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In this paper we apply the improved Riccati equation mapping method to construct many families of 
exact solutions of a nonlinear partial differential equation involving parameters of a special interest in 
nanobiosciences and biophysics which describe a model of microtubules as nonlinear RLC 
transmission lines. As results, we can successfully recover the previously known results that have been 
found using other methods. This method is straightforward and concise, and it can be applied to other 
nonlinear PDEs in mathematical physics. Comparison between our new results and the well-known 
results are given. Some comments on the well-known results are also presented at the end of this 
article. 
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INTRODUCTION 
 
In recent years, the exact traveling wave solutions for 
nonlinear partial differential equations (PDEs) has been 
investigated by many authors who are interested in non 
linear physical phenomena. Many powerful methods have 
been presented, such as the inverse scattering transform 
method (Ablowitz and Clarkson, 1991), the Hirota’s 
bilinear method  (Hirota,  1971),  the  Painleve  expansion 

method (Weiss et al., 1983; Kudryashov, 1988, 1990, 
1991), the Backlund truncated method (Miura, 1978; 
Rogers and Shadwick, 1982), the exp-function method 
(He and Wu, 2006; Yusufoglu, 2008; Zhang, 2008; Bekir, 
2009, 2010; Aslan, 2011), the tanh-function method 
(Abdou, 2007; Fan, 2000; Zhang and Xia, 2008; 
Yusufoglu  and  Bekir,  2008),  the  Jacobi elliptic function
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method (Chen and Wang, 2005; Liu et al., 2001; Lu, 
2005), the ( /G G )-expansion method (Wang et al., 
2008; Zhang et al., 2008; Zayed, 2009, 2010; Bekir,  
2008; Ayhan and Bekir, 2012, Kudryashov, 2010a,b; 
Aslan, 2010, 2011, 2012a,b), the generalized Riccati 
equation mapping method (Zhu 2008; Zayed and Arnous, 
2013, Zayed et al., 2013), and so on. 

In the present paper, we shall use the improved Riccati 
equation mapping method to find the exact solutions of a 
nonlinear PDE of nanobiosciences. The main idea of this 
method is that the traveling wave solutions of nonlinear 
equations can be expressed by polynomials in Q , where 

( )Q Q   satisfies the generalized Riccati equation 
2Q r pQ qQ     where kx t   , where , , ,r p k   and 

q are constants. The degree of this polynomial can be 
determined by considering the homogeneous balance 
between the highest order derivatives and the nonlinear 
terms appearing in the given nonlinear equation, the 
coefficients of this polynomial can obtained by solving a 
set of algebraic equations resulted from the process of 
using the proposed method.  

The objective of this paper is to apply the improved 
Riccati equation mapping method for finding many 
families of exact traveling wave solutions of the following 
nonlinear PDE of special interest in nanobiosciences, 
namely, the transmission line models for microtubules as 
nonlinear RLC transmission line (Sekulic et al., 2011a, 
Sataric et al., 2010): 
 

2 2
2 0 1 0 1 02 0xxt xx t tR C L u L u R C uu R C u     (1) 

 

where 9
1 10R    and 6

2 7 10R     stand for longitudinal 

and transversal component of resistance of an 
Elementary rings and parameter ( 1)    describes 

nonlinearity of ER capacitor in MT. Here 98 10L m   
while 15

0 1.8 10C F   is the total maximal capacitance of 

the ER. The physical details of the derivation of Equation 
(1) can be elaborated in Sataric et al. (2010). For further 
references about electrical models of microtubules, see 
for example Ilic et al. (2009), Sekulic et al. (2011b, 2012), 
Sataric et al. (2009); Freedman et al. (2010), and Sekulic 
and Sataric (2012). Recently, Equation (1) has been 
discussed in (Sekulic et al. 2011a) by using the modified 
extended tanh-function method, where its exact solutions 
have been found. 

