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A theoretical study is presented for the problem of injection of an elastico-viscous fluid through a 
moving elliptic plate. The governing equations are reduced to a system of nonlinear ordinary differential 
equations by means of appropriate transformations for the velocity components. The resulting 
boundary value problem is solved numerically using the Matlab solver singular boundary value problem 
(SBVP). The current numerical analysis encompasses the range of cross-flow Reynolds number R as 

0 5R≤ ≤ . The results are compared with those known from the literature and an excellent agreement is 

found. Perturbation solutions are also obtained for small R.  A comparison of the numerical solutions 
with the perturbation solutions is made. The comparison shows that the perturbation solutions give 
acceptable results for 1R <  and 0.2N < , where N is the viscoelastic fluid parameter. The influence of the 
viscoelastic fluid parameter on the velocity, load-carrying capacity and friction force has been 
examined carefully. 
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INTRODUCTION 
 
The flow of Newtonian and non-Newtonian fluids through 
porous channels has relevance to several technologically 
significant problems. Examples of these are the cases of 
boundary layer control, transpiration cooling, and 
gaseous diffusion. In addition to applications mentioned 
above, blowing is used to add reactants, prevent 
corrosion and reduce the drag. Suction is applied to 
chemical processes to remove reactants (Schlichting, 
1968; Skalak, 1978). The case of a two-dimensional, 
incompressible, steady, laminar suction flow of a 
Newtonian fluid in a parallel-walled porous channel was 
first studied by Berman (1953). He solved the Navier-
Stokes equations using a perturbation method for very 
low   cross-flow  Reynolds  number.  After  his  pioneering 

work, the flow of fluids over porous boundaries has been 
studied by many researchers (Sellars, 1955; Yuan, 1956; 
White et al., 1958; Proudman, 1960; Terrill and Shrestha, 
1965; Brady, 1984; Cox, 1991; Singh, 1993; Choi et al., 
1999; Bujurke et al., 2000; Ariel, 2002; Fang, 2004; 
Kurtcebe and Erim, 2005; Kamisli, 2006). 

In this study, a numerical solution of the steady flow of 
an elastico-viscous fluid between a porous elliptic plate 
and the ground is given. The computer program utilized 
in the present research is the Matlab solver singular 
boundary value problem (SBVP). To the best of our 
knowledge, the results of this paper are new and they 
have not been published before. The calculation of such 
flows   is   interesting   in   the   mechanical    engineering
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research for some developments concerning fluid-
cushioned porous sliders. It is well-known fact that fluid-
cushioned porous sliders are useful in reducing the 
frictional resistance of moving objects (Bruce, 2012; Keith 
et al., 2012). For Newtonian fluids, previous studies 
include the porous circular slider (Wang, 1974), the 
porous flat slider (Skalak and Wang, 1975), and the 
porous elliptic slider (Wang, 1978; Watson et al., 1978). 
Later, the fluid dynamics of a porous elliptic slider was 
studied by Bhatt (1981) for a second-order viscoelastic 
fluid. He obtained the first-order perturbation solution in 
terms of cross-flow Reynolds number. Ariel (1993) has 
extended Skalak and Wang’s (1975) analysis to a 
Walters’B viscoelastic fluid which is characterized by two 
material constants. In his study, the perturbation and 
exact numerical solutions have been obtained. The 
numerical solutions in the present paper include those 
given by Ariel (1993) as a special case. Also, for the case 
of Newtonian fluid, there is an overlap between our 
results and those given in Wang (1974), Skalak and 
Wang (1975), Wang (1978) and Watson et al. (1978). 
These give us confidence regarding analytical and 
numerical calculations. Bhatt's (1981) work was extended 
by Barış (2002) to the case of a Walters’B fluid but the 
author disregarded a very important issue about 
substantiating the reliability of the perturbation solutions, 
and hence he failed to explicitly highlight the validity of 
the perturbation solutions for the problem under 
investigation. The exact numerical solutions presented in 
this paper pointed out that the perturbation technique 
does not guarantee producing of the correct results 
qualitatively or quantitatively. Recently, Elsharkawy and 
Alyaqout (2009) proposed an approach for designing the 
optimum shape of slider bearing using sequential 
quadratic programming. Khan et al. (2011a) obtained a 
series solution of the long porous slider problem using 
the homotopy perturbation method. In their subsequent 
research, they solved the long porous slider problem 
using the Adomian decomposition method (Khan et al., 
2011b). Shukla and Deheri (2011) analyzed the 
performance of a porous rough secant shaped slider 
bearing under the presence of a magnetic fluid lubricant. 
Faraz (2011) studied the circular porous slider problem 
using variational iteration algorithm-II. More recently, 
Wang (2012) studied the effect of slip on the performance 
of the porous slider. Shah et al. (2012) theoretically 
discussed about the inclined slider bearing with porous 
layer attached to slider as well as stator including effects 
of slip velocity and squeeze velocity. Ghoreishi et al. 
(2012) obtained the approximate solution for the problem 
of circular porous slider using one step optimal homotopy 
analysis method. 
 
 
MATERIALS AND METHODS 
 
Formulation of the problem 

 
We consider the steady, incompressible, laminar flow of an elastico- 
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viscous fluid between a porous elliptic plate and the ground. Figure 
1 shows the physical model and the coordinate system. A fluid is 
injected through an elliptic plate, boundary of which is described by 

2 2 2x y Dβ+ =  ( 1)β < , z=d, where β  is the square of the 

ratio of minor axis to major axis. The supply pressure is assumed to 

be large enough to cause a nearly constant injection velocity 3U  

through the elliptic plate. The porous elliptic plate is moving laterally 

with velocities 1U  and 2U  along the negative x- and y- directions, 

respectively. We have further assumed the gap width d between 
the elliptic plate and the ground is small compared with D, that is, 

D d>> . Due to this assumption the edge effects can be ignored. 

