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Accurate and timely forecasting of traffic volume has long been regarded as a key point in transport-
tation, planning and management. In order to realize effective and efficient traffic forecasting, this paper 
investigates quantificational method of dynamic factors from the perspective of nearness. The dynamic 
modeling method based on quantificational dynamics (that is, quantificational disposal of dynamic 
factors according to nearness) is proposed and this method can significantly improve the forecast 
effectiveness and efficiency. Swarm simulation is adopted as a new tool with regard to the field of 
traffic forecasting for analysis and verification. The testing results show that the proposed method 
outperforms traditional ones in choosing training samples and constituting forecasting models. This 
work contributes to the consideration and evaluation of dynamic factors in scientific forecasting and 
may bring some enlightenment to relevant scientific researchers and engineers. 
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INTRODUCTION 
 
Forecasting of traffic volume plays a key role in reducing 
traffic congestion, enhancing control performance of 
transportation infrastructure and improving traffic safety. 
Forecasting results of traffic volume can be applied to 
control of intersections, freeways, tunnels and even 
parking lots. Considering period, forecasting techniques 
of traffic volume can be divided into the categories of long 
term, intermediate term and short term (Chen, 1997). 

The steady increased traffic volumes in both rural and 
urban roads in recent years have resulted in congestions 
in many road traffic systems. Intelligent transportation 
systems (ITS) provide solutions for alleviating the 
increasing congestion problems. Accurate and timely 
forecasting of traffic volume is critical for effective control 
of traffic congestion in ITS environment (Jiang and Adeli, 
2005). Short-term traffic volume forecasting has long 
been regarded as a critical concern for the development 
and application of ITS. In particular, such traffic flow 
forecasting supports 1. the development of proactive 
traffic control strategies in advanced traffic management 
systems (ATMSs), 2. real-time route guidance in  
advanced traveler  information  systems (ATISs) and 3.  
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evaluation of these dynamic traffic control and guidance 
strategies as well (Zheng et al., 2006). In an early report 
on the architecture of intelligent transportation systems 
(Cheslow et al., 1992), it was clearly indicated that the 
ability to make continuous predictions of traffic flows and 
link travel times for several minutes into the future, using 
real-time traffic data, is a major requirement for providing 
dynamic traffic control and guidance. In the last two 
decades, the growing need for short-term prediction of 
traffic parameters embedded in a real-time intelligent 
transportation systems environment has led to the 
development of a vast number of forecasting algorithms 
(Vlahogianni et al., 2006). For information purposes, the 
highway capacity manual (Transportation Research 
Board, 2000) suggests using a 15 min traffic flow rate. In 
this study, traffic volume of a 15 min interval is taken for 
as the study object. 
 
 
Literature review 
 
The short-term forecasting of traffic conditions has had 
an active but somewhat unsatisfying research history 
Davis and Nihan, 1991). A variety of methods have been 
applied to short-term traffic volume forecasting, including 
the multivariate time-series model (Williams et al., 1998), 
(the Kalman filtering method (Okutani  and  Stephanedes, 
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1984; Xie et al., 2007) and the nonparametric regression 
model (Davis and Nihan, 1991; Smith et al., 2002). Over 
the past decade, a number of papers have been 
published on the application of neural network models for 
forecasting traffic flow taking advantage of their ability to 
capture the uncertain and complex nonlinearity of time 
series. 

Smith and Demetsky (1994, 1997) compared the back 
propagation (BP) neural network model with the ARIMA 
model for predicting short-term traffic flow. They con-
cluded that the BP neural network model was superior to 
the linear statistical ARIMA model because the former 
was more sensitive to the dynamics of traffic flow than 
the latter and did not experience the over forecast 
characteristics of the ARIMA model. 

Yun et al. (1998) investigated the performance of a BP 
neural network model, a finite impulse response model (a 
linear filtering method) and a time-delayed recurrent 
model (a dynamic BP neural network) for forecasting the 
traffic volume. They used three different traffic flow data 
sets collected from interstate highways, intercity high-
ways and urban intersections with very different 
characteristics in terms of volatility, period and 
fluctuations. Their study showed that the time-delayed 
recurrent BP neural network model outperformed other 
models in forecasting very randomly moving traffic flow. 
In contrast, the FIR model demonstrated better fore-
casting accuracy than the time-delayed recurrent network 
for relatively regular periodic data. However, the BP 
model had its inherent shortcomings such as lack of an 
efficient constructive model (for example, requiring 
arbitrary selection of the number of hidden nodes), slow 
convergence rate resulting in excessive computation time 
and entrapment in a local minimum. 

In order to overcome the aforementioned shortcomings 
of the BP neural network model, some scholars (Park, 
2002) proposed a fuzzy-neural network approach for 
forecast-ting the short-term traffic flow (Park et al., 2002; 
Yin et al., 2002). They concluded that the composite 
method required less computing time and provided better 
forecasting accuracy than BP models. 

