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The use of modern statistical methodology to overcome the known pitfalls of classical regression 
models in the analysis of large numbers of highly correlated data, has increased considerably in recent 
years. Statisticians in the field of chemometrics and OMICS research have developed a new method 
called Orthogonal projections to latent structures (OPLS). In comparison with the regular partial least 
squares (PLS) regression, OPLS provides a simpler method with the additional advantage that the 
orthogonal variation can be analyzed separately. Use of the OPLS model has spread to fields other than 
its origin but it is not yet applied to the field of epidemiology, which is a wide field of research. In public 
health and clinical research, there are situations in which large numbers of correlated variables need to 
be modeled. The authors successfully applied OPLS-DA to model large numbers of variables in a case-
control study and compared it with discriminant analysis done by partial least squares regression. Prior to 
fitting the models, the dataset was split into two parts:  a training set and a prediction set. Models fitted 
on the training dataset were later tested for validity in the prediction dataset. The OPLS-DA was 
compared with PLS-DA for model fitness, diagnostics and model interpretability. Both models suited 
the data but OPLS-DA was preferable. The authors encourage the use of these methods to increase 
study power and statistical validity in epidemiology and similar settings in which large numbers of 
correlated variables need to be modeled. 
 
Key words: Partial least squares regression, orthogonal projections to latent structures, logistic regression, 
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INTRODUCTION 
 
The traditional regression models in classical statistics 
have been shown to get problematic when there are large 
numbers of variables and a small sample size.  
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Multicolinearity and missing values make the situation 
even more complex. Multicolinearity not only increases 
standard errors of regression coefficients and decreases 
power, but also makes it difficult to separate individual 
effects of predictor variables, making the regression 
coefficients less reliable (Dohoo et al., 1997b). Thus such 
limitations may lead to either bias or loss of power in 
testing hypotheses.  Methods  have  been  developed  to  
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manage this problem. The available partial least squares 
(PLS) regression is a known method of analysis to 
statisticians in many fields. It attenuates the above- 
mentioned problems but PLS also suffers some 
limitations such as interpretability problems, multi-
component results and biased coefficients in some 
situations leading to a higher risk of overlooking real 
correlations (Eriksson et al., 2006a; Richard and Cramer, 
1993). Recently a newer statistical method has been 
introduced namely orthogonal projections to latent 
structures (OPLS). It is a modification of the NIPALS PLS 
algorithm. This method was first proposed in 2002 for 
chemistry studies (Trygg and Wold, 2002c).  The OPLS 
either can be seen as a pure preprocessing method to 
remove systematic orthogonal variation or can become 
an integrated part of regular PLS modeling to provide a 
simpler method with the additional advantage that the 
orthogonal variation can be analyzed separately. Later 
extensions of OPLS gave rise to OPLS-DA in 2005 thus 
making it appropriate for use for discriminant analysis 
along with prediction purposes (Bylesjo et al., 2006a). 

In injury research, we may encounter large numbers of 
correlated variables, which usually have insufficient 
sample size to study predictors of interest. These can be 
defined through a wide range of variables categorized as 
environmental, human related and object related 
variables. Supervised statistical modeling techniques like 
PLS and OPLS can be a good option to increase power 
as well as statistical validity in managing multivariate 
situations in injury epidemiology and possibly other 
similar fields of epidemiology. PLS has been used by only 
a few researchers in injury risk assessment until quite 
recently (Cadieux et al., 2006; Eriksson et al., 2009b; 
Sowa et al., 2006b) while application of the new OPLS-
DA modeling technique is novel in the field of injury and 
public health epidemiology. In this article, we explain the 
PLS-DA and OPLS-DA statistical techniques and discuss 
the possibility of their application in injury risk 
assessment, combined with or as an alternative to 
classical statistical methods. 
 
 

METHODS 
 
Source data 
 

The data used to apply and compare the statistical models is taken 
from an ongoing case-control study on determinants of 
unintentional burn injuries. Cases were enrolled from a regional 
burn center, which is the referral burn center in north-west of Iran. 
Controls were enrolled from a referral pediatric university hospital. 
Control selection was done in a way to ensure common source 
population for cases and controls (Wacholder et al., 1992).  
Considering age related variety in injury patterns, only children 
under the age of 14 were enrolled.The original dataset included 396 
observations. The case-control study was approved by the 
responsible regional committee of ethics. 
 