The major axis of the elliptic plate under consideration is the 

segment of length 2 /D β  between the y-

intercepts (0, / )D β± . The minor axis is the segment of 

length 2D between the x-intercepts ( ,0)D± . Its 

eccentricity 1e β= − , which indicates the degree of departure 

from circularity, may vary from 0 to 1. Note that our current results 

reduce the circular case when e = 0, that is, 1β = , and the flat 

case when  e = 1,  that is, 0β = . As a result, the solutions 

presented in this research include the special cases corresponding 
to a porous circular plate and a porous flat plate. 

There are many fluids whose behavior cannot be described by 
the classical Navier-Stokes equations. The inadequacy of the 
theory of Newtonian fluids in predicting the behavior of some fluids, 
especially those with high molecular weight, leads to the 
developments of non-Newtonian fluid mechanics. There are 
numerous models of viscoelastic fluids suggested in the literature. 
To get some insight into their flow behavior, it is preferable to 
restrict to a model with a minimum number of parameters in the 
constitutive equations. We have chosen the model of elastico-
viscous fluid for our study as it involves only one non-Newtonian 
parameter. The Cauchy stress tensor T in such a fluid has the form 

(Beard and Walters, 1964). 

 

0 0
2 2p k

t

δ
η

δ
= − + −

e
T I e                                                     (1) 

 
in which p is the pressure, I is the identity tensor, and the rate of 
strain tensor e  is defined by 
  

2 ( ) , ( ) /
T i j

j i
v x= ∇ + ∇ ∇ = ∂ ∂e v v v                            (2) 

 

where v is the velocity vector, ∇  is the gradient operator, and 

/ tδ δ  denotes the convected differentiation of a tensor quantity 

in relation to the material in motion.  For the rate of strain tensor, it 
is given by 
 

( )
T

t t

δ

δ

∂
= + ⋅ ∇ − ⋅ ∇ − ∇ ⋅

∂

e e
v e e v v e                                 (3) 

 

Finally 0η  and 0k  are, respectively, the limiting viscosity at small 

rate of shear and the short memory coefficient. For a detailed 
description of this model the reader should consult Beard and 
Walters (1964). From the theoretical point of view, there has been a
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Figure 1. Sketch of flow geometry and coordinate system. 

 

 
 
remarkable interest in the study of Walters’ B elastico-viscous fluid 
in recent times. Calculations based on this fluid model for various 
flow problems have been carried out by many authors 
(Nandeppanavar et al., 2010; Singh et al., 2010; Joneidi et al., 
2010; Gupta and Aggarwal, 2011; Ghasemi and Bayat, 2011; 
Tonekaboni et al., 2012; Prakash et al., 2012). 

In addition to Equation (1), the basic equations of the problem 
are the following: 
 
Continuity equation: 
 

0∇ ⋅ =v                                                                                     (4) 

 
Equations of motion: 
 

( )ρ ⋅∇ = ∇ ⋅v v T                                                                     (5) 

 

where ρ  is the density. The assumptions made in the above 

equations are as follows:  (a) The flow is steady and laminar, (b) 
The fluid is incompressible, (c) The body forces are negligible. 

Substituting Cauchy stress tensor from Equation (1) into 
equations of motion (5), with the aid of Equations (2) and (3), we 
get 
 

2 2 2

0 0 0
( ) 2 ( )p k kρ η⋅∇ = −∇ + ∇ − ⋅∇∇ + ∇ ⋅∇v v v v v v v     (6) 

In a reference frame translating with the porous elliptic plate, let u, 
v, and w be the velocity components corresponding to the x-, y- and 
z- directions, respectively. Following Wang (1978), we look for a 
solution, compatible with the continuity Equation (4), of the form 

 

/ /3 3
1 2 3

( ) ( ), ( ) ( ), ( ( ) ( ))
U x U y

u U f h v U g k w U h k
d d

η η η η η η= + = + =− + (7) 

 

where /z dη =  is the similarity variable and  the prime denotes 

the differentiation with respect to η . 

The boundary conditions for the velocity field are 

 

1 2 3
(0) , (0) , (0) 0, (1) 0, (1) 0, (1)u U v U w u v w U= = = = = = − (8) 

 
By using equations of motion (6) and similarity transformation (7), it 
can be shown that the general expression for the pressure 
distribution is 

 
2 2

2

1 3 2 4 0

2

2

0 0 02

1
( , , )

2 2 2

2 ( ) ,

y x dw
p x y C y C x C C w

dz

dw d w
k k w p

dz dz

η ρ η= + + + − +

+ − +

  (9) 



 
 
 
 

where the constants 1 2 3, ,C C C  and 4C  are 

 

/ / / / / / /0 2

1 2

/ / / / / / / / / / / /

( [( ) ] [( )

( 2 ) ( ) ]),

U
C g R h k g k g R N h k g

d

k h g k h g k g

η
= + + − + +

− + + − −

 (10) 

 
2

2

/ / / / / /0 3

2 3

/ / / / / / / / / / /

( [( ) ] [( )

2( ) ]),

IVU
C k R h k k k R N h k k

d

h k k h k k

η
= + + − + +

− + − +

(11) 

 