Until now, no single predictor had yet been developed 
that presented it to be universally accepted as the best. 
As traffic flow itself is a complicated process influenced 
by many dynamic factors, it is found that using composite 
models to describe and forecast the effect of different 
factors on the traffic flow is appropriate (Zheng et al., 
2006). Besides, how to consider dynamic factors in traffic 
forecasting model is still a problem that has not been 
properly solved. 
 
 
The dynamic modeling 
 
Traffic flow characterized as intense fluctuations in micro- 
cosmic level (Vlahogianni et al., 2006) presents some 
general law in macroscopical level. The fluctuation law of 
traffic flow falls into  two  categories  divided  by  workday  

 
 
 
 
and holiday. In addition, the fluctuation is influenced by 
weather. Although traffic engineers have been aware of 
these phenomena for many years, relevant quantifica-
tional description of these phenomena are difficult to 
obtain. First, the quantitative forecasting should base on 
historical data analysis; therefore, random factors and 
disturbances cannot be exactly calculated. Second, some 
complicated factors, such as weather variations, although 
their influences have been known, are difficult to be 
quantificationally depicted. Based on these considera-
tions, the improvement of dynamic forecasting model 
should focus on the following aspects: (1) The periodical 
variation of traffic flow along with different date types and 
different characteristic times; (2) The spatio-temporal law 
of traffic flow and (3) The external influence such as 
temperature, sunlight and visibility and so on. 

The dynamic forecasting of traffic volume can be 
regarded as a large-scale multi-mapping problem and the 
forecasting model is uneasy to be identified. Since 
artificial neural network (ANN) has the strength of 
approaching discretionary nonlinear function and simula-
ting multi-variable problem wonderfully without knowing 
the function relations between independent variable and 
dependent variable (Isik, 2009; Sancak, 2009), the ANN 
model can conveniently consider some factors such as 
visibility, sunlight, date type, etc. Theoretically, ANN 
models suit for application in dynamic forecasting of 
traffic volume. However, the traditional method for 
training a multi-layer feed-forward ANN is the BP 
algorithm. Although it has been successfully applied in 
many domains and has been improved on and on, the BP 
algorithm still has some weaknesses, which have not 
been overcome thoroughly. For example, the slow 
training and converging BP-ANN algorithm is difficult to 
be applied to select dynamic samples. While proper 
sample selection can increase training speed and fore-
castting precision in dynamic forecasting, so training time 
can be reduced significantly and unnecessary inter-
ference from irrelevant samples can be avoided if the 
selected samples have similar character with the 
forecast. The extended kalman filter (EKF) (Tsai et al., 
2005) training algorithm gauges the weights as per the 
principle of minimum root mean squared covariance, 
which needs much less iteration than the BP algorithm. 
Moreover, free from calculation of convergent parameters 
makes it convenient to be applied in rapid calculation and 
selecting dynamic samples (Wang and Papageorgiou, 
2005). Therefore, the EKF-ANN algorithm is applied to 
dynamic forecasting of traffic volume in this paper. 

The nearness between the prospective date and the 
historical date can be expressed as follows (Miao and Xi, 
2008): 
 

kKkKK DWWVVTTTTkS ∆+−+−+−+−= δγβα 222
minmin

2
maxmax )()[])()[()(              

……………………………………………………………….(1) 
 

Where  -  the  highest  temperature  in  the  prospective  maxT
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Table 1. Quantificational disposal of meteorological factors. 
 

Weather condition Sunny Cloudy Windy Foggy 
Quantificational value 1 2 3 4 
Weather condition Rainy Thunder storm Snowy Snow storm 
Quantificational value 5 6 7 8 

 
 
 

 
 
Figure 1. Parameters of the swarm simulation. 

 
 
 
date; 
 

KTmax - the highest temperature in the date ; 
- the lowest temperature in the prospective date; 

- the lowest temperature in the date ; 
V -the visibility in the prospective date; 

KV - the visibility in the date ; 
- the weather type in the prospective date; 

- the weather type in the date ; 
  - the date interval between the prospective date 
and date ;  
� γβα ,,  and δ  are the coefficients that reflect the 
influence of temperature, visibility, weather type and date 
interval on traffic flow. The meteorological factors  and 

 can be quantificationally disposed as Table 1. 
If the )(kS  is smaller, the nearness will be higher. 

Based on the meteorological data of the prospective 
date, the nearness between the historical date and the 
prospective date can be obtained. The samples with 
smaller )(kS  are selected as the dynamic training sample 
set. 

