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This paper studies the fractional-order chaotic dynamics of Josephson junction based on resistor and 
capacitor shunted junction (RCSJ) model proposed by W. C. Stewart and D. E. McCumber. The 
fractional-order numerical integration is carried out with modified trapezoidal rule. Fractional-order 
chaotic behaviors of the model are explained by bifurcation diagram. Numerical results confirm that 
there exists chaos at fractional-order in this model. 
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INTRODUCTION 
 
The theory of fractional calculus is 300 years old 
mathematical topic. This theory originated from Leibnitz’s 
note in the 17th century. This mathematical theory has 
long history that dates back to the day that Leibnitz 
replied query from L'Hospital about the meaning of half 
order derivative (Oldham and Spanier, 1974). The theory 
is not known to scientist and engineers that much 
because there are few solutions for solving the fractional 
differential equation (Oldham and Spanier, 1974). 
Recently, the study in this theory has gained more 
applications such as viscoelasticity, mechanics and 
nonlinear dynamic and anomalous phenomena 
(Zaslavsky, 2002). The comprehensive discussions of 
this theory are presented by Oldham and Spanier (1974), 
Miller and Ross (1993), and Podlubny (1999) and 
applications in physics and engineer are presented by 
Sabatier  and Machado (Sabatier et al., 2007).  

In general, the non-linear dynamical system can be 
described by simple rules as well as different physical 
systems. In certain dynamical system, there exists the 
irregular behavior that is sensitive to small changes in the 

initial condition known as chaos (Strogatz, 1994). Many 
non-linear systems in nature exhibit irregular pattern or 
chaotic property by being sensitive to initial condition. 
Examples include the models that describe the planetary 
motion, oscillation in electric circuit, swinging of 
pendulum, the flow of liquid, chemical reaction, 
fermentation process (Strogatz, 1994), dripping faucet 
(Dreyer and Hickey, 1991) and population of some 
species in ecological system (May, 1976). 

Chaos is an irregularity behavior which arises in 
nonlinear dynamical systems. The first discovery of 
chaos in atmospheric convection model by Lorenz is the 
beginning of research in this area (Lorenz, 1963). The 
equations that described the dynamical system are 
differential equations which yield different type of 
solutions, such as limit cycle, periodic, periodic doubling, 
non-periodic and chaotic (Strogatz, 1994). 

The fundamental results in fractional order differential 
equation that are useful for the applications are stable. 
The studies of fractional-order stability include the 
fractional Duffing oscillator,  fractional  predator-prey  and  
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Figure 1. Simple circuit model of Josephson junction. 

 
 
 
rabies models. In control theory, the fractional-order  
control systems have many interesting problems related 
to stability theory such as robust stability, bounded input 
– bounded output stability, internal stability, root-locus, 
robust controllability, robust observability, etc (Li and 
Zhang, 2011). The stability of fractional order often refers 
to Matignon's theorem for commensurate order. The 
theorem analyzes the system stability by locating the 
eigenvalues of the dynamical system in complex plane. 
Xiang-Jun et al. (2008) have proven the stability theorem 
of nonlinear fractional-order differential equation by using 
the Gronwall-Bellman lemma (Li and Zhang, 2011). 
Petras provided a survey on the methods for stability 
investigation of certain class of fractional differential 
systems with rational orders (Petras, 2009). 

The theory of Poincare Bendixson explains that chaos 
can exist in continuous dynamical system with at least 
three degrees (Li and Yorke, 1975). The study of 
nonlinear dynamical systems with theory of fractional 
calculus provided novel conclusion; for example, chaotic 
dynamics of fractional-order Arneodo's systems (Lu, 
2005), fractional Chen system (Lu et al., 2006), chaos in 
the Newton–Leipnik system with fractional order (Wang 
and Tian, 2006), chaos in a fractional order modified 
Duffing system (Ge and Ou, 2007), fractional order 
Chua’s system (Radwan et al., 2011; Hartley et al., 1995; 
Petras, 2008), fractional-order Volta's system (Petras, 
2009), chaos in a fractional-order Rössler system (Li and 
Chen, 2004, Zhang et al., 2009), fractional-order Lorenz 
chaos (Yu et al., 2009). 