 

Modeling process and model diagnostics 
 

Data were collected from a project database designed in Microsoft 

 
 
 
 
Access format and imported into a SIMCA P+ version 12 statistical 
software packages, it is an appropriate software package for 
supervised modeling techniques (Umetrics AB, SE-90719, Umea, 
Sweden). OPLS is implemented in SIMCA P+ such that the method 
is available under the standard PCA and PLS modeling framework. 
It was split into two parts before starting the modeling procedures. 
The training dataset data contained 316 observations and the 
prediction set contained 80 observations. All variables, including 
combined variables along with their constituting variables, were 
entered into the model. Categorical variables after being changed 
into dummy variables were entered into the model like other 
dichotomous and continuous measures. The modeling process is 
presented in Figure 1. 

Prior to fitting supervised models a preliminary principal 
component analysis was done for data overview, detecting outliers 
and groups among the observations. Model goodness of fit was 
assessed using R

2
; however as this is an inflationary measure and 

rapidly approached unity as the model complexity increases, Q
2
 

was used to assess model predictability. To provide a measure of 
statistical significance for the predictive power in cross-validation, 
response permutation was used. In this process, the X-data are left 
intact while Y-data are permuted to appear in a different order. The 
model is then fitted to the permuted Y-data and by using cross-
validationR

2
Y and Q

2
Y are computed for the derived model. 

Leverage was assessed using Hottelings T
2.
.Variable influence was 

assessed using VIP (variable importance in the projection) 
measures.Residual distribution graph and observed vs.  Predicted 
graphs were also plotted both through analysis. Model significance 
testing was done using CV-ANOVA methodology (Eriksson et al., 
2008). 
 
 
PLS and PLS-DA 
 

This method was first presented by Wold in 1975 to model in 
complicated datasets in terms of chains of matrices and was later 
modified by other researchers (Wold et al., 2001). The method is 
well described in the literature so we have cited only a few 
references and will focus on some core facts regarding this method 
which are essential for later understanding of O-PLS (Richard and 
Cramer, 1993; Wold et al., 2001). In common with principal 
component analysis(PCA) and to a lesser amount factor analysis, 
PLS also looks into the internal relationships in the matrix of 
variables and those cases combining the characteristics of single 
variables in new definitions of factors or components; but in 
contrast to them a main objective in PLS is to predict outcome 
related variables from possible predictors. This is done by linking X 
and Y matrices. This characteristic of the PLS method which is also 
present in O-PLS makes them both more effective than PCA and 
FA, for which reason they are referred to as supervised methods. In 
other words, in supervised methods variables are projected into 
new coordinating systems similar to PCA but their aim is to 
maximize the covariance between outcome and predictor variables 
instead of trying to explain as much variance inside the matrix as 
possible. If we consider one matrix of possible predictor variables 
(model X) and one matrix of outcome variables (model Y), PLS tries 
to model X and Y, and at the same time to predict Y from X 
(Eriksson et al., 2006c). 
In this study the authors have tried to demonstrate this advantage 
using a case-control two-class scenario in which the first class is 
observations regarding burns cases and the second class is 
observations of non-burned control subjects. Class sizes were 
equal in this study. 
 
 
OPLS and OPLS-DA 

 
Orthogonal Projections  to  Latent  Structures  (OPLS)  are  a  linear  
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Figure 1. Algorithmic presentation of the modeling process. 

 
 
 
regression method that has been employed successfully for 
prediction modeling in various biological and biochemical 
applications. OPLS is a modification of the usual PLS method which 
filters out variation that is not directly related to the response. The 
result is more transparent models which are easier to interpret 
(Trygg and Wold, 2002b).The OPLS method was first proposed in 
2002 and is a modification of the original NIPALS PLS algorithm. 
OPLS-DA was later discussed in 2006 and considering the 
advantages of Orthogonal PLS over simple PLS, applying an OPLS 
discriminant analysis will keep the known advantages of OPLS 
modeling in field of discriminant analysis (Bylesj et al., 2006). 
 
 

RESULTS 
 

Descriptive 
 

Mean age of the participants was 4.6 (SD = 3.5) years. Of 

all 396 participants 236 (59.6%) were males. Home was 
the main place of injuries in 84% of the cases. Scalds 
and flame burns were the major types of burn injuries. 
Mean total body surface area burnt was 11.6%. 
 
