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Visual information plays an important role in modern applications as the usage of multimedia becomes 
more widespread from day to day. However, impulse noise is ubiquitous in real life and often distorts 
an image. This paper presents a new noise-filtering algorithm called efficient nonparametric switching 
median (ENPSM) filter, which is capable of reducing the effect of low level random-valued impulse noise 
up to 30% of the corruption rate in digital images. The proposed filter is composed of a nonparametric 
impulse noise detector and a recursive pixel restoration technique. Initiated with the impulse noise 
detector to determine any potential noise pixels, the filter will then replace the detected noise pixels 
with the median value of the surrounding pixels. Yet, only the noise-free pixels are considered, in order 
to determine the median value in a way that the filter is more efficient in the pixel restoration process. 
Based on the simulation results, it has been shown that the ENPSM method performs better than some 
of the existing state-of-the-art methods by giving better filtering performance, both in terms of 
qualitative and quantitative evaluations. Hence, this ENPSM filtering algorithm could possibly be used 
as a preprocessing module in the electronic imaging products. 
 
Key words: Image processing, impulse noise, digital image, noise filtering, nonparametric switching median 
filter. 

 
 
INTRODUCTION  
 
With a lot of valuable information contained in them, the 
usage of digital images have gained much attention and 
they are widely used in many image processing 
applications  such  as  in  the  geographical  analysis  and  
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medical imaging analysis. Unfortunately, digital images 
are frequently subjected to the contamination of impulse 
noise due to the interferences generated during 
transmission, acquisition or storage through many 
electronic products. Of late, in accordance with the 
advancement in digital imaging technologies, the level of 
noise density in digital images has dropped significantly 
to the level that may be considered as low contamination 
rate, that is, less than 30% noise level (Toh and Mat-Isa, 
2010). Nevertheless, it is still essential to remove impulse 
noise effect before carrying any subsequent image 
processing task, as the occurrences of noise can 
rigorously damage the information or data contained in 
the original image. Moreover, most of these subsequent 
tasks such as segmentation and edge detection etc. are 
largely affected by the quality of the filtered image (Dong 
et al., 2007; Toh et al., 2008).  
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Towards this, a denoising-based algorithm is known to be 
the most effective way to cater for the occurrence of 
impulse noise and for the improvement of the quality of 
the acquired image. Recently, a variety of nonlinear 
filtering techniques have been used to remove the 
impulse noise due to their impressive performance. One 
of the most classic nonlinear techniques is by windowing 
the noisy image with a standard median (SM) filter

 

(Gonzalez and Woods, 1992). However, the SM filter 
often removes many desirable details and destroys fine 
textures while reducing noise, due to its filtering behavior 
that treats all noise and noise-free pixel uniformly. As the 
enhanced version, Hwang and Haddad (1995) and Sung 
and Yong (1991) have proposed the adaptive median 
(AM) filter and the centre weighted median (CWM) filter, 
respectively. Although they claim that these filters could 
preserve more details, yet again those filters are 
implemented invariantly across an image and this hasty 
smoothing property always tends to blur and smear the 
filtered images. 

The aforementioned drawbacks have led to the 
emergence of various switching-based filters, for 
example, the switching median (SWM) filter along with 
the centre weighted switching median (CWSWM) filter 
(Sun and Neuvo, 1994), the Laplacian switching median 
(LSM) filter (Zhang and Karim, 2002), the enhanced rank 
impulse detector (ERID) (Aizenberg and Butakoff, 2004) 
and the multi-state median (MSM) filter (Chen and Wu, 
2001), etc. Basically, this class of filtering scheme works 
based on the impulse detection mechanism which uses a 
fixed size filtering window and predefined threshold value 
to differentiate between noise and noise-free pixels. With 
the noise detector, these filters are shown to be more 
effective in terms of the detail and edge preservation 
compared to the uniformly applied conventional median 
filters. However, one disadvantage is that the switching 
rule is typically based on a fixed threshold for locally 
obtained statistics. This approach in certain 
circumstances tends to yield problem of pixel’s 
misclassification and fails to replace the noise pixels. 