/ / / / / / /0 1

3 2

/ / / / / / / / / / / /

( [ ( ) ] [( )

( 2 ) ( ) ]),

U
C f R h k f h f R N h k f

d

h k f h k f h f

η
= + + − + +

− + + − −

(12) 

 
2

2

/ / / / / /0 3

4 3

/ / / / / / / / / / /

( [( ) ] [ ( )

2( ) ]),

IVU
C h R h k h h R N h k h

d

h k h k h h

η
= + + − + +

− + − +

(13) 

 

and 0p  is the constant of integration. In the above equations, the 

cross-flow Reynolds number R and dimensionless measure of 
viscoelasticity of the fluid N are defined through, respectively 

 

3 0

2

0

,
U d k

R N
d

ρ

η ρ
= =                                                     (14) 

 
In view of the fact that the shape of porous plate makes the isobars 

similar to ellipses, the constants 
1 2 3
, ,C C C  and 

4
C  must satisfy 

the following equations: 

 

1 3 2 4
0, 0 ,C C C Cβ= = =                                            (15) 

 
Substituting Equation (15) into Equations (9) to (13), we obtain 

 
2 2

2 2 2 23

0 0 0 02 2

1
( , , ) ( ) 2 ( ) ,

2 2

U A dw dw d w
p x y x y w k k w p

d R dz dz dz

ρ
η β ρ η= + − + + − +

                                                                                          (16) 
 

2

2

/ / / / / / / / / / /

/ / / / / /

[( ) ] [( ) 2( )

]) ,

IV
h R h k h h R N h k h h k h

k h h A

+ + − + + − +

− + =

(17) 

 
2

2

/ / / / / / / / / / /

/ / / / / /

[( ) ] [( ) 2( )

]) ,

IV
k R h k k k R N h k k h k k

h k k Aβ

+ + − + + − +

− + =

(18) 

 
/ / / / / / / / / / /

/ / / / / / / /

[ ( ) ] [ ( ) ( 2 )

( ) ]) 0,

f R h k f h f R N h k f h k f

h k f h f

+ + − + + − +

+ − − =
(19) 

 
/ / / / / / / / / / /

/ / / / / / / /

[ ( ) ] [ ( ) ( 2 )

( ) ]) 0,

g R h k g k g R N h k g k h g

k h g k g

+ + − + + − +

+ − − =
(20) 
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where A is an unknown constant. The boundary conditions on 
velocity given by Equation (8) require 
 

/ / / /(0) (0) (1) 0, (0) (0) (1) 0, (1) (1) 1,

(0) 1, (1) 0, (0) 1, (1) 0.

h h h k k k h k

f f g g

= = = = = = + =

= = = =

 (21) 

 
The above boundary value problem includes the special cases 
corresponding to a porous flat plate and a porous circular plate. As 
far as practical applications are concerned, it is important to know 
the governing equations related to the above mentioned special 
cases. They can be easily obtained from Equations (17) to (21) by 

letting 0, 0kβ = ≡ , and 1, 0,g h kβ = ≡ ≡ , respectively, 

as follows: 
 
 
Porous flat plate 
 

2 2
/ / / / / / / / / / / /

( ) ( 2 )
IVh R hh h R N hh h h h A+ − + − + =  (22) 

 
/ / / / / / / / / / / / / / / /

( ) ( ) 0f R h f h f R N h f h f h f h f+ − + − + − =  (23) 

 
/ / / / / / / / / / / /

( 2 ) 0g Rh g R N h g h g h g+ + − − =           (24) 

 
with the boundary conditions 
 

/ /
(0) (0) (1) 0, (1) 1, (0) 1, (1) 0, (0) 1, (1) 0h h h h f f g g= = = = = = = = (25) 

 
 
Porous circular plate 
 

2
/ / / / / / / / / /

(2 ) (2 4 )
IV

h R hh h R N hh h h A+ − + − =   (26) 

 
/ / / / / / / / / / / / /

(2 ) (2 3 ) 0f R h f h f R N h f h f h f+ − + − − =     (27) 

 

with the boundary conditions 
 

/ /
(0) (0) (1) 0, (1) 1/ 2, (0) 1, (1) 0h h h h f f= = = = = = (28) 

 
It is also recorded that for a Newtonian fluid, Equations (16) – (21) 
are the same as those obtained by Wang (1978). 

It is interesting to determine the effect of the non-dimensional 
elastic parameter N on the shear stresses on the elliptic plate. From 
Equations (1) to (3) and (7), we obtain 
 

2

/ / / / / / / /1 0 0 1 3 0 3 0 3

2 2 3
(1) (1) (1) (1)z x

U k U U U x k U x
T f f h h

d d d d

η η
= + + + (29) 

 
2

/ / / / / / / /2 0 0 2 3 0 3 0 3

2 2 3
(1) (1) (1) (1)

z y

U k U U U y k U y
T g g k k

d d d d

η η
= + + + (30) 

 
For the problem under consideration, it is important to find the load-

carrying capacity L and friction force components xD  and yD . 

These physical quantities can be calculated by integrating pressure 
and shear stress components on the elliptic plate. The 
dimensionless expressions for the load-carrying capacity and 
friction force components are given through the following equations: 
 

2
2

* / / / / / / / / /0

3 4 2 3

3

4 1
( ) ( (0) [ (0) (0) (0)])

A

S

L p p dS h R N h h k
U S D R

η

ρ
= − = − + −∫∫

(31) 
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/

* / /

1 3

1 (1)
(1)

x z x

S

f
D T dS N f

SU U Rρ
= − = − −∫∫       (32) 

 
/

* / /

2 3

1 (1)
(1)

y z y

S

g
D T dS N g

SU U Rρ
= − = − −∫∫       (33) 

 

where Ap  is the ambient pressure at the edge of the elliptic plate. 

