[ 2p°+ 32 +r]+ 7

10
Uy (X, t),ﬁ[ 2p% + 3‘3‘%

where E=

r=0 and

_ 2
:12;2, 1[2;4 % a,-a-a,-

According to the values of the solutions of type 3 in
Sec.2, we obtain the following exact traveling wave
solutions for Equation (1):

ul3()(,,[):12p2_12q2( pd__ ]
B B \qld +cosh(ps)—sinh(ps)]
0 (x t):12p2_ 12q2( plcosh(p&) +sinh (p&)] ]2
s B q[d +cosh(pg) —sinh(p<)]

where gzlx _eat
L 5pr

Exact traveling wave solutions of Equation (1) for
case 2.

By using the case 2 and according to the values of
solutions of type 1 in the proposed method, we obtain the
following exact traveling wave solutions for Equation (1):

3 (r—6 I:p—_
S . IR nﬂﬁr
_(y-6p°Y

) o]




1 zlopyc (7-6p")(p+2) p - T
Uz(X,t)=?[—6P - +3y7]- 7 {p+\/;coth(\/;§)}

_(r-6p*)’
125 {p+\/7coth(\/7§)}

1 10pyc (776p2>(p+§) o - T
us(x,t):—ﬂ[—epz— +3y]- {pﬁ-\P[tanh(\]gg)ilsech(\/g;)}

b 152) {p+\/7[tanh(\/7§)+|sech(\/7§)}

(-6p)(p+-) -
U (x.t) :i[,@z,l‘)zﬁ +3y]- 5 5 {p +\/%[coth(\]%§)icsch(\]%§)}

_(r-6p*)° ¥ ¥ 7 al
125 {er\fG[coth(\/;;)icsch(\Eé)}

sl =58P 13

b= 6" [2p+\/7 f[tanh(f §)+coth(\/7 5)}

(7=6p*)p+ )

u6<x,t)=§[ 6p* - 1207% 1 3]
Asinh(\/%§)+B

\P[\/AZ +B?-A cosh(\/%g)] !

_(r-6p*’ ps 6
12

A sinh(\/%é) +B

(y—epZ)(p%) .

1 10
(60 =567 O 437+

A sinh(\/%g) +B

_(r-6p%*| V6
128

\ﬁ[x/B Z_AZ-A cosh(\/%f)] 7
p

A sinh(\/% £)+B

where A and B are two non-zero real constants satisfying
BZ-A%0,

5.0 m ol - 1 13

R
2.8 =67

2y -6p%)(p + =) N
y]—%{zmﬁ ;[tanh(\/% 5)icoth(\/g 5)}

\/%[\/AZ +B2-A cosh(\/%f)] !
p+

\/%[«/BZ -A?-A COSh(\/%f)] 7

Zayed et al. 243

(7,6,,2)@%)[ cosh(f

{(smh(\/ig) pcosh(\/7§)+l\/7
/4
=607 coshly 54 &)
192589%r% | [y .. ¥ 7 Sy
\/%smh(\/gf)— p cosh(\/%f)ir i \/%

(7,6,32)@&)[ sinh([ 2 &)
)= 160" T 3]s S 2
a H Y V4 V4 V4
{—psmh(\géh\/gcosh(\/;f)i\/%
(7 ~6p%)" Sy 5.9
aepattt| o T \ﬁ \ﬁ ﬁ
{ psmh(\/;§)+ 6cosh( 65)1 6

(y—epz)(p&)[
uu(x,t):i[%pz—mzyC +3y]+ =

- 1000
Zﬂ A A

. Va B
smh(\/;g)
4qr B : 4 4 14
{—psmh(\/z—zg)ﬂ]%cosh(\/z—zg)
(7 ~6p*)° S‘”h(\/zzﬁ
T 1028977 oy \ﬁ \/Z
psmh(\/;f)Jr 6cosh( 245)

where & —%x _ajrt

67

Exact traveling wave solutions of Equation (1) for
Case 3

By using the case 3 and according to the values of
solutions of type 1 in the proposed method, we obtain the
following exact traveling wave solutions for Equation (1):

__r e
oth( 245) 32ﬂCOth( 24 9
_57 a«/ 12qr ,
u,(x,t) ( §)+ coth?( .§ 20ﬂc

20 [V
“ap s C 5)—@ h(\/;‘é)
ua(x,t)_jz af[tanh([ﬁ)ﬂsech([ﬁ)] 12qr[tanh(\/7§)+|sech(\/7§)]
20ﬁ [tanh(\f.f)ﬂsech(\f.f)] 3Zﬂ(tanh(\f§)+|sech(\f§)]

U (x t) = i; “r[coth(\f §)+csch(\f 5)} lzqr[coth(\f §)+csch(\/7 g)]
ZOﬁ (coth([.ﬁ)ﬂsch([é)} 32ﬁ[coth(\/7§)+csch(\/7§)]
ug(x, t)————