Nonlinear physical phenomena are often described by 
integer order differential equations. With the development 
of fractional calculus, it has been found that the behavior 
of many systems can be described by using the fractional 
differential systems fractional order damping of duffing 
system (Cao et al., 2010). Josephson junction is a 
nonlinear device that has many applications in high 
frequency, ultra-low noise and low power consumption 
(Chen et al., 2012). In this paper, we study further the 
fractional dynamic of Josephson junction circuit from the 
well-known. The  Resistively  and  Capacitively  Shunted 

 
 
 
 
Junction-model (RCSJ) proposed by Stewart McCumber. 
This device is a good candidate for studying the 
fractional-order chaotic patterns. The chaotic behaviors of 
fractional order have been investigated by the bifurcation 
diagram and phase space. Numerical algorithm was 
carried out using modified trapezoidal rule proposed by 
Odibat and Momani, (2008b). The aim of this study is to 
examine the intermediate state of the bifurcation patterns. 
 
 
METHODOLOGY 
 
Mathematical model of Josephson junction 
 
A simple model of the Josephson junction (JJ) can be considered 
with a resistor and capacitor shunted junction (RCSJ) circuit as 
represented in Figure 1. The model was proposed by W. C. Stewart 
and D. E. McCumber (Clarke and Braginski, 2006). The current 
through the circuit is determined with the Kirchoffs law as follows 
(Chen et al., 2012): 
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A standard form of the RCLSJ model is proposed as: 
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where c  and L  are simplified capacitance and inductance. We 

can rewrite the above relation into three differential equations as 
follows (Feng and Shen, 2008): 
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By replacing the derivative with fractional derivative, we have the 
fractional-order differential equations of RCSJ model as follows: 
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Normalized time ct  , 4 /c c sI R h   

Normalized current / ci I I  

Normalized voltage / c sv V I R  (Feng and Shen, 2008). 

 
 

Fractional calculus 
 

In fractional calculus, there are many definitions proposed. Two 
mostly use definitions are Riemann-Liouville and Grunwald-
Letnikov. The definition that is suitable for studying the analytic 
solution is Riemann-Liouville definition while the definition that is 
more appropriate for numerical calculation is Grunwald-Letnikov 
definition (Podlubny, 1999). 
 

Definition 1: The Riemann-Liouville fractional integral of order 

0q   of a function :f R R   is given by Podlubny (1999): 
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Podlubny (1999) provided the right side point-wise defined on R
 

where ( )   is Gamma function defined by: 
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Definition 2: The Caputo fractional derivative of order 

( 1, )q n n   of a continuous function :f R R   is given by 

Podlubny (1999): 
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Definition 3: Grunwald–Letnikov definition for fractional derivative 
of order q  is given by Podlubny (1999): 
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In classical calculus, the meaning of integer order derivative is the 
rate of change, direction of decline or slope in the geometric 
interpretation. The meaning of fractional-order derivative is 
different. It has no conventional geometric meaning and physical 
interpretation of fractional integration and differentiation. Recently, 
Podlubny has proposed a new physical interpretation based on 
general convolution integrals of the Volterra type (Podlubny, 1999). 
Machado gives a geometric and probabilistic interpretation based 
on Grunwald-Letnikov definition of the fractional derivative 
(Machado et al., 2009). Fractional derivative and integration have 
many forms and definitions. The operators in this mathematical 
theory are fascinating. The fractional derivative of the constant 
value is not zero (Podlubny, 1999). For three centuries, the theory 
of fractional derivatives is developed only for mathematicians.  

There are many approaches for solving the fractional order 
differential equation which include numerical approximation, series 
expansion, method of decomposition, predictor corrector scheme 
(Petras, 2008), Adam Moulton algorithm, Laplace transform 
(Tavazoei et al., 2008), differential transform (Odibat et al., 2010), 
(Odibat and Momani, 2008a), (Odibat et al., 2008c) and numerical 
calculation of nonlinear fractional partial differential equations 
(Momani et al., 2008). Solutions are written in the compact form of 
mathematical function mathematicalfunction (Erturk et al. 2012; 
Erturk et al., 2008; Baleanuet al., 2009; Li and Deng, 2007). The 
applications of fractional calculus in physics are better for 
describing the diffusion phenomena in homogeneous media with 
non-integer derivative; the fractional derivatives model of 
viscoelastic material (Bagley and Calico, 1991); fractional order 
impedance in electric circuit; dynamical process of heat conduction 
and chaotic dynamical system (Podlubny, 1999). 