 
 
Perturbation solution 

 
We seek the solution of Equations (17) to (20) with the boundary 
conditions (21) for a small cross flow Reynolds number R. We may 
expand the functions h, k, f, g, and the unknown constant  A  in a 
power series of  R  in the following forms: 
 

2 2 2

0 1 0 1 0 1

2 2

0 1 0 1

( ), ( ), ( ),

( ), ( ).

h h Rh R k k Rk R f f R f R

g g R g R A A R A R

ο ο ο

ο ο

= + + = + + = + +

= + + = + +

(34) 

 
If we substitute (34) into Equations (17) to (20), and equate the 
corresponding coefficients of R  up  to first order, we obtain the 
following set of ordinary differential equations 
 

/ / / / / / / / / /

0 0 0 0 0 0
, , 0, 0,h A k A f gβ= = = =      (35) 

 
2

2

/ / / / / / / / / / /

1 0 0 0 0 0 0 0 0 0 0

/ / / / / /

0 0 0 1

( ) [( ) 2( )

] ,

IV
h h k h h N h k h h k h

k h h A

+ + − + + − +

− + =

    (36) 

 
2

2

/ / / / / / / / / / /

1 0 0 0 0 0 0 0 0 0 0

/ / / / / /

0 0 0 1

( ) [( ) 2 ( )

] ,

IVk h k k k N h k k h k k

k h k Aβ

+ + − + + − +

− + =

    (37) 

 
/ / / / / / / / / / /

1 0 0 0 0 0 0 0 0 0 0 0

/ / / / / / / /

0 0 0 0 0

( ) [( ) ( 2 )

( ) ] 0,

f h k f h f N h k f h k f

h k f h f

+ + − + + − +

+ − − =

  (38) 

 
/ / / / / / / / / / /

1 0 0 0 0 0 0 0 0 0 0 0

/ / / / / / / /

0 0 0 0 0

( ) [( ) ( 2 )

( ) ] 0,

g h k g k g N h k g k h g

k h g k g

+ + − + + − +

+ − − =

    (39) 

 
subject to the boundary conditions 

 
/ / / /

0 0 1 1 0 1

0 1

(0) 0, (0) 0, (1) 0, (0) 0, (0) 0, (1) 0,

(1) (1) 1, (1) (1) 0, (0) 1, (1) 0, (0) 0,

(0) 1, (1) 0, (0) 0, ( 0,1)

n n n n n n

n

n

h h h k k k

h k h k f f f

g g g n

= = = = = =

+ = + = = = =

= = = =

  (40) 

 
Integrating Equations (35) to (39) with the boundary conditions (40), 
we have 

 
 
Zeroth-order solution 
 

2 3 2 3

0 0 0 0

3 2 (3 2 )
, , 1 , 1

1 1
h k f g

η η β η η
η η

β β

− −
= = = − = −

+ +

              (41)  

 
This solution is that of linear viscous fluid. No properties of the 
elastico-viscous fluid appear in Equation (41). 

 
 
 
 
First-order solution 
 

2 2

2 3

1 3 3

4 5 6 7

2 2 2 2

16 (84 1) (37 420 ) 27 (504 18) (840 27)

70(1 ) 70(1 )

12 3(1 16 ) 2 1 2(1 2 )
,

(1 ) 10(1 ) 5(1 ) 35(1 )

N N N N
h

N N

β β β β
η η

β β

β β β β β
η η η η

β β β β

+ − + − − + − + −
= +

+ +

− + − −
− + + +

+ + + +

(42) 

 
2 3 2 3

2 3

1 3 3

4 5 6 7

2 2 2 2

(37 420 ) (84 1) 16 (840 27) (504 18) 27

70(1 ) 70(1 )

12 3 ( 1 16 ) (2 ) 2 ( 2)
,

(1 ) 10(1 ) 5(1 ) 35(1 )

N N N N
k

N N

β β β β β β
η η

β β

β β β β β β β
η η η η

β β β β

− + − + − + − −
= +

+ +

− + − −
− + + +

+ + + +

  (43) 

 

2 3 4 5

1

(20 3)(3 ) 1 2 3 2
3

20(1 ) 1 4(1 ) 10(1 )

N N
f N

β β β β
η η η η η

β β β β

− + + − −
= − + + +

+ + + +

      (44) 

 

2 3 4 5

1

(20 3)(1 3 ) 2 1 3 2 1
3

20(1 ) 1 4(1 ) 10(1 )

N N
g N

β β β β
η η η η η

β β β β

− + + − −
= − + + +

+ + + +

(45) 

 
At this level, the terms having N factor represent the viscoelastic 
character of the fluid.  In a similar manner, the higher order terms 
can be obtained, but the calculations will become complicated. 
Moreover, the solutions considered are valid for only small values of 
R. Therefore, we retain up to first order terms. It is recorded that the 
above perturbation solutions reduce to the corresponding results for 
a Newtonian fluid derived by Wang (1978). 
 