The rest of this paper can be organized as follows: First 
is description of the improved generalized Riccati 
equation method. Many families of exact traveling wave 
solutions for Equation (1) are next obtained. This is 
followed by illustrations on physical explanations for 
some obtained results. Thereafter, conclusions and 
comments on Sekulic et al. (2011a) as well as 
comparison between our new results and the well-known  
results obtained in Sekulic et al. (2011a) are investigated. 
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Description of the improved generalized Riccati 
equation mapping method 
 
We suppose that a nonlinear PDE is in the following from: 
 

( , , , , ,...)x t xx ttP u u u u u o
                                         

 (2) 

 
where ( , )u u x t is an unknown function , P is a 

polynomial in ( , )u u x t  and its partial derivatives in 

which the highest order derivatives and nonlinear terms 
are involved. Let us now give the main steps for solving 
Equation (2.1) using the improved Riccati equation 
mapping method (Zhu 2008; Zayed and Arnous, 2013; 
Zayed et al, 2013): 
 
Step 1: We look for its traveling wave solution in the form 
 

( , ) ( ),u x t u kx t                                       (3) 

 
where ,k   are constants. Substituting (3) into Equation 

(2) gives the nonlinear ODE for ( )u   as follows: 

 
( , , ,...) 0H u u u                                                         (4) 

 
where H is a polynomial in ( )u   and its total derivatives 

, , ,...u u u    such that 
2

2
, ,....

du d u
u u

d d 
   . 

 
Step 2: We suppose that the solution of the ODE (4) can 
be expressed as follows: 
 

( ) ( ) ,
m

i
i

i m

u a Q 


                                              (5) 

 
where ( 0, 1, 2,..., )ia i m    are constants to be 

determined later such as 0ma   or 0ma   and ( )Q Q   
is the solution of generalized Riccati equation 
 

2Q r pQ qQ                                                            (6) 

 
where r, p and q are constants, such that 0q  . 

 
Step 3: We determine the positive integer m in (5) by 
balancing the nonlinear terms and the highest order 
derivatives of ( )u   in Equation (4). 

 
Step 4: Substituting (5) and along with Equation (6) into 
Equation (4) and then equating all the coefficients of 

( 0, 1, 2,..., )iQ i m       to   zero   yield   a  system  of 
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algebraic equations which can be solved by using the 
Maple or Mathematica to find the values of the constants 

( ,..., )ia m m  and ,k  . 

 
Step 5: It is well-known (Zhu 2008; Zayed and Arnous, 
2013; Zayed et al., 2013) that Equation (6) has many 
families of solutions as follows: 
 
Type 1: When 2 4 0p qr     and 0pq   or 0qr   

we have 
 

1

2

3

4

1
( ) [ tanh( )],

2 2

1
( ) [ coth( )],

2 2

1
( ) [ (tanh( ) sech( ))], 1

2

1
( ) [ (coth( ) csch( ))],

2

p
q

p
q

p i i
q

p
q

 

 

  

  


    


    

        

       
 

5

2 2

6

1
( ) [2 (tanh( ) coth( ))],

4 4 4

( ) cosh( )1
( ) [ ],

2 sinh( )

p
q

A B A
p

q A B

  






 
     

    
   

 

 

2 2

7

( ) cosh( )1
( ) [ ],

2 sinh( )

B A A
p

q A B





    

   
   

 
where A and B are two non-zero real constants satisfying 
B2-A2>0, 
 

 

 
 
 
 

Type 2: When 2 4 0p qr     and 0pq   or 

0qr   we have 

 

13

1
( ) [ tan( )],

2 2
p

q
 

      

14

1
( ) [ cot( )],

2 2
p

q
 

      

15

16

1
( ) [ (tan( ) sec( ))],

2

1
( ) [ (cot( ) csc( ))],

2

p
q

p
q

  

  

       

       

 

17

2 2

18

2 2

19

1
( ) [ 2 (tan( ) cot( ))],

4 4 4

( ) cos( )1
( ) [ ],

2 sin( )

( ) sin( )1
( ) [ ],

2 sin( )

p
q

A B A
p

q A B

A B A
p

q A B

  











 
     

     
   

 

     
   

