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The thin film flow of a power law fluid on a vertical cylinder for a lift and a drainage problem is studied. 
The goverming nonlinear differential equations have been derived from the continuity, momentum and 
constitutive equations. The resulting equations are then solved using binomial series method. Series 
solutions have been obtained for velocity, volume flow rate and average velocity in both cases. The 
graphical results for velocity profile is discussed and examined for different parameters of interest. 
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INTRODUCTION 
 
Over the years, non-Newtonian fluids have been 
considered due to their practical importance in industry, 
medicine and sciences. Few examples of such fluids are: 
tooth paste, paints, greases, blood, drilling mud, clay 
coatings, polymer melts etc. No single model can exhibit 
all the properties of fluids, for this purpose different 
differential and integral constitutive equations have been 
proposed (Deshpande and Barigou, 2001; Kemiha et al., 
2006; Jie and Xi-Yun, 2006; Mahomed et al., 2007). 
Among these, the power law model has attained much 
attention of the researchers because of its wide spread 
industrial applications (Yong-Li et al., 2009; Kapur, 1963; 
Nejat et al., 2011; Ghoreishy and Razavi, 1998). 

Study of thin film flow has received significant 
attention due to practical concentration of these flow's in 
physical and biological sciences vaccinated by thin film 
flows. Many researchers have grappled with the analyze 
these type of flows since their formulation. The non-
Newtonian fluids have been used by researchers 
(Siddiqui et al., 2006a,b; He, 2008; Hayat and Sajid, 
2007, 2008; Siddiqui et al., 2007) for thin film flow to 
investigate and solve them analytically and numerically. 

Most of the occurring  natural  and  industrial problems 
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when modeled show nonlinearity and few of them show 
linearity. Non-linearity increases the mathematical 
complexity of the problems which reduces the chance of 
getting exact solutions. In view of such difficulties, in past 
three decades, researchers and scientists developed 
numerous analytic and numerical techniques to 
overcome non-linearity and get approximate solutions. 
Various analytical techniques such as binomial series 
method, perturbation method (PM), Adomian 
decomposition method (ADM), variational iteration 
method (VIM), homotopy analysis method (HAM), optimal 
homotopy analysis method (OHAM), homotopy 
perturbation method (HPM), optimal homotopy 
perturbation method (OHPM) and some others methods 
have proven to be valuable tools to understand the 
complexity of these type of problems (Siddiqui, 2006a, b; 
He, 2008, 2011, 2012; Siddiqui et al., 2007; Dita and 
Grama, 1997). These techniques have found plentiful 
applications in industry and technology. In this paper, we 
shall use binomial series method (Coolidge, 1949) to 
analyze the flow behavior during withdrawal and drainage 
of power law fluid on a vertical cylinder. 

In this paper, we investigate the thin film flow for lift and 
drainage on a vertical cylinder, two cases are discussed 
Newtonian and power law fluid, respectively. In 
Newtonian case, we find the exact solution while in power 
law series solution is obtained. According  to  the  best  of 



 

 
 
 
 
our knowledge, the solution of the problem has not been 
reported in the literature. 

This study is organized as follows. Subsequently, the 
study presents the governing equation of the fluid model. 
Then, the problem under consideration is formulated and 
solution for the lifting case is given. Thereafter, it 
reserved for the solution of the drainage case. 
Afterwards, deals with results and discussion. Finally 
concluding remarks are given. 
 
 
BASIC EQUATIONS 
 
The basic equations, governing the flow of 
incompressible power law fluid neglecting the thermal 
effects, are:  
 

0,=V                                                                            (1) 
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divp
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where   is the constant density, V  is the velocity 

vector, f  is the body force, p is the pressure, S  is the 

extra stress tensor and 
Dt

D  is denoting the material time 

derivative derivative. As discussed in Bird et al. (1987), 
the stress tensor defining a power law fluid is given by:  
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and where    is the coefficient of viscosity and n  is the 

Power law index. The Rivilin-Ericksen tensor, 1A  is 

defined by:  
 

    .=1

T
VVA                                                             (5) 

 

Remark: On behalf of consequent model for 1<n , the 

fluid is "pseudoplastic" for model or "shear thinning" for 

1>n  the fluid is "dilatant" or "shear-thickening" and for 

1=n  the Newtonian fluid is recovered. 

 
 
FORMULATION OF THE PROBLEM AND SOLUTION FOR 
LIFTING CASE 
 
Consider a container filled with power law fluid. A wide cylinder 
moves vertically upward through container with constant velocity 

0U . Since the cylinder moves upward, it picks up a thin fluid film of  
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Figure 1. Geometry of the flow of moving cylinder 
through a power law fluid. 