The advantage of fractional derivatives compared to classical 
integer-order calculus is the description of memory and hereditary 
properties of various materials and processes. In the last few 
decades, many authors show that derivatives and integral of non-
integer order are very suitable for describing properties of various 
real materials e.g. polymers. It has been shown that fractional-order 
models are more adequate than integer-order models (Bagley and 
Torvik, 1983). Recently, this mathematical theory has gained more 
attention due to their vast applications in Applied Sciences 
(Podlubny, 1999). 

 
 
Numerical method 

 
There are many approaches in fractional order numerical 
calculation. Two main approaches for numerical calculation are the 
frequency domain and time domain. From the study of Tavazoei, 
the frequency domain approach can lead to the fake chaotic results 
(Tavazoei et al., 2008). The numerical method that we utilized in 
this paper is the modified trapezoidal rule proposed by Odibat and 
Momani, (2008b). This method is simple calculation scheme that 
was derived from the area of trapezoidal shape. 

Consider ( )y f x  over [ , ]a b  suppose that the interval [ , ]a b  

is subdivided into m subintervals 1 1{[ , ]}m

k k kx x   of equal width 

b a
h

m


  by using the equally spaced nodes 

0kx x kh   for 

1,2,...,k m . 

The composite trapezoidal rule for m  subinterval is: 
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The formula can be extended by using fractional order differential 
as follows (Odibat and Momani, 2008b): 
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          (17) 

 
The formula in Equation (17) is used to approximate the integral 
function of arbitrary order. According to the classical theory of 
ordinary differential equations, we need to specify initial conditions 
to produce a unique solution for the problem (Odibat and Momani, 
2008b). 

Equation (18) is an approximation to fractional integral at 
order q : 

 

( ( )( )) ( , , ) ( , , )qI f x a T f h q E f h q                              (18) 

 

where 0, 0a q   

 
Odibat and Momani (2008b) shows that the error is a function of 

parameter h  
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It is obviously that if the order 1q  , then the modified 

trapezoidal rule is reduced to the classical trapezoidal rule:  
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Stability of fractional-order chaos 
 
Here we discuss the stability condition for fractional-order systems 
and a necessary condition for chaos to exist. Consider the following 
fractional differential equations (Petras, 2009; Podlubny, 1999; Li et 
al., 2011; Odibat et al., 2008c). 
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Therefore, we will have a linear system: 
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The following autonomous system is: 
 

0, (0)qD x Ax x x                                                               (27) 

 

where 0 1, ,n nxnq x R A R     is asymptotically stable if and 

only if arg( ( )) / 2i A q  . In this case, each component of the 

states decays towards 0 like
qt . Also, this system is stable if and 

only if arg( ( )) / 2i A q   and those critical eigenvalues that 

satisfy arg( ( )) / 2i A q   have geometric multiplicity one 

(Matignon, 1996). 
Given the parameters as follows 

1.11, 0.707, 2.68, 0.0478c Li g     , then we can have 

the asymptotically stable condition 2
(2.53892) 1.62q


  . 

 
 

NUMERICAL RESULTS 
 
Lyapunov exponent 
 

Nonlinear dynamical system is often defined by the 
differential equation. The dynamical system may have 
attracting limit set. The different attracting limit set with 
different basin of attraction is determined by the initial 
condition. The limit set can be characterized by four 
fundamental types of limit sets: fixed points, periodic, 
quasi-periodic and chaos. The dynamical system can be 
used to measure the rate of divergence of nearby 
trajectories using the Lyapunov exponents. These 
quantities can characterize the solutions of the differential 
equations (Sandri, 1996). The Lyapunov exponents of the 
Josephson junction model for 1.11i  , 1.56i   

and 0.707, 2.68, 0.0478c L g    are shown in Figure 2. 

 
 
Fractional-order phase space 
 

The study of dynamical system behavior entails studying 
the behavior of the trajectories in  the  phase  space.  The
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Figure 2. The Lyapunov spectrum for the Josephson junction model. 

 
 
 
phase space in the structural form of trajectories is 
examined. The structures of the trajectories are diagram 
of phase space of the dynamical systems. From a 
geometrical point of view, this structure is the geometrical 
pattern of the relative positions of trajectories in the 
phase space. The study of phase space by fractional 
calculus helps in understanding the small deviation of the 
dynamical systems. The behavior of chaotic dynamical 
system can be understood by construction viewed from a 
phasespace perspective. In Josephson junction circuit, 
the chaotic behavior is often viewed from the phase 
space of the voltage and current of the dimensionless 
variables. The geometric meaning of the single close loop 
of phase space presents the periodic system and two 
close loops of phase space represent the periodic 
doubling and so on. The chaotic system of the phase 
space appears as a messy loop.  