   
 
where A and B are two non-zero real constants satisfying 
A2-B2>0, 
 

20

2 cos( )
2( ) ,

sin( ) cos( )
2 2

r

p




 



  
 

 

 

21

22

23

24
2

2 sin( )
2( ) ,

sin( ) cos( )
2 2

2 cos( )
2( ) ,

sin( ) cos( )

2 sin( )
2( ) ,

sin( ) cos( )

4 sin( ) cos( )
4 4( ) ,

2 sin( )cos( ) 2 cos ( )
4 4 2

r

p

r

p

r

p

r

p




 




 




 

 


  



 
 

  



  
     



 
      

 

 
  

    
 

 

Type 3: When 0 0r and pq   we have 
 

 
25

26

( ) ,
[ cosh( ) sinh( )]

[cosh( ) sinh( )]
( ) ,

[ cosh( ) sinh( )]

pd

q d p p

p p p

q d p p


 
 
 


 

 


  
   



 
 

 
 
 
 
where d is an arbitrary constant. 
 
Type 4: When 0 0r p and q    we have 

 

27
1

1
( )

q c





 


 , 

 
where c1 is an arbitrary constant. 
 
Step 6: Substituting the well known solutions of Equation 
(6) listed above in Step 5 into (5) we have many families 
of exact solutions of Equation (2). 
 
 
MANY FAMILIES OF EXACT TRAVELING WAVE 
SOLUTIONS FOR EQUATION (1) 
 
Here we apply the proposed improved generalized 
Riccati equation mapping method to find many families of 
exact traveling wave solutions of Equation (1). To the end 
we use the wave transformation 
 

1
( , ) ( ),

c
u x t u x t

L
 


   ,                                   (7) 

 

where 6
1 0 1.32 10 ,R C s     and c is the 

dimensionless velocity of the wave, to reduce Equation 
(1) into the following ODE: 
 

2 0
2

u u u u
c

                                                 (8) 

 

where 1 1

2 0 2 2

2
, ,

R R

R C R R

      . 

 

By balancing 2u with u , we have m=2. Hence the 

formal solution of Equation (8) takes the form: 
 

2 1 2
2 1 0 1 2( )u a Q a Q a a Q a Q  

                         (9) 

 
where 2 1 0 1 2, , , ,a a a a a  are constants to be determined, 

such that 2 0a   or 2 0a  . 

Inserting (9) with the aid of Equation (6) into Equation 
(8) we get the following system of algebraic equations: 
 

4 2 2
2 2

4 2 2
2 2

: 6 0,
2

: 6 0,
2

Q a q a

Q a r a
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3 2
2 1 2 1 2

3 2
2 1 2 1 2

2
: 10 2 0,

2
: 10 2 0,

q
Q a pq a q a a a

c
r

Q a pr a r a a a
c

 

 
    

   

   
 

2 2 2
2 1 2 2 1 1 0 2 2

2 2 2
2 1 2 2 1 1 0 2 2

: 8 3 4 (2 ) ( 2 ) 0,
2

: 8 3 4 (2 ) ( 2 ) 0,
2

Q a qr a pq a p a p a q a a a a
c

Q a qr a pr a p a p a r a a a a
c

  

  
       

       

       
 

2
2 1 1 2 1 1 2 0 1 1

1 2
2 1 1 2 1 1 2 0 1 1

: 6 2 (2 ) ( ) 0,

: 6 2 (2 ) ( ) 0,

Q a pr a qr a p a r a p a a a a a
c

Q a pq a qr a p a q a p a a a a a
c

  

  

 


       

       

       

0 2 2 2
2 1 1 2 1 1 0 1 1 2 2: 2 2 ( ) ( 2 2 ) 0.