 
 
 

thickness  . Due to gravity, the fluid film tends to drain down the 

cylinder. We choose an rz coordinate system such that 

axisr   is normal to the cylinder axis and axisz   along the 

cylinder axis in upward direction as shown in Figure 1. Assuming 
that the flow is steady, laminar and uniform; and surface tension 
effects are negligible, the only velocity component is in 

z direction. Accordingly we assume that, 

 

  ).(=,)(0,0,= rSrw SV                                                (6) 

 
Using Equation (6), the continuity Equation (1) is identically 
satisfied and the momentum Equation (2) reduce to, 
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Equations (7) and (8) imply that )(= zpp  only. Assume that 

pressure the p  is atmospheric pressure, that is, p  is zero (gauge 

pressure) everywhere. As we are discussing the flow problem, we 

take 
r

w




 positive. Thus Equation (9) reduces to, 
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which is non linear differential equation. The associated boundary 
conditions are:  
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.== 0 RratUw                                                                (12) 

 
Introducing dimensionless parameters,  
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By using Equation (13) in Equation (10) and boundary conditions 

(11) and (12), we achieve after dropping the superscript ' ', 
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is power law fluid parameter and 
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Equation (14) with respect to r and using boundary condition (15), 
we obtain,  
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The sign of 
dr

dw
 is always opposite to that of r because as r 

increases, the velocity of the fluid decreases, so 
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Equation (18)  is a linear differential equation. Here two cases arise: 

 

Case I: 1=n  (Newtonian fluid ). 

Case II: 1n  (Power law fluid).  

 
 
Solution for the Newtonian fluid 

 
Velocity profile 

 

For 1=n , the solution of Equation (18) by using boundary 

condition (16) is,  
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The vorticity vector   is calculated as: 
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where j is the unit vector in  -direction. We note that the vorticity is 

zero at the free surface while its magnitude is maximum at the 

cylinder, given by 
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Volume flow rate 

 

In dimentionless form, the volume flow rate Q  is given by, 
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By making use of Equation (19), we acquire,  
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Average velocity 
 

The average film velocity V  is then given by,  
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which when use  by Equation (22) gives,  
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Equation (24) gives the net upward flow of liquid. For ,0>V   
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This provides the reasonable estimate for the cylinder velocity to lift 
a Newtonian fluid. 

 
 
Solution for the power law fluid 

 
Velocity profile 

 

In case of 1n  in Equation (18), we have, 
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The expression for velocity field is obtained by solving Equation 
(26) corresponding to boundary condition (16) as, 
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By using non-dimensional parameters 
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from use of Equation (13) in Equation (3) after dropping ' ', we 

obtain shear stress rzS , 
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Substituting Equation (17) in foregoing equation, we get, 
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The z – component of the force exerted by the fluid on the cylinder 
surface is given by 
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Inserting the value of rzS  from Equation (29) into Equation (30), we 

get, 
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The vorticity vector Ω  is calculated as: 
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where j is the unit vector in  -direction. We note that the vorticity is 

zero at the free surface while its magnitude is maximum at the 

cylinder surface given by 
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Volume flow rate 
 
By making use of velocity field given by Equation (27) in (21), we 
obtain  
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Average velocity 
 

The average film velocity V  for lift problem investigated comes 

out to be by using Equation (33) in (23),  
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Equation (34) gives the net upward flow of liquid. For .0>V  
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This equation presents the rational estimate for the cylinder velocity 
to lift a power law fluid. 
 
 
Solution for drainage case 

 
Consider steady, parallel and laminar flow of an incompressible 
power law fluid down an infinite vertical cylinder. As a result, a thin 

uniform fluid film of thickness   is formed in contact with stationary 

air. The geomentry of the problem is shown in Figure 2. We choose 
an rz –coordinate system such that r-axis is normal to cylinder and 
z-axis along the cylinder axis in the downward direction. We 
assume that the fluid is non-conducting and completely wets the 
cylinder. Further, there is no applied (force) pressure driving the 
flow and fluid falls under the action of gravity, so the governing 
Equation (14) becomes,    
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along with the boundary conditions, 

 

,=0= Mrat
dr

dw
                                                       (37)

      

 

.1=0= ratw                                                             (38) 

 
Integrating Equation (36) with respect to r  and using boundary 
conditions (37), we obtain,  
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Figure 2. Geometry of the thin film flow down a vertical 
cylinder. 
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which is a linear differential equation. Here two cases arise: 
 

Case-I: 1=n , we recoverd the result of Newtonian fluid given in 

Papanastasiou et al. (2000). 

Case-II: 1n , power law fluid.  