As to obtain improved performances, numerous high-
end methods based on the hybrid median-based filter 
have been developed by many researchers, recently. 
They have incorporated other order statistics (for 
example, rank order difference, alpha trimmed mean, 
etc.), image processing techniques and soft computing 
techniques into the median-based filters as part of their 
proposed filtering mechanisms. For example, the tri-state 
median (TSM) filter (Chen et al., 1999), is formed by the 
combination technique of CWM and SMF. Briefly, the 
TSM filter uses a set of two predefined thresholds in the 
impulse noise detection stage and its output will 
correspond to three possible states, namely the noise-
free pixel (that is, which retains the original pixel value), 
the noisy pixel (that is, replaced by the output of SM) and 
the possibly noise-free pixel (that is, replaced by the 
output  of  CWM).  In  addition,  Kang  and  Wang  (2009)  

 
 
 
 
further modify the conventional SWM framework by 
adding a secondary impulse noise detection process. The 
proposed impulse noise detector is established based on 
the rank order arrangement of the pixels in the filtering 
window. 

In general, the performance of filtering methods 
previously discussed is very much dependent on the 
predefined parameters. Such “inflexible” modeling under 
the parametric framework merely limits the performance 
of the filter as the responses towards varying noise 
density are dependent on the fixed parametric 
framework. Based on the above mentioned observation, 
we introduced a more flexible switching-based filter called 
efficient nonparametric switching median (ENPSM) filter, 
for detail-preserving restoration. The ENPSM filter is 
established based on the combination of local variance 
threshold in the impulse noise detection module and 
recursive restoration technique in the pixel restoration 
module. 

 
 
MATERIALS AND METHODS 

 
Impulse noise model 

 
For an image stored as an 8-bit gray scale pixel resolution, the pixel 

intensities lie in the dynamic range [Nmin, Nmax], where Nmin and 
Nmax are the minimal and maximal intensities, respectively. 
Usually, a certain percentage of pixels is altered when images are 
contaminated by the impulse noise. For detail, let xi, j and oi, j be the 
gray level of the noisy image and the original image at location (i, j), 
respectively. Then, the impulse noise model with noise ratio r can 
be defined as: 
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Where, ni,j is the gray level of the noisy pixel. There are two types of 
impulse noise model: the fixed-valued impulse noise (that is, salt-
and-pepper) and random-valued impulse noise. For example, in an 
8-bit gray scale image with 256 gray levels in the interval [0, 255], a 
salt-and-pepper noise is assumed to take the maximal and minimal 

intensities, that is, ni, j ∈ (0, 255).  
Although many researchers have placed an emphasis on 

obtaining a good filter for removing salt-and-pepper noise (that is, 
which is the simplest form of noise) such as noise adaptive fuzzy 
SWM filter (Toh and Mat-Isa, 2010) and decision-based algorithm 
filter (Srinivasan and Ebenezer, 2007), this work takes one step 
further by focusing on the detection and suppression of random-
valued impulse noise where ni,j can be distributed within the 

dynamic range, that is, ni, j ∈ [0, 255].  
 
 
Efficient nonparametric switching median filter 

 
A new version of the switching-based filter called the ENPSM filter 
is discussed and elaborated here. The proposed recursive double 
stage filter is particularly designed for images that are corrupted 
with a low level of random-valued impulse noise (that is, up to 30% 

noise level) and it can be divided into two modules. The first module 
involves the detection of impulse noise and its location based on a  



 
 
 
 
nonparametric framework. In this module, the predefined parameter 
(that is, threshold) for unscrambling the noise-free pixels from the 
noise pixels is flexible and not fixed in advance. The second 
module performs the recursive pixel restoration process. At this 
level, the ‘noise’ pixel is replaced by the estimated median value of 
the surrounding noise-free pixels. Otherwise, when a pixel is 
classified as ‘noise-free’, the pixel is retained and left unprocessed 
in order to avoid altering any details that are contained in the 
original image.  
 