25 5 ( h(\/7§)+coth(\/7§)j [tanh(\/ig)Jrcoth(\/i{)]
10ﬂc [tanh(\/ig)ﬂoth(\/ié)] [tanh(\/ié)ﬂoth(\/i.f)}

5y m/— 12qr aJ—
uy(x,t)= PR h( §)+ i tanh? ( §)+ 20/30
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5 a\/— JA?4+B? - Acosh(\ff) 120 VA?+B? - Acosh(\ff)
45" 5pc Asinh(2\/—qr&)+B B Asmh(\fg)ua

JA?+B? - Acosh(\/7§)
32'8 Asmh(\/7§)+B

Ug(x t)=—"

2 2 V4 i -
a\/@ VA?*+B —Acosh(\/gg)

208

A sinh(\/% £)+B

i, t),57 a\/—( BZ-A? +Acosh(\f§) 12qr VB?-A? +Acosh(\f§)

4p 5ﬂ°t A5|nh(\f§)+B p Asmh(\fé‘HB
a5y \/BZ—A2+Acosh(\/%§) «/BZ—A2+Acosh(\gé)

20/ Asinh(\/%§)+B 825 Asinh(\/%éhB

where A and B are two non-zero real constants satisfying
BZ-A%0,

ug(x, t)fs—y—a‘/—coth(

7 oy T ann |2
54c ZOqﬂc \/;tanh( 24 §)+192,Hq tanh (\/;";)

§)+ coth ( §)
oo B oo s oo f
Ug(x,t) = a5 tanh(. §)+ tanh ( 2 <§) ZOq,Uc coth( §)+192/1q coth?(. &)

p -
ol ) = L 2o (“’S“(( ) Ao ww( D1 afey (cmha/z:z:f)
48  5p4c Lmnh([ﬁ)ﬂ 5|nh(\/7§)+| LSinh(Jgﬁ)ti
cosh(\/i.»;)
smh(\/%g)i,

5y a\/— smh(\/ig) 12qr smh(\/ig) a\/— sinh(\/Tf)

48 S coh(\fg)ﬂ cosh(\fg)ﬂ 20/ cosh([; +i
Slnh(\/7§

32ﬂ cosh \/7§)+|

uy(x,t)=—=

ulz(xvt)fi

48 54

cosh(\/ig) 1
H /4

7{ smh(\/z—:.f)
318 ¥

cosh(\/;g)—l

cosh(\/i{f cosh(\]z—zg) -1

where, §=%X -——

Remark 2

We have noted in the two cases 1, 2that A -7 while
6

5y a\/—{ smh(\/ig) J 12[”{ smh(\/i{f ] a\/—{ Sinh(\/g%,f) }1

in case 3 we have ,_7 _,. This yields that all the
24

solutions of type 2 in the proposed method cannot be
considered in this paper. Therefore, Equation (1) has no
trigonometric function solutions.

PHYSICAL EXPLANATIONS FOR SOME OBTAINED
RESULTS

Here, we will present some graphs for the obtained
solutions of Equation (1) by selecting some special
values of the parameters in the exact solutions using the
mathematical software Maple, which can be shown below
in Figures 1 to 6. From these explicit solutions, we see

that u,(x,t) in both cases 1, 2 are kink shaped soliton
solutions while U, (X ,t) in these two cases are singular
kink shaped soliton solutions. The two solutions U, (X ,t)

and U,(X,t) in case 3 are kink-singular shaped soliton

solutions. The graphical representations of these

solutions are shown in the following figures:

CONCLUSIONS AND COMMENTS

Here we give some comments on the solutions (22) to
(27) of the second model of microtubules (16) in Sekulic
et al. (2011a). We have found that some of these
solutions are incorrect. Thus, we will correct these
solutions and then compare between some of our results
in the present article and the corrected solutions as
follows:

1) There is a minor error in Equation (18) of Sekulic et al.
(2011a). The correction is to replace g by £ in Equation
2

(18).

2) The results of Case | in Sekulic et al. (2011a) do not
satisfy the algebraic Equation (21). After a careful
revision, we have shown that the correction of this case
should be in the form:

3y ba_ —6 a |6 10)
e - =2c=2 2 b=b,=0 (
24’a0 ﬂ a1 ﬂ 2 ﬂ’c 5\/;’ 1 2

It is easy to see that the corrected values (10) satisfy the
algebraic Equation (21) of Sekulic et al. (2011a).

Hence with replacing g by B in (10), the result (22) of
2

Sekulic et al. (2011a) should be rewritten in the corrected
form:

(11)
W)= ﬁ,lia ot [2 lx,z\ﬁt, | [ ix,z\PL
28 55 24\L" "5V6 7)) 25 24\L” 5V6 ¢
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Figure 1. The plot of U,(X,t)of case 1,
p=19=1a=104.76,  =142.86,y =142.86.

where

where

Figure 2. The plot of
p=19=1a=104.76, f =142.86,y =142.86.

u,(x,t)of case 1,

On comparing the corrected result (11) with our result
u,(x,t) of “Exact traveling wave solutions of Equation

(1) for case 17, we conclude that they are equivalent if
p=0andq=1.