 
Numerical solution 

 
Equations (17) to (20) are four simultaneous differential equations. 
They are fourth order in h and k, and third order in f and g.  But if 
we put N = 0 (for the Newtonian case), the order of h, k, f and g is 
reduced by one. It would thus appear that additional boundary 
conditions must be imposed to obtain the solution. One of the 
possible methods that overcomes this requirement of additional 
conditions is the perturbation technique. In the absence of a means 
for prescribing additional boundary conditions, the perturbation 
method is by far the most commonly used technique in studying 
flows of viscoelastic fluids (Sadeghy and Sharifi, 2004; Sadeghy et 
al., 2005). However, there are some serious doubts regarding the 
reliability of the results obtained using the perturbation method 
when dealing with viscoelastic fluids (Ariel, 1992, 1993, 2008). That 
is to say that the perturbed set of equations may produce results 
that may be qualitatively incorrect and quantitatively inaccurate 
(Ariel, 1993, 1995). Therefore, the nonlinear simultaneous 
differential equations (17) to (20) governing the problem under 
discussion must be integrated numerically. However, we need four 
extra boundary conditions to obtain the exact numerical solution. 
For flows that take place in unbounded domains, it has been shown 
that the boundary conditions can be augmented by the fact that the 
solution has to be bounded or has a certain smoothness at infinity 
(Garg, 1994; Ariel and Teipel, 1994; Sadeghy and Sharifi, 2004; 
Sadeghy et al., 2005). Besides the case of the flow of viscoelastic 
fluids in unbounded domains, one may encounter the flow problems 
of viscoelastic fluids in bounded domains as in the current 
investigation. In such a case, one makes a reasonable assumption, 

namely, that all derivatives of h, k, f and g are bounded at 0η = . 

The physical meaning of this assumption is that the stresses and 

their gradients remain bounded at 0η = (Ariel, 1994). Indeed, this 

is fundamental in obtaining the proper solutions of the boundary 
value problem given in Equations (17) to (21). Without this 

condition, it is easy to see that / / /
(0), (0), (0)

IV IV
h k f and / / /

(0)g  

become unbounded, implying that the resulting solutions would be 

in error near 0η =  (Ariel, 1994, 2002). With this assumption, if we 

set  



Baris and Dokuz         895 
 
 
 

Table 1. Comparison of the values of
/
(0)f ,

/
(0)g , 

/ /
(0)h and 

/ / /
(0)h with those of Ariel (1993) in the case of a porous flat plate 

( 0β = ) for some values of R and N. 

 

R N 

/
(0)f  /

(0)g  / /
(0)h  / / /

(0)h  

Present Ariel Present Ariel Present Ariel Present Ariel 

0.2 

0 

0.1 

0.2 

0.5 

-1.088029 

-1.030257 

-0.964666 

-0.700942 

-1.088029 

-1.030257 

-0.964666 

-0.700942 

-1.030147 

-1.009208 

-0.986014 

-0.899598 

-1.030147 

-1.009208 

-0.986014 

-0.899598 

6.091330 

6.093219 

6.095284 

6.102340 

6.091330 

6.093218 

6.095284 

6.102339 

-12.465009 

-12.473985 

-12.483613 

-12.515687 

-12.465008 

-12.473984 

-12.483613 

-12.515686 
          

1 

0 

0.1 

0.2 

0.5 

-1.405982 

-1.155383 

-0.541463 

-3.660082 

-1.405982 

-1.155383 

-0.541463 

-3.660024 

-1.153102 

-1.029846 

-0.795851 

-0.076083 

-1.153102 

-1.029846 

-0.795851 

-0.076074 

6.454264 

6.518076 

6.601882 

6.957401 

6.454264 

6.518076 

6.601881 

6.957944 

-14.365857 

-14.667342 

-15.050193 

-16.642485 

-14.365856 

-14.667341 

-15.050191 

-16.644702 
          

2 

0 

0.1 

0.2 

-1.744503 

-1.291448 

-5.048659 

-1.744503 

-1.291448 

-5.048551 

-1.309634 

-0.972443 

-0.192054 

-1.309633 

-0.971497 

-0.191910 

6.900850 

7.259711 

7.928833 

6.900850 

7.259711 

7.928913 

-16.823501 

-18.554862 

-21.711065 

-16.823500 

-18.554860 

-21.711393 
 
 
 

0η = in Equations (17) to (20) and make use of the boundary 

conditions at 0η = , we get 

 
2

2

/ / / / / / / / /

/ / / / / / / / /

/ / / / / / / / / /

/ / / / / / / / / /

(0) [ (0) (0) (0)],

(0) [ (0) (0) (0)],

(0) [ ( (0) (0)) (0) (0)],

(0) [ (0) ( (0) (0)) (0)].

A h R N h k h

k A R N h k k

f R N k h f h

g R N k h k g

β

= + −

= + −

= − +

= + −

        (46) 

 
It is worth mentioning that the above additional boundary conditions 
are essentially equivalent to the requirement that the solution 

reduces to the Newtonian solution as 0N → . Calculations based 

on this assumption for various problems related to viscoelastic 
fluids have been carried out by some authors like Davies (1967), 
Frater (1970), Teipel (1986), Ariel (1992, 1994, 2002), Sadeghy and 
Sharifi (2004) and Mustafa et al. (2008). 

The system of nonlinear ordinary differential (17) to (20) under 
the relevant conditions given in Equations (21) and (46) constitute a 
difficult two-point boundary value problem. The numerical 
integration of this boundary value problem is carried out using the 
Matlab solver singular boundary value problem (SBVP). The SBVP-
package contains functions for solving boundary value problems for 
systems of nonlinear ordinary differential equations of the first 
order. The code is based on collocation at either equidistant or 
Gaussian collocation points. An error estimate for the global error of 
the approximate solution is also provided. This estimate provides 
the basis for an adaptive mesh selection strategy. The mesh points 
are automatically modified with the aim of equidistributing the global 
error. A detailed description is given in Auzinger et al. (2002). It is 
worth pointing out here that this method has been successfully 
used by the present authors to study the steady three-dimensional 
flow of a second grade fluid near the stagnation point of an infinite 
plate moving parallel to itself with constant velocity (Barış and 
Dokuz, 2006). 
 