2 oQ a r a pr a pq a q a r a q a a a a a a
c

               

 
By solving these algebraic equations with the aid of 
Maple or Mathematica we have the following cases: 
 
Case 1 
 

2 2
0 1

2

2 1 2

12 ( )1 3 10 5, , ( 6 ), ( 2 ), ,
24 2 3

12 6
, , 0

5

q pp c cp p q q r p a p a
q

q
a c a a


 

  


   


        


   

 
 
Case 2 
 

2

2 2
0 1

2 2

2 1 22

( )( 6 )1 1 10 5, , ( 6 ), ( 6 3 ), ,
24 2 2

( 6 ) 6
, , 0

48 5

p pp c cp p q q r p a p a
q q

p
a c a a

q

  
  

 
 





 
        

 
   

 
 
Case 3 
 

2

0 1 1 2

2

2 2

5 12 12
0, , , , , ,

96 4 5 40

6
, .

768 5

q q
p q q r a a a a

q c q c

a c
q

   
   

 
 






       


 

 
 
 
Exact traveling wave solutions of Equation (1) for 
Case 1 
 
By using the case 1 and according to the values of 
solutions of type 1 in the proposed method, we obtain the 
following exact traveling wave solutions for Equation (1): 
 

2
1

63 5 3
( , ) 2 [ ] tanh( ) tanh ( ),

2 2 5 5 24 2 24

c
u x t p

c c

       
    

    

 

2
2

63 5 3
( , ) 2 [ ] coth( ) coth ( ),

2 2 5 5 24 2 24

c
u x t p

c c
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3

2

63 5 3
( , ) 2 [ ] tanh( ) sec ( )

2 2 5 5 6 6

tanh( ) sec ( ) ,
2 6 6

c
u x t p i h

c c

i h

      
   

   


 
     

 

 
  

 

  

 

4

2

63 5 3
( , ) 2 [ ] coth( ) cos ( )

2 2 5 5 6 6

coth( ) cos ( ) ,
2 6 6

c
u x t p i ch

c c

i ch

      
   

   


 
     

 

 
  

 

 

 

5

2

3 5 6 3
( , ) [ ] tanh( ) coth( )

2 5 5 6 96 96

tanh( ) coth( ) ,
8 96 96

c
u x t p

c c

       
   

   


 
     

 

 
  

 

 

 
2

2 2 2 2

6

( cosh( ) ( cosh( )
63 5 6 6 6( , ) [ ] ,

2 5 5 2
( sinh( ) ) ( sinh( ) )

6 6

A B A A B A
p c

u x t
c c

A B A B

      
      

   
      

       
          

 
2

2 2 2 2

7

( cosh( ) ( cosh( )
63 5 6 6 6( , ) [ ] ,

2 5 5 2
( sinh( ) ) ( sinh( ) )

6 6

B A A B A A
p c

u x t
c c

A B A B

      
      

   
      

       
          

 
where A and B are two non-zero real constants satisfying 
B2-A2>0, 
 

2
8

2 2 2

2

( ) cosh( )
3 10 24 5 24( , ) [ 2 ]

2 3
( sinh( ) cosh( ))

6 24 6 24

48 cosh ( )
24 ,

sinh( ) cosh( )
6 24 6 24

p
p c qr cu x t p

q r

   
       

 

     

 
  

     
 

 
 


 

 
 

 

 

2
9

2 2 2

2

( )sinh( )
3 10 24 5 24( , ) [ 2 ]

2 3
( sinh( ) cosh( ))

24 6 24

48 sinh ( )
24 ,

sinh( ) cosh( )
24 6 24

p
p c qr cu x t p

p

q r

p

   
      

 

    

 
  

     
 

 
 


 

 
   

 

 

 
 
 
 

2
11

2 2 2

2

( )sinh( )
3 10 24 5 24( , ) [ 2 ]

2 3
( sinh( ) cosh( ) )

6 6 6 6

48 sinh ( )
24 ,

sinh( ) cosh( )
6 6 6 6

p
p c qr cu x t p

p

q r

p

   
       

 

     

 
  

     
 
   

 


 
   
 

 

 

2
12

2 2 2

2

( )sinh( )
3 10 24 5 24( , ) [ 2 ]

2 3
( sinh( ) cosh( ))

24 6 24

48 sinh ( )
2 6 ,

sinh( ) cosh( )
24 6 24

p
p c qr cu x t p

p

q r

p

   
      

 

    

 
  

     
 
  

 


 
  
   

 

where 1 6
.