 

Training-set models 
 
Both the PLS-DA and OPLS-DA models were fitted into a 
training dataset, which contained 247±2 variables and 
316 observations measured on two groups. The least 
possible count of components in the PLS-DA model were 
three components. Only one predictive component in the 
OPLS-DA model was captured excluding two orthogonal 
components in X. Residual distribution in both models 
was generally normal but the first component in the PLS 
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Figure 2. Score plots of the PLS and OPLS models fitted to training dataset to discriminate burned cases from controls. Red color: Burned 

cases; Black color: Controls. 
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Figure 2. Contd. 

 
 
 

model deviated slightly more from normality than the 
others. The primary scatter plot of the scores revealed 
good discrimination of the cases from controls both in the 
PLS-DA and OPLS-DA models. However, few outliers 
were present which could be excluded. This plot shows 
how the modeled observations in X space are situated 
with respect to each other. The observations are colored 
according to their class as cases and controls. In this 
type of graph, observations that lie close to each other 

are more similar than observations that lie relatively 
distant from each other. The orthogonal components 
have a subscript o, e.g. to1 for the first orthogonal 
component in X. As shown in the score plots of the two 
OPLS and PLS models fitted into training data, obtaining 
one predictive component in OPLS as the only 
component related to Y, makes the interpretation of the 
model easier than the PLS model (Figure 2). The rotation 
effect in OPLS is also evident from the graphs. Figure 3
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Figure 3. Model overview plots compared for PLS-DA and OPLS-DA. 

 
 
 

  
 
Figure 4. Hotelling's T2Range plot compared between PLS-DA & OPLS-DA. 

 
 
 

compares goodness of fit for the components in 
models.The R2Y cumulated for all three components of 
PLS as well as R2Y for OPLS model were above 0.8 
Q2Y for components in the PLS and OPLS models were 
both above 0.7.Cross-validation of the two components in 
PLS-DA with 20 permutations showed a much more 
reliable Q

2
 than R

2
. Both models had an acceptable 

situation assessing Hotelling's T
2
 range plot but like other 

diagnostics, OPLS-DA had a better distribution regarding 
Hotelling's T2 measure (Figure 4). 

To discriminate burns cases from controls, it was found 
that up to 87 variables had regression coefficients 
significantly different from zero at 95% confidence level 
for the OPLS model. 107 variables for the first PLS 
component , 74 variables for the second PLS component 
and 65 variables for the third PLS component were found 
to be statistically different from zero. This was the main 

area where OPLS-DA presented its higher interpretability 
and reliability. PLS-DA results showed substantial 
variability in types of significant predictors and magnitude 
of the coefficients. This makes it a bit difficult in PLS 
modeling to draw more reliable conclusions than OPLS-
DA. 

Our aim in this article was not to discuss the predictors 
of burn injuries, something which the authors are 
planning to do in a separate paper after the full dataset is 
available. Nevertheless we would like to present here 
some primarily identified predictors in the OPLS-DA 
model which are nonspecifically presented and are as 
follows: using different types of cooking-heating 
appliance predictors; safety knowledge; risky behaviors; 
house structure; some other housing characteristics; 
economic status; caregiver and child psychological 
measurements; previous accident history; and  age.  One  



 
 
 
 
more finding regarding the advantages of these modeling 
methods was that it was possible to model ADHD 
(attention deficit hyperactivity disorder) scale 
measurements, simultaneously entering the total score 
with its single questions and sub-domain scores. This is 
usually not possible in classical regression methods due 
to high correlation inside scale measures. The total 
ADHD score had borderline non-significant effect on the 
likelihood of burn injuries, but those questions that 
measured hyperactivity as part of the disorder were 
highly significant in this regard. 
 
 
Prediction-set model validation 
 
After  finalizing  the  models  on  the  training  dataset,  
acquired model parameters were applied on the 
prediction dataset to assess model validity on new data. 
The prediction dataset included nearly 20% of the original 
dataset (80 out of 396 observations). Good discrimination 
was acquired after applying the model parameters to the 
prediction set data. The misclassification proportion was 
calculated to be less than 4% for both models (Fisher’s 
prob. < 0.001). To assess the effect of reducing model 
parameters on prediction power, the authors selected 
only 40 variables based on coefficient magnitude which 
were taken equally from both effect directions (negative 
and positive). Dummy based variables which couldn’t be 
excluded were also kept in the model. After fitting new 
PLS-DA and OPLS-DA models in the training datasets, 
the total R2Y measures did not decrease lower than 0.7 
and Q

2
 measures didn’t decrease lower than 0.64 in any 

of the models. Two components were captured in the 
new reduced PLS-DA model. Model diagnostics despite 
not being as good as the original models were also 
acceptable. The new model parameters were also 
applied to the prediction dataset showing an increased 
misclassification proportion up to 15% on average for the 
models (Fisher’s prob.< 0.001). So the authors found that 
an 80% decrease in the number of parameters only leads 
to a 10 % increased misclassification. 
 