 

RESULTS AND DISCUSSION 
 

The system of coupled ordinary differential equations (17) 

to (20) with the boundary conditions (21) and (46) has 
been solved numerically using the Matlab solver SBVP 
for several values of dimensionless pertinent parameters. 
The numerical integration proceeds as follows. The 

unknown initial conditions /
(0)f , /

(0)g , / /
(0)h , / / /

(0)h  and 

/ /
(0)k  are roughly estimated in order to get / /

(0)f , / /
(0)g , 

/ / /
(0)k  and the unknown constant  A  from Equation (46). 

The accuracy of the assumed missing initial conditions 

are checked by comparing the calculated values of (1)h , 

(1)k , /
(1)h , /

(1)k , (1)f  and (1)g  with their given values 

at  1η = . If a difference exists, the computations with 

new and improved values for the missing initial conditions 
are repeated. The iterative procedure is stopped when 
the maximum change between successive iterates is less 

than 
5

10
−

. Since the porous sliders operate at small 
values of R, the variation of R is limited to a range from 0 
to 5. A full numerical analysis for larger values of R is 
beyond the scope of the present work. 

In order to validate the numerical method used, we 

have first compared our results for the values of
/
(0)f , 

/
(0)g , / /

(0)h  and / / /
(0)h  with those of Ariel (1993) in Table 

1 for the special case corresponding to a porous flat plate 
( 0β = ). This table shows excellent agreement with the 

existing results in Ariel (1993). Moreover, the present 
numerical approach was validated against the results of 
the approximate perturbation solutions. In Tables 2 and 
3, the missing initial conditions calculated from the first-
order perturbation solutions are compared with the 
corresponding numerical solutions for several values of R 
and N in the case of a porous elliptic plate with 0.5β = . It 

is evident that the first-order perturbation solutions in 
terms   of   the  R  match  almost  exactly  with  numerical
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Table 2. Variation of 
/
(0)f , 

/ /
(0)f , 

/
(0)g  and 

/ /
(0)g with R and N using (i) approximate perturbation solution, and (ii) direct 

numerical solution for the case of a porous elliptic plate with 0.5β =  

 

R N 

/
(0)f  / /

(0)f  /
(0)g  / /

(0)g  

Pert. Num. Pert. Num. Pert. Num. Pert. Num. 

0.2 

0 

0.1 

0.2 

0.5 

-1.07 

-1.02333 

-0.976667 

-0.836667 

-1.068881 

-1.023794 

-0.974792 

-0.797277 

0 

-0.12 

-0.24 

-0.6 

0 

-0.117914 

-0.228852 

-0.524402 

-1.05 

-1.01667 

-0.983333 

-0.883333 

-1.049802 

-1.016785 

-0.981924 

-0.864717 

0 

-0.12 

-0.24 

-0.6 

0 

-0.117695 

-0.221739 

-0.448610 

          

1 

0 

0.1 

0.2 

0.5 

-1.35 

-1.11667 

-0.883333 

-0.183333 

-1.324517 

-1.133998 

-0.827047 

-0.207310 

0 

-0.6 

-1.2 

-3 

0 

-0.525581 

-0.876481 

-0.256678 

-1.25 

-1.08333 

-0.916667 

-0.416667 

-1.244453 

-1.092292 

-0.887038 

1.699592 

0 

-0.6 

-1.2 

-3 

0 

-0.528806 

-0.697068 

-1.588234 

          

2 

0 

0.1 

0.2 

-1.7 

-1.23333 

-0.766667 

-1.607999 

-1.346228 

5.004041 

0 

-1.2 

-2.4 

0 

-0.783380 

-11.916824 

-1.5 

-1.16667 

-0.833333 

-1.475829 

-1.232768 

-0.650271 

0 

-1.2 

-2.4 

0 

-0.887050 

-0.980608 
 
 
 

Table 3. Variation of 
/ /

(0)h , 
/ / /

(0)h , 
/ /

(0)k  and 
/ / /

(0)k with R and N using (i) approximate perturbation solution,  and (ii) direct 

numerical solution for the case of  a porous elliptic plate with 0.5β = . 

 

R N 

/ /
(0)h   / / /

(0)h   / /
(0)k   / / /

(0)k  

Pert. Num.  Pert. Num.  Pert. Num.  Pert. Num. 

0.2 

0 

0.1 

0.2 

0.5 

4.0419 

4.03124 

4.02057 

3.98857 

4.042247 

4.028700 

4.011731 

3.943251 

 -8.21714 

-7.98248 

-7.74781 

-7.04381 

-8.218564 

-7.971666 

-7.716875 

-6.927184 

 2.03429 

2.00229 

1.97029 

1.87429 

2.034162 

2.001003 

1.964555 

1.832116 

 -4.10857 

-3.83124 

-3.5539 

-2.7219 

-4.109282 

-3.822995 

-3.533311 

-2.660571 
             

1 

0 

0.1 

0.2 

0.5 

4.20952 

4.15619 

4.10286 

3.94286 

4.217399 

4.093974 

3.916117 

1.585485 

 -9.08571 

-7.91238 

-6.73905 

-3.21905 

-9.121430 

-7.655957 

-6.242253 

-0.326313 

 2.17143 

2.01143 

1.85143 

1.37143 

2.168742 

1.977444 

1.667334 

2.487722 

 -4.54286 

-3.15619 

-1.76952 

2.39048 

-4.560715 

-2.976195 

-1.490583 

-1.643034 
             

2 

0 

0.1 

0.2 

4.41905 

4.31238 

4.20571 

4.447391 

4.052504 

4.816364 

 -10.1714 

-7.82476 

-5.4781 

-10.313385 

-6.870462 

-8.725169 

 2.34286 

2.02286 

1.70286 

2.333520 

1.858550 

0.332717 

 -5.08571 

-2.31238 

0.460952 

-5.156692 

-1.730615 

-0.077025 
 
 
 

solutions when both R and N are small. Therefore, it can 
be concluded that the present code can be used with 
great confidence to study the problem discussed in this 
study. 