The numerical results of fractional-order phase space 
of the variable y  and z are shown in Figure 3. According 

to the numerical results, the change in integration-order 
results as bent curve or distorted trajectories.  
 
 
Memory effect with Bifurcation theory 
 
The behaviors of nonlinear system are intrigue because 
they range from simple to complex and periodic to non-
periodic. In certain nonlinear system, chaotic behavior is 
exhibited at certain range. Two different nonlinear 
systems can be described by similar set of equations. 
The study of sensitivity in nonlinear dynamical system 
helps in understanding how systems behave at certain 
parameters. The behaviors of nonlinear dynamical 
system are studied by bifurcation theory. Bifurcation 
theory is mathematical theory that study changes in 
qualitative   or   topological   structure   of   the  dynamical 

system. The theory explains the behavior of the integral 
curves of the vector fields and the solution of differential 
equation (Strogatz 1994). The combination of fractional 
calculus and this mathematical theory help us in 
understanding how system change upon the order. 
 
 
Integer-order Bifurcation diagram 
 
Bifurcation pattern can be obtained by varying certain 

parameters. In this case we use L . In the diagrams 

(Figure 4), the values of i  vary from 1.12 to 1.15 results 

in bifurcation diagram (Figure 3). Numerical results show 
different bifurcation patterns start from periodic and 

become chaotic; they disappear when L  increases. The 

dot bands are the chaotic regions. There is periodic 

doubling and quadrupling of the value of 1.14i  ; it 

disappears when 1.15i  . According to the pattern, we 

may conclude that different values of parameters provide 
different bifurcation patterns. 

 
 
Fractional order Bifurcation diagram 
 
The numerical integration of fractional order is calculated 
by applying the modified trapezoidal rule to the 
differential equation of the RCSJ model. In order to 
reduce numerical errors, the time-step of the fractional-

order numerical integration is set to 2000h  .The 

diagrams are obtained by varying the fractional 
integration order with the fixed values of the parameters. 

In this calculation, we use 1.59, 1.11i i  ; while the 

other variables are 0.707, 2.68, 0.0478c L g    .
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Figure 3. Fractional-order phase space of RCSJ model for following parameters 

1.11, 0.707, 2.68, 0.0478c Li g     . 

 
 
 

 
 

Figure 4. Integer-order Bifurcation diagram for the following parameters 

1.12 1.15, 0.707, 2.68, 0.0478c Li g      . 
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Figure 5. Fractional-order Bifurcation diagram of the following parameter 

1.59, 0.707, 2.68, 0.0478c Li g     .
 

 
 
 

For the values 1.59i  , the chaotic region begins 

with 4L  . For the values 1.11i  , the chaotic region  

begins with 3.6L  . The results are as in Figure 5 and 

Figure 6. We may recognize the existing pattern in 
fractional-order bifurcation diagram where the structures 
of each diagram resemble the previous stage. 
 
 

DISCUSSION 
 

The combination between theory of fractional calculus 
and nonlinear dynamical system provides the novel idea 
for exploring the unexplored region. Even simple known 
chaotic systems have broad ranges of irregular behavior 
that are not yet examined. Fractional calculus helps in 
exploring the unexplored areas in dynamical system. The 
RCSJ model is  one  of  the  simple  known  systems  that 

there exhibit chaotic behavior at certain ranges. Theory of 
fractional differential equations has proved to be a 
valuable tool for the modeling of many physical 
phenomena. In this paper, we have applied theory of 
fractional calculus to examine the fractional-order 
bifurcation diagram in The Resistively and Capacitively 
Shunted Junction-model (RCSJ) model. We may see that 
physical system does not only depend on the instant of 
time but also on the history of the earlier stage, which can 
achieved by numerical calculation with fractional calculus. 
The numerical results show that the patterns of the 
fractional-order bifurcation diagram do not differ from the 
integer order that much. We may conclude that integer-
order bifurcation diagram explains the behaviors of 
dynamics subject to change in parameters. The results in 
fractional order bifurcation diagram are the deviations 
from the previous stages since the fractional operator has 
memory effect. 
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Figure 6. Fractional-order Bifurcation diagram of the following parameter 

1.11, 0.707, 2.68, 0.0478c Li g     . 
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