 
Impulse noise detection 
 

The impulse noise detection can be carried out by analysing the 
local image statistics within a local window, based on the 
assumption that the intensity of an impulse noise pixel is 
significantly different from its surrounding pixels. For the process, 
the proposed ENPSM filter uses a square local window Wi, j with 
odd dimensions (2N+1) × (2N+1) and is centered at xi, j. It is given 
as: 

 

, , , ,, , , , ;   for ,i j i k j l i j i k j lW x x x N k l N       (2) 

 
The impulse noise detection process begins by sorting all pixels 
within the local window in ascending order as to find the median 
pixel mi, j, which is defined by: 

 

, , , ,med , , , ,i j i k j l i j i k j lm x x x
                          

(3) 

 
Then, the median pixel mi, j is subtracted from all pixels in Wi, j and 
the absolute luminance differences di±k, j±l is computed by: 

 

, , , ;   for  ,i k j l i k j l i jd x m N k l N              (4) 

 
Next, each value computed in di±k,j±l is rearranged in ascending 
order. In order to increase the robustness of the proposed filter 
towards noise, the predefined threshold TENPSM is assigned as the 
median value in the sorted array. The term TENPSM is defined by: 

 

,med |: ,  ENPSM i k j lT d N k l N
                     

(5) 

 
This is an attractive merit of the proposed ENPSM filtering scheme 
since it provides a variable TENPSM according to the local 
measurements of each local window. Based on the fact that 
different local windows have different local statistics, the selection 
of TENPSM to be the median of each local absolute luminance 
difference will ensure more accurate pixel classification results 
instead of using the fixed value threshold. Therefore, by employing 
this nonparametric concept, the possibility of pixel misclassification 
can be reduced significantly. 

After TENPSM is obtained, the following process will create a noise 
mask Mi, j to mark the locations of ‘noise’ pixels and ‘noise-free’ 

pixels. Thus, the process of generating noise mask can be grasped 
as: 
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Where Mi, j = 1 signifies ‘noise’ pixel, while Mi, j = 0 represents 
‘noise-free’ pixel. The proposed impulse noise detection algorithm 
is elucidated in a step-by-step basis as follows:  
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Step 1: Select a two dimensional local window Wi, j of size 3×3 from 
the noisy image. (The reason behind the selection of 3×3 window 
size is based on the fact that larger local window will blur the 
image’s detail and edge). 
 
Step 2: Sort all elements within Wi, j in ascending order and 
calculate the median pixel mi,j using Equation 3. 
 
Step 3: Compute the absolute luminance differences di±k, j±l between 
mi, j and all pixels in Wi,j according to Equation 4. 
 
Step 4: Rearrange each value obtained in di±k, j±l and set the 
predefined threshold TENPSM according to Equation 5. 

 
Step 5: Generate the noise mask Mi, j based on Equation 6. Slide 
Wi, j to the next pixel and repeat Step 2 to 5 until the process is 
completed for the entire image. 
 
To make it more comprehensible, Figure 1 shows the process of 
impulse noise detection as explained in Step1 to 5.   
 
 
Noise filtering 
 
After the detection stage is performed, the filtering process is 
carried out based on the noise mask obtained. ‘Noise’ pixels 
marked with Mi, j = 1 will be replaced by the estimated median 
value; otherwise the ‘noise-free’ pixels will be left unprocessed. 
Again, a square filtering window Wfilter i, j with (2Nfilter+1) × (2Nfilter+1) 
dimensions will be used in this process and it is given as: 
 

 , , , ,, , , , ;   where ,filter i j i k j l i j i k j l filter filterW x x x N k l N     (7) 

 
For every noise pixel detected, the estimated median value is 
counted using all ‘noise-free’ pixels in the current filtering window. It 
is computed by: 

 

, , , , , med , , , , with 0estimated i j i k j l i j i k j l i k j lm x x x M    (8) 

 
This procedure is carried out to avoid the noise pixels from 
influencing the determination of the real median value. 