3) The results of Case Il in Sekulic et al. (2011a) do not
satisfy the algebraic Equation (21) too. After a careful
revision, we have shown that the correction of this case
should be in the form:

6 -6 -6
b="La=", %=%,%=7,C=%\E' b,=b, =0 (12)

Figure 3. The plot of u,(x,t)of case 2, where

p=10=1a=104.76, 3 =142.86, y = 142.86.

where

Figure 4. The plot of
p=1q=1a=104.76, B =142.86, y = 142.86.

u,(x,t) of case 2,

It is easy to see that the values of (12) satisfy the
algebraic Equation (21) of Sekulic et al. (2011a). From
=8¢ which is
252
y=2i_ 0. Therefore,
RZ

Case 2 in Sekulic et al. (2011a) should be rejected.

the values of (12) we deduce that

negative. This contradicts that

4) The results of Case lll in Sekulic et al. (2011a) do not
satisfy the algebraic Equation (21) too. After a careful
revision, we have shown that the correction of this case
should be in the form:
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Figure 5. The plot of u,(x,t)of case 3, where

p=0,q=1a=10476, 5 =142.86,y = 142.86.

U,(X,t)of case 3,
p=0,0=1a=104.76, f =142.86,y =142.86.

Figure 6. The plot of where

2
bZ_L’aozgl’ b1= ay ’bzzi’C:g 9’ a:l:azzo (13)
24" ap 205’2 968 5\y

It is easy to see that the corrected values of (13) satisfy
the algebraic Equation (21) of Sekulic et al. (2011a).
Hence with replacing g by £ in (13), the result (24) of
2

(Sekulic et al, 2011a) should be rewritten in the corrected
form:

ut) = 24 ol [ |2 B U2 ) [ L@ B L
24 104\ y 24( L 5\y ¢ 2B 24( L 5\y =

(14)

On comparing the corrected result (14) with our result
u,(x,t) of ‘Exact traveling wave solutions of Equation

(1) for case 2’, we conclude that they are equivalent if
p=0and q=1.

5) The results of Case IV of Sekulic et al. (2011a) still do
not satisfy the algebraic Equation (21). After a careful
revision, we have shown that the correction of this case
should be in the form:

Y o_at o e . _ 7 (15)
b ¢ \/?’a1 3 =0.b, 96ﬂ'b1 20ﬁc’a° 48

It is easy to see that the corrected values of (15) satisfy
the algebraic Equation (21) of Sekulic et al. (2011a).

From the values of Equation (15) we deduce that },zi“;
25
which is negative. This contradicts that y:% >0-
2
Therefore, the case IV in Sekulic et al. (2011a) should be
rejected.

6) The results of Case V in Sekulic et al. (2011a) also do
not satisfy the algebraic Equation (21). After a careful
revision, we have shown that the correction of this case
should be

VY oy a6 _6a 6 1p)
=% % gp bl‘sozt’bz‘lssﬁﬂ”%ﬂ’a“szt‘a” ;

It is easy to see that the corrected values of (16) satisfy
the algebraic Equation (21) of Sekulic et al. (2011a).

Hence with replacing g by B in Equation (13), the
2

result (26) of Sekulic et al. (2011a) should be rewritten in
the corrected form:

u(x t)zi_lzl 7 tanh l(lx e §t,) _ 7 tanh? l(lx @ §t,)
Y748 5\ 96 %L 5\yc) 88 %L 5\yz
e %Coth[ I \/Ei)j,mez[ P \/55]

0\ y 9% L 5\yc) 84 9% L 5\yr

(17)

On comparing the corrected result (17) with our result
u,(x,t) of ‘Exact traveling wave solutions of Equation

(1) for Case 3’, we conclude that they are equivalent if
p=0 and q=1.

7) The results of case VI in Sekulic et al. (2011a) do not



also satisfy Equation (21). After a careful revision, we
have shown that the correction of this case should be in
the form:

_6a 3 (18)

7 a -6 v’ ay 6
5/¢ % 8y

b==—,¢c==|—, b,=——"—,b=——,3, ,
15364 804¢c Y4

It is easy to see that the corrected values of (18) satisfy
the algebraic Equation (21) of Sekulic et al. (2011a).

From the values of Equation (18) we deduce that },:i“:
2

which is negative. This contradicts that 7/:%>0'
2

Therefore, the case VI in Sekulic et al. (2011) should be
rejected.

From these discussions we deduce that our results in the
present article are new and recover the well-known
results obtained in Sekulic et al. (2011a) after its
corrections obtained above.
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