The resultant samples can be expressed along time 
series as formula (2): 

 
][ 321 MXXXXX �= ……………………………..(2) 

Where, X is the sample set, )1( MiX i ≤≤  is a vector in 
the set, the components in it are corresponding historical 
data. The M is the total number of the resultant samples. 

Generally, 2/1)( OI ×  is chose as the number of hidden 
layer as per experience, where, I  and O  respectively 
denote the unit number in the input layer and output 
layer. The historical data in the resultant samples, the 
weather of the prospective date and the date type are 
taken as the input; the output is the predicted traffic 
volume. 
 
 
Swarm-aided simulation example 
 
The Swarm platform designed by the Santa Fe Institute 
supports a sort of tools that can simulate and validate the 
above models. It is a collection of software libraries that 
can support the ANN simulation program (Johnson, 
2004). The Swarm needs fewer external initial variables 
and is good at coping with short-term traffic flow 
influenced by dynamic factors. Figure 1 shows the 
parameters of the swarm simulation on dynamic 
forecasting of short-term traffic volume.  

The meanings of the parameters in Figure 1 are listed 
as follows: 
 
(1) Database: the data.txt is the dynamic training sample 
set, which covers data from the historical as well as  from  
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Figure 2. Typical daily traffic volumes at the observation spot. 

 
 
 

 
 
Figure 3. Output of the two predictors. 

 
 
 
the recent.  
(2) W: weather, the number 1 denotes sunny. 
(3) T max: the highest temperature in the prospective 
day. 
(4) T min: the lowest temperature in the prospective day. 
(5) V: the visibility of the prospective day. 
(6) D: date type, the number 4 denotes Thursday. 
 
Figure 2 depicts typical daily traffic volumes at the 
observation spot while Figure 3 presents the output of the 
two predictors at the observation spot. 

RESULT ANALYSIS 
 
In Figure 3, the observed traffic volumes on that day are 
also presented for comparison. With the exception of a 
few intervals, the two predictors show a good reflection of 
the changing trends of traffic flow, while the EKF-ANN 
predictor gives a better approximation of the actual traffic 
volume. 

Three indices, that is, the mean absolute percentage 
error (MAPE), root mean squared error (RMSE) and the 
relative error, are selected and employed to compare  the  
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Figure 4. Distribution of the forecasting errors of the two predictors. 

 
 
 

Table 2. Performance comparison of the two 
predictors. 
 

 MAPE RMSE 
BP-ANN 9.07% 10.61% 
EKF-ANN 6.43% 7.52% 

 
 
 
forecasting performances of the  two  predictors.  The 
MAPE and RMSE reflect the accuracy and stability of the 
predictors and the relative error indicates the reliability of 
the predictors. The MAPE, RMSE and relative error are 
defined as follows: 
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Where kl  denotes the observed traffic volume in time 
interval k; kl ′  denotes predicted traffic volume in time 
interval k; N denotes the number of time intervals for 
forecasting, as the observation time is from 7:00 to 19:00 
and each time interval is 15 min, therefore, there are 48 
intervals in the 12 h (from 7:00 to 19:00) and N = 48;

( )kErr   denotes   the   relative   error  between  predictive  

values and observed values in interval k. 
Equation (3) calculates the average relative error 

between the predictive values and observed values and it 
represents the accuracy of the forecasting. Equation (4) 
represents the sum of the deviations from the average 
performance during the forecasting in all intervals. It is 
obvious that a predictor with a large RMSE is not as 
stable as one with a smaller RMSE. Table 2 shows the 
performance comparison of the two predictors. 

From Table 2, we can see that the EKF-ANN predictor 
has a better forecasting performance than the BP-ANN 
predictor in most time of the day in terms of accuracy and 
stability, which is indicated by the MAPE and RMSE 
values. It is also found that on the whole day, the EKF-
ANN gives a more reliable prediction, as it shows a 
probability of more than 85% of yielding predictive values 
with a forecasting error margin of less than 10%. This is 
higher than that of the other predictor. With such a level 
of accuracy, the EKF-ANN model can be considered as 
better for practical application. 

Figure 4 shows the distribution of the forecasting errors 
for the BP-ANN and the EKF-ANN model on the day. As 
can be seen from the figure, the forecasting results of the 
EKF-ANN method are ideal and this method is to some 
extent superior to the BP-ANN method.  
 
 
Conclusion 
 
This research provides a new insight for consideration of 
dynamic factors in traffic forecasting and contributes to 
traffic engineering studies and scientific forecasting 
research. Quantificational dynamics may help scientific 
researchers and engineers to dispose fuzzy dynamics 
from nearness perspective. Through a  simulation  testing  
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of short-term traffic volume forecasting, this method is 
demonstrated to be superior in terms of forecast, 
effectiveness and efficiency. However, this research is 
preliminary and tentative, further engineering applications 
should be carried out in future to prove and improve this 
approach. 
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