In order to distinguish the difference between the 
perturbation and direct numerical solutions, an error 

measure for a function φ  can be described as follows: 

 

2

2

( )

( )

per num

i i

i

num

i

i

Eφ

φ φ

φ

−

=
∑

∑
                                           (47) 

where 
per

i
φ  denotes the perturbation solution at the 

space position iη , while 
num

i
φ  is the corresponding value 

obtained by the direct numerical solution. The error 
percentages for the similarity functions between the 
perturbation solutions and the numerical solutions of the 
boundary value problem under consideration are listed in 
Table 4 for different values of R and N in the case of a 
porous elliptic plate with 0.5β = . The table shows that the 

solution based on the series expansion given in Equation 

(34) is only valid for 1R <  and 0.2N < . For larger values 

of R and N, the perturbation solutions  can  no  longer  be
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Table 4. Error percentages for the similarity functions h, k, f and g between the perturbation solutions and the numerical 

solutions in the case of a porous elliptic plate for 0.5β =  and some values of R and N. 

 

R N 
fE  gE  

hE  kE  

0.2 

0 

0.1 

0.2 

0.5 

0.079 

0.020 

0.064 

1.679 

0.034 

0.011 

0.067 

1.155 

0.138 

0.028 

0.079 

0.278 

0.142 

0.029 

0.071 

0.568 

      

1 

0 

0.1 

0.2 

0.5 

1.940 

0.714 

2.909 

17.72 

0.913 

0.505 

2.613 

57.57 

0.184 

0.625 

1.140 

79.90 

0.443 

0.636 

2.623 

45.89 

      

2 

0 

0.1 

0.2 

7.612 

4.272 

11.61 

3.857 

3.403 

74.63 

0.636 

2.262 

332.1 

1.558 

1.988 

61.08 
 
 
 

used. In such cases, the exact numerical solutions must 
be used. 

In Figures 2 and 3, the functions which correspond to 
the lateral velocity components along the x and y axes 
are plotted versus η  for three different values of the 

cross flow Reynolds number R, with the elastic number N 
as a parameter. The elasticity of the fluid affects the 
lateral velocity components in different ways, depending 
on the chosen values of the cross flow Reynolds number. 
For instance, when R=0.2, we notice that the lateral 
velocity components for a viscoelastic fluid is more than 
those for a Newtonian fluid. However, when R=5, an 
opposite effect is observed, that is, the lateral velocity 
components slightly decrease with an increase in the 
elasticity of the fluid. 

In practical applications, the primary physical quantities 
of interest are load-carrying capacity and friction force. 
Tables 5 to 7 provide the dimensionless load-carrying 
capacity and friction force components for various values 
of the parameters. It can be easily seen from these tables 
that for a Newtonian and viscoelastic fluid, both load-
carrying capacity and friction force increase rapidly when 
the cross-flow Reynolds number decreases. Physically 
this can be explained as follows: When ρ , 

3U  and 
0

η  are 

held fixed, the decrease in the value of the cross-flow 
Reynolds number results only from the decrease in the 
gap width. In this case, since the changes in the values of 
the velocity components occur in the smaller distance, 
velocity gradients become larger. For this reason, both 
stress components in the fluid layer and load-carrying 
capacity and friction force on the porous elliptic plate 
increase considerably as the cross-flow Reynolds 
number decreases. 

The efficiency of a porous slider can be increased by 
making the ratio of friction force to load-carrying capacity 
smaller. As pointed out in Wang (1974, 1978), Skalak 

and Wang (1975) and Watson et al. (1978) the porous 
sliders with a Newtonian fluid should be operated at small 
values of the cross-flow Reynolds number for optimum  
efficiency.  Table 5 shows that the fact that the porous 
sliders should be operated at values of the cross-flow 
Reynolds number up to unity (R<1) still remains valid 
even when a viscoelastic fluid is used. Also, we observe 
from Tables 5 to 7 that the ratio of friction force to load-
carrying capacity increases with an increase in R, up to a 
critical value of R (say,

cR ), in which the friction force to 

load-carrying capacity ratio reaches a maximum, in the 

interval 2 5
c

R< < , and thereafter decreases with 

increasing R. Therefore, a porous slider should be 
operated beyond the critical cross-flow Reynolds number 

cR  that causes its efficiency to be minimum. It is noticed 

that for a porous flat slider, the critical cross-flow 
Reynolds number is approximately 4 (Skalak et al., 1975; 
Wang, 1978; Watson et al., 1978; Bhatt, 1981; Ariel, 
1993). Finally, it can be seen from Table 7 that the friction 
force components become noticeably smaller as N is 
increased. Since it is aimed to reduce the frictional 
resistance in the lateral directions for a porous slider, it is 
more advantageous to design a porous slider with a 
viscoelastic fluid rather than a Newtonian one for the 
case of a large cross-flow Reynolds number. 
 