 
DISCUSSION 
 
Like other fields of injury risk assessment, in studies 
concerning burns, methodological difficulties and 
properties of the data must be considered when choosing 
statistical methods. Just as in other case-control studies, 
logistic regression has often been a popular method to 
analyze injury case-control studies. Using maximum 
likelihood estimation methods, logistic regression has 
some advantages over linear regression analysis; but like 
other classical regression methods, it suffers some 
limitations like meeting independence of X-variables, 
exactness of X-variables and random distribution of 
errors. Power and missing  data  are  two  other  areas  of  
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concern for classical regression models (Eriksson et al., 
2006b). The limitations of this method when applied in 
studies involving large numbers of correlated variables, 
necessitates use of newer alternatives or complementary 
methods. 

There is a high variety of possible predictors of burn 
injuries. These predictors can be categorized as human 
related predictors, environmental predictors and object 
(mainly heating-cooking appliance) related predictors 
(Walender et al., 2000). This usually leads to large 
numbers of variables being studied in injury research.  
The number of predictors will also need to be expanded 
while creating dummy variables and interactions. In the 
present study, a total of 247 variables needed to be 
modeled. A similar situation is expected in other fields of 
injury epidemiology. For example, regarding fall injuries, 
as many as 400 variables have been suggested to be of 
interest (Masud and Morris, 2001). The first problem 
arising from large numbers of variables using classic 
regression analysis methods, especially the logistic 
regression, is the power requisite. This gets more 
sophisticated if the number of variables exceeds the 
number of observations. Although estimation method 
options (conditional vs. unconditional maximum 
likelihood) in logistic regression are of help, the 
correlation among predictor variables that gets more 
likely with large numbers of variables is also something 
that must be handled properly. Multicollinearity is a 
problem when large numbers of variables are of possible 
interest with respect to the dependent variable (Dohoo et 
al. 1997a). The existence of multicollinearity inflates the 
variances of the parameter estimates. That may result, 
particularly for small and moderate sample sizes, in lack 
of statistical significance of individual independent 
variables while the overall model may be strongly 
significant. Multicollinearity may also result in wrong signs 
and magnitudes of regression coefficient estimates, and 
consequently in incorrect conclusions about the 
relationships between independent and dependent 
variables. 

Sometimes even with very parsimonious models with 
few independent variables in the model, the existence of 
high association between two variables can be a 
problem. For example, if using a traditional heater is 
highly associated with using a single-burner gas stove 
and both are associated with getting burned, the 
statistician may be obliged to keep only one of the 
variables as a predictor in the model and miss the 
advantage of keeping the other one.  Statistical methods 
based on latent variables may be a solution. A well-
known method is PLS regression, which produces a set 
of the original predictor variables, a latent variable that 
are correlated with each other and predict the outcome 
variable (Eriksson et al., 2006b). So the correlation of 
predictor variables which may seem to be bothersome in 
ordinary regression methods, becomes a useful source of 
information about  groups  of  variables  (Henningsson  et  
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al., 2001; Richard and Cramer, 1993).  PLS has been 
used in injury research but not for risk assessment 
purposes in all cases. Cadieux used PLS to investigate 
validation of an instrument designed to conduct an 
Occupational Health and Safety (OHS) self-diagnosis, 
using workers’ observations of tangible facts and actions 
in the workplace (Cadieux et al., 2006). PLS has also 
been used in injury risk assessment (Eriksson et al., 
2009a; Sowa et al., 2006a), however, it has not turned 
into a popular method in injury epidemiology while older 
latent variable based methods have been used more than 
PLS. This may be partly due to the fact that it is not 
widely known by injury epidemiologists or due to its 
limitations. However PLS have many advantages over 
classical regression methods and also over traditional 
component- based methods. Independence of X-
variables is not a must for PLS, it doesn’t suffer from 
multicollinearity and limitations in the number of 
variables, it can cope with noise in both X and Y and 
moderate amounts of missing data in both X and Y. Also 
in contrast to classical regression methods, in PLS 
modeling the statistician is neither obliged to exclude one 
category of dummy variables nor to include a computed 
variable along with the original variables. For example 
one can include husband's income and wife's income 
along with total couple income in the same model or as in 
present study, one  may prefer to include the raw total 
ADHD score, adjusted total ADHD score, hyperactivity 
subscale, attention deficit subscale and all the single 
questions assessing ADHD in the same model. This 
cannot be done in classical regression methods because 
it is considered to be a source of multicollinearity. 
However, there seem to be some main concerns 
regarding the use of the PLS model: 
 