5

t
x

L


 

 
 

 

Remark 1. If 26p  , then 0r   and  2p  . 

Consequently we have  
 

2

0

12
,

P
a




2

2 1 1 2

12
, , , 0

5

q
a c a a a

p


  


     . 

 
 According to the values of the solutions of type 3 in 
Sec.2, we obtain the following exact traveling wave 
solutions for Equation (1):  
 

22 2

13

12 12
( , ) ,

[ cosh( ) ( )]

p q pd
u x t

q d p sinh p   
 

     
 

 
22 2

14

12 12 [cosh( ) ( )]
( , ) ,

[ cosh( ) ( )]

p q p p sinh p
u x t

q d p sinh p

 
   

 
     

 

 

where 1
.

5

t
x

L p




   

 
 
Exact traveling wave solutions of Equation (1) for 
case 2. 
 
By using the case 2 and according to the values of 
solutions of type 1 in the proposed method, we obtain the 
following exact traveling wave solutions for Equation (1): 
 

 



 
 

 
 
 
 

2 1

2
2

2
2 2

( 6 )( )1 10 5( , ) [ 6 3 ] coth( )
2 6 24

( 6 )
coth( )

12 6 24

p pp c cu x t p p

p
p

   
  

   






   
      

 

 
  

 
 

2 1

2
3

2
2 2

( 6 )( )1 10 5( , ) [ 6 3 ] [tanh( ) sec ( )
2 6 6 6

( 6 )
[tanh( ) sec ( )

12 6 6 6

p pp c cu x t p p i h

p
p i h

     
  

    






   
       

 

 
   

 

 
2 1

2
4

2
2 2

( 6 )( )1 10 5( , ) [ 6 3 ] [coth( ) csc ( )
2 6 6 6

( 6 )
[coth( ) csc ( )

12 6 6 6

p pp c cu x t p p h

p
p h

     
  

    






   
       

 

 
   

 

 
2 1

2
5

2
2 2

2( 6 )( )1 10 5( , ) [ 6 3 ] 2 [tanh( ) coth( )
2 96 96 96

( 6 )
2 [tanh( ) coth( )

3 6 96 96

p pp c cu x t p p

p
p

      
  

     






   
       

 

 
   

 

 
1

2 22

2
6

2

2 2
2 2

[ cosh( )]( 6 )( )1 10 6 65( , ) [ 6 3 ]
2

sinh( )
6

[ cosh( )]
( 6 ) 6 6

12
sinh( )

6

A B Ap pp c cu x t p p

A B

A B A
p

p

A B

   
    

  
  





 
    

       
   

 
      

   

 
1

2 22

2
7

2

2 2
2 2

[ cosh( )]( 6 )( )1 10 6 65( , ) [ 6 3 ]
2

sinh( )
6

[ cosh( )]
( 6 ) 6 6

12
sinh( )

6

B A Ap pp c cu x t p p

A B

B A A
p

p

A B

   
    

  
  





 
    

       
   

 
      

   

 
where A and B are two non-zero real constants satisfying 
B2-A2>0, 
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1

2

2
10

2

2 2

2 2

cosh( )( 6 )( )1 10 245( , ) [ 6 3 ]
2 4

sinh( ) cosh( )
6 6 6 6

cosh( )
( 6 ) 24
192

sinh( ) cosh( )
6 6 6 6

p pp c cu x t p
qr

p i

p

q r
p i

  
       

 
     





 
   

     
    

 
   
      

 
1

2

2
11

2

2 2

2 2

sinh( )( 6 )( )1 10 245( , ) [ 6 3 ]
2 4

sinh( ) cosh( )
6 6 6 6

sinh( )
( 6 ) 24
192

sinh( ) cosh( )
6 6 6 6

p pp c cu x t p
qr

p

p

q r
p

  
       

 
     





 
   

     
     

 
   
       

 
1

2

2
12

2

2 2

2 2

sinh( )( 6 )( )1 10 245( , ) [ 6 3 ]
2 4

sinh( ) cosh( )
24 6 24

sinh( )
( 6 ) 24
192

sinh( ) cosh( )
24 6 24

p pp c cu x t p
qr

p

p

q r
p

  
      

 
    





 
   

     
    

 
   
    

 
 

where 1
.