 
 
Solution for the power law fluid 
 
Velocity profile 
 

For 1n , from Equation (39), we have, 
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The solution of Equation (40) by using binomial series and applying 
boundary condition (38) is,   
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Substitute Equation (40) in Equation (28), we get, 
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The z – component of the force exerted by the fluid on the cylinder 

will be obtained after inserting the value of rzS from Equation (42) 

into Equation (30), we will get, 
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The vorticity vector Ω  is calculated as: 
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where j is the unit vector in  -direction. We note that the vorticity is 

zero at the free surface while its magnitude is maximum at the 

cylinder given by 
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Volume flow rate 
 
The volume flow rate Q for drainage problem can be obtained by 
using Equation (41) in (21), 
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Average velocity 
 

The average film velocity V  for drainage problem can be 

calculated by using Equation (45) in (23), 
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RESULTS AND DISCUSSION 
 
The quantitative effects of power law index n , parameter 

M  and  Stokes’ number tS  on velocity profile, shear 

stress and flow rate are presented graphically in Figures 

3 to 19. The variation of axial velocity for n , M  and tS  

for both Newtonian and power law fluid in case of lift is 
displayed in Figures 3 to 8. In Figures 3 to 8, we 

observed that with an increase in n , M  and tS , velocity 

profile decreases. The difference of n , M  and tS  for 

drainage of fluid film in Figures 9 to 11 have been plotted, 
in which it is observed that the velocity of fluid film 
increases significantly for a change in parameters of
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Figure 3. Velocity profile for Newtonian fluid for lift in thin film flow when 
St=0.8, M=1.1. 

 
 
 

 
 

Figure 4. Velocity profile for power law fluid for lift in thin film flow for 
different values of ,n when St=0.8, M=1.1. 

 
 
 

 
 

Figure 5. Velocity profile for Newtonian fluid for lift in thin film flow for 
different values of M, when St=0.8. 
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Figure 6. Velocity profile for power law fluid for lift in thin film flow for 
different values of ,M  when St=0.8, n=1.2. 

 
 
 

 
 

Figure 7. Velocity profile for Newtonian fluid for lift in thin film flow for different 

values of Stokes number tS
, when M=1.1. 

 
 
 

 
 

Figure 8. Velocity profile for power law fluid for lift in thin film flow for different 
values of Stokes number     ,when M=1.1, n=1.2. 

 

 tS
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Figure 9. Velocity profile for power law fluid for drainage in thin film flow for different values of n , 

when St=0.8, M=1.1. 
 
 
 

 
 

Figure 10. Velocity profile for power law fluid for drainage in thin film flow for different values of M, 

when St=0.8, n=1.2. 

 
 

power law fluid model. The variation of shear stress in 
case of lift and drainage at different dissimilarity 

parameters M  and  tS  is demostrated in figures 12 to 

15. Here it is observed that both dissimilarity parameters  
are  directly proportional to the shear stress for drainage 
case and inverselly proportional for lift case. Difference 

for n , M  and tS  for flow rate is also observed for 

drainage case in Figures 16 to 19, in which we observed 
that, flow rate is also directly proportionsl for all 

parameters for drainage case and inversely proportional 
for lift case.

 
 
 
Conclusion 
 
We have presented results for the thin film flow field of a 
fluid, which is called the power law fluid, on a vertical 
cylinder for lift and  drainage problem. The resulting 
nonlinear differential equation has been solved by
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Figure 11. Velocity profile for power law fluid for drainage in thin film 
flow for different values of St, when M=1.1, n=1.2. 

 
 
 

 
 

Figure 12. The effect of M on shear stress for lift, when 8.0tS . 

 
 
 

 
 

Figure 13. The effect of 
tS on shear stress for lift, when .1.1M  
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Figure 14. The effect of M on shear stress for drainage, when 8.0tS . 

 
 
 

 
 

Figure 15. The effect of 
tS on shear stress for drainage, when .1.1M  

 
 
 

binomial series method, which is reliable method for the 
proposed problem. The velocity profile, volume flow rate 
and  average velocity have been derived analytically. 
 
 
 
NOMENCLATURE: 

1A , 
Rivilin-Ericksen tensor; 

Dt

D

, 

material time derivative;  f, body force; zF , Force exerted 

by the fluid; g
, 

Acceleration due to gravity;  , thickness 

of fluid film;  n, Power law index;  P, dynamic pressure; 

Q , volume flow rate; S , extra stress tensor; St, Stokes’ 

number;  t, time. V , average velocity; V , velocity vector. 

w, Axial component of the velocity field 

 
V .

  
 , 

dynamic 

viscosity; 
eff

, 
power law fluid parameter; 

, 
density of  

the fluid; Ω , vorticity vector.  
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Figure 16. The effect of 
tS  on flow rate for Newtonian fluid for 

drainage. 
 
 
 

 
 

Figure 17. The effect of tS  on flow rate for power law fluid for drainage, 

when M=1.1. 
 
 
 

 
 

Figure 18. The effect of tS  on flow rate for power law fluid for drainage, when 

.1.1n  
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Figure 19. The effect of tS  on flow rate for power law fluid for lift, when M=1.1. 
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