Finally, the correction term to restore a detected noise pixel is 
given here as:  

 

         
(9) 

 
As to enhance the filtering process, this algorithm is implemented 
recursively, where the estimation of the current pixel is dependent 
on the new values of previously processed pixels. An illustrative 
example on the ENPSM filter’s impulse noise detection and filter ing 
operation is shown in Figure 2. 

 
 
RESULTS AND DISCUSSION 
 
Here, the comparison of the performance between the 
proposed ENPSM filter and other related state-of-the-art 
impulse noise filters is demonstrated. A total of 100 
standard grayscale test images of size 512 × 512 that 
were corrupted with random-valued impulse noise 
ranging from 10 to 30% were used in the simulation of 
the implemented filters. This set of test images was 
obtained from various online sources such as 
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Figure 1. The flowchart of the ENPSM noise detection operation. 

 
 
 
www.hlevkin.com, www.sipi.usc.edu and 
www.cipr.rpi.edu. These images were chosen because 
they contain fine image details and texture, which are 
suitable to evaluate the strengths and weaknesses of the 
implemented impulse noise filters.  

The following conventional switching-based median 
filters with their suggested tuning parameters were used 
to compare with the proposed algorithm; the SWM filter 
(T = 50), centre weighted SWM filter (T = 30, w = 3), 
enhanced rank impulse detector (Θ = 15, s = 2), TSM 
filter (T = 20, w = 3) and modified SWM filter (T1 = 30, T2 

= 3). In order to test the effectiveness and efficiency, 

simulation results of the implemented impulse noise 
filters were evaluated qualitatively and quantitatively. 
 
 
Visual inspection quality 
 
Providing visually pleasing output is imperative, since the 
quality of image is subjective to human eye. Therefore, a 
visual inspection was carried out in order to judge the 
filters’ effectiveness in reducing impulse noise effect. As 
for the qualitative comparison, Figure 3 shows the 
restoration results of images named Elaine, Pens and 
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Figure 2. The illustrated example on the ENPSM noise filtering operation. 

 
 
 
Monarch corrupted with 10, 20 and 30% random-valued 
impulse noise, respectively. The qualitative evaluation 
has been carried out by analyzing the ability of the filters 
to produce the most appealing visual results. The 
analysis is conducted based on the feedback given by a 
panel of experts from Universiti Sains Malaysia. This 
panel consists of eight experienced researchers in the 

field of image processing. In all figures, a close-up view 
of each image was used for a clearer depiction.  

As shown in Elaine, at 10% impulse noise density, all 
filters are found to be able to produce perceptibly 
reconstructed image. However, in Pens, we may notice 
that the proposed ENPSM filter gives better and clearer 
filtering result compared to the other conventional filtering  
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Figure 3. Simulation results of the standard grayscale test images. 
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algorithms. The noise particles and effects are 
significantly reduced and at the same time the image 
details are well preserved. On the other hand, some 
small noise patches have remained intact on the images 
produced by the other conventional filters (for example, 
see the Pens’ body). This finding proves that these 
conventional filtering algorithms have failed to restore the 
noisy image properly. 

Similar observations are obtained for the image named 
Monarch. For example, in the images restored by the 
conventional filtering algorithms, it can be seen that there 
is a great deal of noise contamination existed in the 
resultant images especially around the moth. These 
pictures’ qualities are vastly inferior to the ones produced 
by the ENPSM filter. This observation indicates that the 
nonparametric concept introduced in the proposed filter 
works very well in distinguishing between the noise and 
the noise-free pixels. The concept really helps the 
proposed ENPSM filter to dexterously reduce the noise 
stain and further create less corrupted images. 
Meanwhile, the poor restoration results among the 
conventional filters can be attributed from their parametric 
impulse noise detection mechanisms which are inclined 
to highlight the problem of pixels’ misclassification. 