5 6

t
x

L

 


   

 
 
Exact traveling wave solutions of Equation (1) for 
Case 3 
 
By using the case 3 and according to the values of 
solutions of type 1 in the proposed method, we obtain the 
following exact traveling wave solutions for Equation (1): 
 

2 2
1

6 65 12
( , ) tanh( ) tanh ( ) coth( ) coth ( )

4 5 24 24 20 24 32 24

qr
u x t

c c

           
    

    
 

 
2 2

2

6 65 12
( , ) coth( ) coth ( ) tanh( ) tanh ( )

4 5 24 24 20 24 32 24

qr
u x t

c c

           
    

    
 

 
2

3

1 2

65 12
( , ) tanh( ) sec ( ) tanh( ) sec ( )

4 5 6 6 6 6

6
tanh( ) sec ( ) tanh( ) sec ( )

20 6 6 32 6 6

qr
u x t i h i h

c

i h i h
c

        
  

         
 

 

   
          

   

   
         

   

 

 
2

4

1 2

65 12
( , ) coth( ) csc ( ) coth( ) csc ( )

4 5 6 6 6 6

6
coth( ) csc ( ) coth( ) csc ( )

20 6 6 32 6 6

qr
u x t h h

c

h h
c

        
  

         
 

 

   
          

   

   
         

   
 

2

5

1 2

5 3 3
( , ) tanh( ) coth( ) tanh( ) coth( )

4 5 2 96 96 96 96

6
tanh( ) coth( ) tanh( ) coth( )

10 96 96 8 96 96

qr
u x t

c

c
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2

2 2 2 2

6

1

2 2 2 2

cosh( ) cosh( )
65 126 6( , )

4 5 sinh(2 )
sinh( )

6

cosh( ) cosh( )
6 6 6

20 32
sinh( ) sinh( )

6 6

A B A A B A
qr

u x t
c A qr B

A B

A B A A B A

c
A B A B

   
    

    
   



   
      

     
    

   
   

   
      

   
  

   
   

2





 
2

2 2 2 2

7

1

2 2 2 2

cosh( ) cosh( )
65 126 6( , )

4 5
sinh( ) sinh( )

6 6

cosh( ) cosh( )
6 6 6

20 32
sinh( ) sinh( )

6 6

B A A B A A
qr

u x t
c

A B A B

B A A B A A

c
A B A B

   
    

    
   



   
      

     
   

    
   

   
      

    
   

   
   

2



 

 
where A and B are two non-zero real constants satisfying 
B2-A2>0, 
 

2
2 2

8

65 3
( , ) coth( ) coth ( ) tanh( ) tanh ( )

4 5 24 24 20 24 24 192 24

q r
u x t

c r q c q

           
    

    
 

 
2

2 2
9

65 3
( , ) tanh( ) tanh ( ) coth( ) coth ( )

4 5 24 24 20 24 24 192 24

q r
u x t

c r q c q

           
    

    

 
2 1

10

2

cosh( ) cosh( ) coth( )
6 65 1224 24 24( , )

4 5 20
sinh( ) sinh( ) sinh( )

6 6 6

cosh( )
24

32
sinh( )

6

qr
u x t

c c
i i i

i

       
       

 
  





     
     
        
     

       
     

 
 
 
 

 
 

 
2 1

11

2

sinh( ) sinh( ) sinh( )6 65 1224 24 24( , )
4 5 20

( ) cosh( ) cosh( )
6 6 6

sinh( )
24

32
cosh( )

6

qr
u x t

c c
coh i i i

i

       
       

 
  





     
     
        
            
     

 
 
 
  
   

 
2 1

12

2

sinh( ) sinh( ) sinh( )
6 65 1224 24 24( , )

4 5 20
cosh( ) 1 cosh( ) 1 cosh( ) 1

24 24 24

sinh( )
24

31
cosh( ) 1

24

qr
u x t

c c

       
       

 
  





     
     
        
     

       
     

 
 
 
  
 

 

where, 
1

.
5 6

t
x

L

 


 
 

 
Remark 2 
 

We have noted in the two cases 1, 2 that  0
6


     while 

 
 
 
 
in case 3 we have 0

24


   . This yields that all the 

solutions of type 2 in the proposed method cannot be 
considered in this paper. Therefore, Equation (1) has no 
trigonometric function solutions. 
 