1. Interpretability problems due to the number of 
components in the model 
2. Arbitrary methodology to define number of 
components 
3. Difficulties due to the necessity of preprocessing and 
the effect of influential values 
4. Many readers are not familiar with the concept of 
latent variable modeling 
5. Insufficient handling of orthogonal variation in data 
 

The first and the last of these concerns, especially in 
OMIC’s research, carry higher importance and have 
drawn attention in recent research to find amendments 
(Bylesjo et al., 2006b; Goicoeches and Olivieri, 2001; 
Trygg and Wold, 2002a; Trygg and Wold, 2003; Wold et 
al., 1998). Wold et al. were the first to introduce 
orthogonal signal correction (OSC) to remove systematic 
variation from the matrix X that is unrelated (orthogonal) 
to the response matrix Y (Wold et al., 1998). OSC results 
in improved model interpretability but the main problem 
with the OSC method concerns the risk of over fitting the 
estimated OSC components and ensuring that they do 
not significantly alter the predictive power (Eriksson et al.,  

 
 
 
 
2006a). OPLS, which was developed later, was an 
improved model in this regard (Bylesjo et al., 2006c; 
Trygg and Wold, 2002a). We have described OPLS and 
OPLS-DA earlier, but to compare PLS and OPLS 
procedures it must be stated that, some of the difficulties 
in interpretation of regular PLS model parameters are 
due to the fact that PLS components are usually not the 
principal components of the current X matrix. Difficulty in 
interpreting PLS models increases in proportion to the 
amount of Y-orthogonal variation present in X. This 
problem is resolved in OPLS by removing the Y-
orthogonal variation in X. In our study three PLS 
components were captured while one predictive 
component explained the variations in the OPLS model 
and the structured noise in the X matrix, which was 
nearly 10%. As the regression vector in OPLS is 
equivalent to the first principal component of the existing 
X-matrix, OPLS is expected to yield both good 
predictions and good interpretability. This can be more 
noticeable for data with more structured noise leading to 
a higher number of PLS components. Compared to some 
OMICS research or chemometrics data, 10 % is not 
considered a substantially large amount of structured 
noise and only three components were captured in our 
PLS model, however even this amount of interpretability 
improvement can lead to a preference for choosing the 
OPLS model. Other than a preference for OPLS over 
PLS in this study, the overall advantages of supervised 
modeling (including PLS and OPLS) compared to 
principal component analysis in latent variable based 
methods as well as the advantages of these models over 
classical regression methods, recommends the OPLS 
model as a suitable alternative method for analysis in 
injury epidemiology. This is the first time that OPLS 
models have been used in injury epidemiology and 
investigation into the further applications of these models 
in burn, fall and traffic injury risk assessment is strongly 
recommended. Considering the characteristics of these 
methods and the general popularity of classical 
regression methods, OPLS and PLS modeling may also 
be used as data reduction tools in the variable selection 
phase of logistic and linear regression methods. PLS 
based variable selection is preferable to some other 
selection methods like Lasso or stepwise regression 
particularly when the error variance is large in dataset or 
when the model fitness is relatively low. Also, PLS 
method seems to be insensitive to noise while the others 
seem to be sensitive. 
 
 
Conclusion 
 

Both the PLS-DA and OPLS-DA models were 
successfully fitted and yielded good diagnostics. The 
OPLS-DA proved to be preferable to the PLS-DA model 
in that it had better interpretability than PLS-DA. The 
authors encourage injury epidemiologists and 
statisticians to use and assess the applicability of these  



 
 
 
 
methods in the analysis of injury data, in order to 
increase study power and statistical validity. Other 
epidemiological studies engaged with large numbers of 
correlated variables may also benefit from these 
methods.However, one major concern with these 
methods preventing them to help in drawing stronger 
conclusions is that they are quite new and not well tested 
in different settings of epidemiology. 
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