 
Conclusions 
 

In this study, we have been concerned with a theoretical 
investigation of the problem of a porous elliptic slider 
using an elasticoviscous fluid. By using the appropriate 
similarity transformations, the governing equations are 
reduced to a set of nonlinear ordinary differential 
equations. The  boundary  value  problem   characterizing 
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Figure 2.  Lateral velocity profiles in the x-direction for 0.5β =  

and some values of R and N. 

 
 
 
 

 
 

Figure 3. Lateral velocity profiles in the y-direction for 0.5β =  

and some values of R and N. 
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Table 5. Load-carrying capacity and friction force components for R=0.2 and some values of β  and N. 

 

β  N *L  
*

x
D  

*

yD  * *
/

x
D L  

* *
/yD L  

0 

0 1558.126128 4.479618 4.659037 0.002875 0.002990 

0.005 1553.541927 4.491265 4.653068 0.002891 0.002995 

0.01 1548.957685 4.503034 4.647071 0.002907 0.003000 

0.06 1503.112113 4.627723 4.585606 0.003079 0.003051 

0.1 1466.429809 4.737194 4.534572 0.003230 0.003092 

0.25 1328.794584 5.237769 4.330494 0.003942 0.003259 

0.5 1098.978959 6.508453 3.966098 0.005922 0.003609 

       

0.5 

0 1027.320520 4.538573 4.597709 0.004418 0.004475 

0.005 1024.789034 4.544459 4.597816 0.004435 0.004487 

0.01 1022.253897 4.550410 4.597931 0.004451 0.004498 

0.06 996.709266 4.613613 4.599652 0.004629 0.004615 

0.1 976.035848 4.669373 4.601944 0.004784 0.004715 

0.25 896.934169 4.928311 4.622017 0.005495 0.005153 

0.5 761.838764 5.617123 4.735124 0.007373 0.006215 

       

1 

0 769.445151 4.567997 - 0.005937 - 

0.005 767.593439 4.571012 - 0.005955 - 

0.01 765.738760 4.574063 - 0.005973 - 

0.06 747.034901 4.606628 - 0.006167 - 

0.1 731.878710 4.635631 - 0.006334 - 

0.25 673.766753 4.774012 - 0.007086 - 

0.5 574.354866 5.167786 - 0.008998 - 
 
 
 

Table 6. Load-carrying capacity and friction force components for R=2 and some values of β  and N. 

 

β  N *L  
*

x
D  

*

yD  * *
/

x
D L  

* *
/yD L  

0 

0 2.102938 0.167103 0.233692 0.079462 0.111127 

0.005 2.050874 0.163591 0.222032 0.079767 0.108262 

0.01 1.998683 0.160035 0.209926 0.080070 0.105032 

0.03 1.788049 0.145203 0.156366 0.081208 0.087451 

0.06 1.463035 0.121664 0.056389 0.083159 0.038543 

       

0.5 

0 1.289173 0.186477 0.206596 0.144649 0.160254 

0.005 1.258748 0.180609 0.198290 0.143483 0.157529 

0.01 1.227899 0.174556 0.189669 0.142159 0.154466 

0.03 1.100334 0.148132 0.151514 0.134625 0.137698 

0.06 0.899058 0.101024 0.081056 0.112366 0.090157 

       

1 

0 0.958128 0.196142 - 0.204714 - 

0.005 0.935619 0.189105 - 0.202117 - 

0.01 0.912771 0.181818 - 0.199194 - 

0.03 0.818058 0.149723 - 0.183023 - 

0.06 0.668241 0.091247 - 0.136549 - 
 
 
 

the flow has the feature that the order of the system of 
differential equations  exceeds  the  number  of  available 

boundary conditions. Nevertheless we have obtained the 
exact numerical  solution  by  augmenting  the  boundary
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Table 7. Load-carrying capacity and friction force components for R=5 and some values of β  and N. 

 

β  N *L  
*

x
D  

*

yD  * *
/

x
D L  

* *
/yD L  

 

0 

0 0.196668 0.012686 0.024616 0.064504 0.125163 

0.005 0.187432 0.008067 0.014642 0.043037 0.078122 

0.01 0.178061 0.003324 0.004725 0.018667 0.026534 

       

 

0.5 

0 0.114008 0.015558 0.018811 0.136465 0.165001 

0.005 0.108361 0.009575 0.011349 0.088361 0.104731 

0.01 0.102446 0.003534 0.003895 0.034497 0.038022 

       

 

1 

0 0.084340 0.017058 - 0.202252 - 

0.005 0.080146 0.010385 - 0.129580 - 

0.01 0.075744 0.003689 - 0.048697 - 

 
 
 

conditions at 0η = . The resulting boundary value 

problem has been solved numerically using the Matlab 
solver SBVP. The current numerical investigation is 
limited to values of cross-flow Reynolds number in the 

interval 0 5R≤ ≤ . An excellent agreement of the 

present results with existing results has been shown. 
Hence, it is concluded that the Matlab solver SBVP is 
very powerful and efficient in finding the exact numerical 
solution of the boundary value problem discussed in this 
research. Numerical calculations have been carried out 
for various values given to the non-dimensional 
parameters and the significant contributions of the elastic 
parameter N to the lateral velocity components, load-
carrying capacity and friction force components have 
been pointed out. In addition, it is shown that the 
perturbation solutions fail to give satisfactory results 

when 1R >  and 0.2N > . 
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