 
PHYSICAL EXPLANATIONS FOR SOME OBTAINED 
RESULTS 
 
Here, we will present some graphs for the obtained 
solutions of Equation (1) by selecting some special 
values of the parameters in the exact solutions using the 
mathematical software Maple, which can be shown below 
in Figures 1 to 6. From these explicit solutions, we see 

that 1( , )u x t  in both cases 1, 2 are kink shaped soliton 

solutions while 2 ( , )u x t
 
in these two cases are singular 

kink shaped soliton solutions. The two solutions 1( , )u x t  

and 2 ( , )u x t  in case 3 are kink-singular shaped soliton 

solutions. The graphical representations of these 
solutions are shown in the following figures: 
 
 
CONCLUSIONS AND COMMENTS 
 
Here we give some comments on the solutions (22) to 
(27) of the second model of microtubules (16) in Sekulic 
et al. (2011a). We have found that some of these 
solutions are incorrect. Thus, we will correct these 
solutions and then compare between some of our results 
in the present article and the corrected solutions as 
follows: 
 
1) There is a minor error in Equation (18) of Sekulic et al. 
(2011a). The correction is to replace   by 

2

  in Equation 

(18). 
 
2) The results of Case I in Sekulic et al. (2011a) do not 
satisfy the algebraic Equation (21). After a careful 
revision, we have shown that the correction of this case 
should be in the form: 
 

0 1 2 1 2

3 6 6 6
, , , , , 0

24 4 5 5
b a a a c b b

c

   
   


          (10) 

 
It is easy to see that the corrected values (10) satisfy the 
algebraic Equation (21) of Sekulic et al. (2011a). 

Hence with replacing   by 
2

  in (10), the result (22) of 

Sekulic et al. (2011a) should be rewritten in the corrected 
form: 
 

23 12 1 1
( , ) tanh tanh

2 5 24 24 5 6 2 24 5 6

t t
u x t x x

c L L

         
    

      
                        

(11) 



 
 

 
 
 
 

 
 

Figure 1. The plot of 1( , )u x t of case 1, where 

1, 1, 104.76, 142.86, 142.86.p q         
 
 
 

 
 
Figure 2. The plot of 

2 ( , )u x t of case 1, where 

1, 1, 104.76, 142.86, 142.86.p q         
 
 
 
On comparing the corrected result (11) with our result 

1( , )u x t  of “Exact traveling wave solutions of Equation 

(1) for case 1”, we conclude that they are equivalent if 
0p   and 1q  . 

 
3) The results of Case II in Sekulic et al. (2011a) do not 
satisfy the algebraic Equation (21) too. After a careful 
revision, we have shown that the correction of this case 
should be in the form: 
 

0 1 2 1 2

6 6 6
, , , , , 0

24 4 5 5
b a a a c b b

c

   
   

 
         (12)
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Figure 3. The plot of 

1( , )u x t of case 2, where 

1, 1, 104.76, 142.86, 142.86.p q         

 
 
 

 
 
Figure 4. The plot of 

2 ( , )u x t of case 2, where 

1, 1, 104.76, 142.86, 142.86.p q         

 
 
 
It is easy to see that the values of (12) satisfy the 
algebraic Equation (21) of Sekulic et al. (2011a). From 

the values of (12) we deduce that 
2

2

6

25c

 
  which is 

negative. This contradicts that 1

2

0
R

R
   . Therefore, 

Case 2 in Sekulic et al. (2011a) should be rejected. 
 