The zoomed Elaine and Monarch in Figure 3 are shown 
in Figure 4 as to demonstrate the filters’ efficiencies in 
terms of details and edges’ preservation. As obtained 
from Elaine, only the TSM filter and the proposed 
ENPSM filter are able to preserve the image’s fine details 
(for example, refer to the eyelash at the left portion). 
However, the proposed ENPSM filter has a better noise 
suppression ability than the TSM filter since the filtered 
image does not have any visible noise patches. 
Moreover, as can be seen visually in Monarch, the 
ENPSM filter is also capable of preserving edges. 
Apparently, the robust nonparametric noise detection 
concept and the selection of median value among the 
noise-free pixels are found to be an ideal combination for 
yielding more idyllic restoration results. Conversely, the 
poor restoration results of the other conventional filters 
are due to their detection mechanisms which are less 
robust towards the contamination of random-valued 
impulse noise. 
 
 
Quantitative analysis 
 

In addition to the visual inspection of the restored images, 
the quality of the restored images is also evaluated 
quantitatively using the peak signal-to-noise ratio 
(PSNR). Mathematically, the PSNR for a digital image of 
the dimension M×N is defined as: 
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Where MSE stands for the mean-squared error, given as: 
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where yi, j is the filtered image and oi, j is the original 
noise-free image. Apart from the PSNR assessment, the 
mean of absolute error (MAE) has also been used in this 
analysis to characterize the filter’s detail preservation 
behavior, one which is defined by: 
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Among the 100 test images, the numerical results for 
three commonly used standard grayscale test images 
Elaine, Pens and Monarch are shown in Tables 1 to 3, 
respectively. In all tables, the larger PSNR and smaller 
MAE values indicate better restoration results. The best 
results obtained are made bold.   

As shown in Tables 1 to 3, the proposed filter 
consistently yields the highest PSNR and the lowest MAE 
values at all levels of random-valued impulse noise. 
These promising results are mostly resulted from the 
accurate noise detection and the efficient pixel restoration 
by the proposed ENPSM filter. In contrast, inconsistent 
performances have been shown by the conventional 
filters with their PSNR values to have decreased 
dramatically especially at 30% noise level. The larger 
MAE values as compared to the ENPSM filter also show 
that the conventional methods have been unable to cater 
for the occurrences of noise in a proper manner.  

This study has further calculated the average PSNR for 
100 tested images and the results are displayed in the 
graph shown in Figure 5. Apparently, the average PSNR 
curve for the ENPSM filter has the highest curve among 
all. This is followed by the average PSNR curve for the 
MSWM filter. Above 20% random-valued noise density, 
the two worst performing filters are the SWM and 
CWSWM filters.  The result obtained in this additional 
analysis has clearly proven that the proposed ENPSM 
filter has outperformed the other conventional filters. It is 
evident that the ENPSM’s filtering performance is 
tremendously consistent. 

Meanwhile, the extrapolation of the average MAE 
curves has resulted from the various conventional filters 
in comparison and the proposed ENPSM filter is shown in 
Figure 6. It can be seen from the plot that the proposed 
ENPSM filter is able to outperform other recent 
conventional filters by having the lowest MAE curve, 
while the TSM and MSWM filters are trailing closely along 
it. Once again, this finding shows that the ENPSM filter is 
not only able to eliminate noise efficiently but it can also 
preserve the original appearance and shape of an image 
very well. The good detail and edge preservation of the 
ENPSM is a result emerging from the accurate noise 
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Figure 4. The enlarged version of standard grayscale test images. 
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Table 1. Comparison of PSNR and MAE on different noise level restoration for ‘Elaine’ (Test image). 
 

Algorithm 10% PSNR(dB) 20% 30% 10% MAE 20% 30% 

SWM 32.0452 28.6001 25.6460 1.3921 2.8822 4.6866 

CWSWM 31.3360 27.5989 24.4272 1.2231 2.3885 4.8024 

ERID 33.3793 29.0599 27.4424 1.8736 3.2301 4.8808 

TSM 33.7649 30.3941 28.0509 1.1953 2.1763 3.3192 

MSWM 32.6142 30.6292 28.1780 1.5318 3.0002 4.0422 

ENPSM 33.9590 31.9943 30.6433 1.1541 2.0409 3.1856 

 
 
 

Table 2. Comparison of PSNR and MAE on different noise level restoration for ‘Pens’ (Test image). 