4) The results of Case III in Sekulic et al. (2011a) do not 
satisfy the algebraic Equation (21) too. After a careful 
revision, we have shown that the correction of this case 
should be in the form: 
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Figure 5. The plot of 
1( , )u x t of case 3, where 

0, 1, 104.76, 142.86, 142.86.p q         

 
 
 

 
 

Figure 6. The plot of 2 ( , )u x t of case 3, where 

0, 1, 104.76, 142.86, 142.86.p q         
 
 
 

2

0 1 2 1 2

3 6
, , , , , 0

24 4 20 96 5
b a b b c a a

c

    
   


           (13)  

 
It is easy to see that the corrected values of (13) satisfy 
the algebraic Equation (21) of Sekulic et al. (2011a). 

Hence with replacing   by 
2

  in (13), the result (24) of 

(Sekulic et al, 2011a) should be rewritten in the corrected 
form: 

 
 
 
 

23 24 1 6 1 6
( , ) coth coth

2 10 24 5 2 24 5

t t
u x t x x

c L L

      
       

      
                     

                                                                                  (14) 
 
On comparing the corrected result (14) with our result

 
1( , )u x t  of ‘Exact traveling wave solutions of Equation 

(1)  for case 2’, we conclude that they are equivalent if 
0p   and 1q  . 

 
5) The results of Case IV of Sekulic et al. (2011a) still do 
not satisfy the algebraic Equation (21). After a careful 
revision, we have shown that the correction of this case 
should be in the form: 
 

2

1 2 2 1 0

6
, , 0, , ,

24 5 96 20 4
b c a a b b a

c

    
   
 

          (15) 

 
It is easy to see that the corrected values of (15) satisfy 
the algebraic Equation (21) of Sekulic et al. (2011a). 

From the values of Equation (15) we deduce that 
2

2

6

25c

 
  

which is negative. This contradicts that 1

2

0
R

R
   . 

Therefore, the case IV in Sekulic et al. (2011a) should be 
rejected. 
 
6) The results of Case V in Sekulic et al. (2011a) also do 
not satisfy the algebraic Equation (21). After a careful 
revision, we have shown that the correction of this case 
should be 
 

2

0 1 2 1 2

5 6 6 6
, , , , , ,

96 8 80 1536 5 5
b a b b c a a

c c

     
     


         16) 

 
It is easy to see that the corrected values of (16) satisfy 
the algebraic Equation (21) of Sekulic et al. (2011a). 

Hence with replacing   by 
2

  in Equation (13), the 

result (26) of Sekulic et al. (2011a) should be rewritten in 
the corrected form: 
 

2

2

5 12 1 6 1 6
( , ) tanh ( ) tanh ( )

4 5 96 96 5 8 96 5

96 1 6 1 6
coth ( ) coth ( )

40 96 5 8 96 5

t t
u x t x x

c L L

t t
x x

c L L

       
      

     
      

   
          

   
   

         
     

                                                                                 (17) 
 
On comparing the corrected result (17) with our result 

1( , )u x t  of ‘Exact traveling wave solutions of Equation 

(1) for Case 3’, we conclude that they are equivalent if 
0p   and 1q  . 

 
7) The results of case VI in Sekulic et al.  (2011a)  do  not 



 
 

 
 
 
 
also satisfy Equation (21). After a careful revision, we 
have shown that the correction of this case should be in 
the form: 
 

2

2 1 2 1 0

6 6 6 3
, , , , , ,

96 5 1536 80 5 8
b c b b a a a

c c

     
     
 

        
(18) 

 
It is easy to see that the corrected values of (18) satisfy 
the algebraic Equation (21) of Sekulic et al. (2011a). 

From the values of Equation (18) we deduce that 
2

2

6

25c

 
  

which is negative. This contradicts that 1

2

0
R

R
   . 

Therefore, the case VI in Sekulic et al. (2011) should be 
rejected.  
 
From these discussions we deduce that our results in the 
present article are new and recover the well-known 
results obtained in Sekulic et al. (2011a) after its 
corrections obtained above. 
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