 

Algorithm 10% PSNR(dB) 20% 30% 10% MAE 20% 30% 

SWM 32.2993 28.4343 24.7552 1.2607 2.7565 5.0518 

CWSWM 33.9389 27.9344 23.2054 1.1141 2.6225 5.7004 

ERID 34.1186 29.5197 25.2547 1.0128 1.9589 4.0111 

TSM 35.8175 30.9668 25.7629 0.9459 1.6345 3.7326 

MSWM 35.9896 31.3970 26.5242 1.0502 2.4978 4.3571 

ENPSM 36.1737 33.5591 30.6339 0.9207 1.4160 3.5382 

 
 
 

Table 3. Comparison of PSNR and MAE on different noise level restoration for ‘Monarch’ (Test image). 

 

Algorithm 10% PSNR(dB) 20% 30% 10% MAE 20% 30% 

SWM 30.8593 27.5224 24.9762 1.4597 2.5792 4.1635 

CWSWM 31.0051 28.3536 24.6558 1.2774 2.3460 4.3291 

ERID 30.7964 28.1359 25.5880 1.7460 2.6583 4.7727 

TSM 32.1280 29.3735 26.7156 1.2081 1.8595 3.1545 

MSWM 32.8700 29.5661 26.9273 1.6590 2.4229 3.7633 

ENPSM 33.5378 30.5975 28.1224 0.9980 1.6652 2.9663 

 
 
 
detection under the nonparametric concept and the 
criterion of choosing median value based on noise-free 
pixels. On the other hand, the SWM, CWSWM and ERID 
filters have completely failed to compete.      
 
 
Processing time efficiency 
 
We had also conducted a processing time analysis for 
each filter for the aim of performing its denoising task. All 
the algorithms were implemented in Matlab R2010a and 
the simulations were carried out using a personal 
computer with AMD Athlon II 2.1GHz processor, 2GB of 
RAM. The graph of average processing time in seconds 
for 100 standard grayscale test images after with the 
application of the proposed ENPSM filter and other 
conventional filters is shown in Figure 7. 

Overall, the processing time of each filter remains 
almost constant at all levels of noise density. The MSWM 

filter consumes the highest processing time of all 
because it uses a more complex noise detection 
mechanism (that is, double detection stage) to complete 
its respective noise filtering processes as compared to 
the other filters. Generally, the filter with the multi-stage 
noise detection processes (for example, TSM and 
MSWM) suffers from slow processing time. Meanwhile, 
except for SWM, the proposed method consistently 
outperforms other filters across a wide range of noise 
levels with a relatively fast average processing time. This 
is because the proposed filter applies a simple noise 
detection algorithm in its implementation, which is based 
on single local threshold. Although the SWM is shown to 
have a better processing time compared to the ENPSM, 
the simulation results of their filtered images are 
perceptibly degraded. The ENPSM filter has met the 
objective in meeting the trade-off between good 
performance and efficient processing time. Thus, as far 
as the denoising performance is concerned, the proposed 
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Figure 5. The graph of an average PSNR based on different noise level restorations for 100 

standard grayscale test images. 

 
 
 

 
 

Figure 6. The graph of an average MAE based on different noise level restorations for 100 
standard grayscale test images. 

 
 
 

 
 
Figure 7. The graph of an average processing time (s) versus impulse noise density (%) 

computed from a total of 100 standard grayscale test images. 
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ENPSM can consequently be regarded as the best filter. 
 
 
Conclusion 
 
Throughout this study, we have developed an effective 
algorithm for the detection and suppression of random-
valued impulse noise. By incorporating a robust local 
variance thresholding and recursive pixel restoration 
technique into the filtering mechanism, the proposed 
ENPSM filter is able to reduce the random-valued 
impulse noise effect, while at the same time preserving 
the details and edge of fine images. Additionally, no 
complicated tuning parameters or special training is 
required since this filter is based on a nonparametric 
framework. Experimentally, the proposed algorithm has 
been shown to significantly outperform a number of well-
known techniques both visually and quantitatively. 
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