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Deformation analysis is crucial to applications in geodesy, structural engineering, and geology, of 
which the main goal is to detect the behaviors of a deformed body. Traditional deformation analyses 
rely on a limited number of observations and thus give a relatively poor description of the strain field on 
the entire object. In this study, a method based on the displacement gradient model and unified least-
squares adjustment is proposed to improve classical deformation analysis. Corresponding quality 
assessment and sensitivity analysis are derived accordingly to better assess significant deformation. 
Furthermore, by applying nearest neighbor searching and a triangulated irregular network, the 
efficiency of analyzing a vast number of observations is improved. Numerical experiments based on 
real data suggested that the proposed approach detected behaviors of a deformed body in an effective 
and efficient way. Consequently, the strain field on an object can be obtained rapidly and accurately 
using the proposed method and a large point dataset. 
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INTRODUCTION 
 
In civil engineering, deformation analysis is fundamental 
to understanding the mechanical properties and failure 
mechanisms of an object. Deformation, the change in 
shape of an object subjected to force, is quantified by the 
normalized measurement “strain”. Traditional deformation 
measurement is collected by strain gauges (contact 
sensors) or total stations (noncontact sensors). However, 
these techniques can only obtain a small number of 
observations with constraints in hardware installation (for 
contact sensors) and time-consuming field works. Even 
with a robotic total station, the number of  observations  is 

still limited by the manually-observed process. As a 
result, traditional measuring techniques are impractical 
for capturing the displacement field and strain field. 
Digital image correlation (DIC) and Light Detection and 
Ranging (LiDAR) are two modern techniques which can 
automatically obtain massive and high quality spatial data 
in an efficient way. Both the techniques can provide data 
with an accuracy sufficient for not only large-scale 
change detection, but also small deformation monitoring 
(Chu et al., 1985; Gonzalez-Jorge et al., 2011, 2012; 
Park et al., 2007). In digital image processing field,  many 
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image-based methods have been introduced to estimate 
the displacement field and strain field on an object 
(Aydilek et al., 2004; Lee et al., 2011; Pan et al., 2009, 
2015; Winkler et al., 2014). LiDAR have also been further 
developed and applied to perform deformation analysis in 
various fields (e.g. structural health monitoring, Lee and 
Park, 2011; shape modelling, Armesto et al., 2010; 
cultural heritage conservation, Pesci et al., 2011; rockfall 
monitoring, Alba and Scaioni, 2010). 

The most important part of deformation analysis is to 
establish a mathematical model. A good mathematical 
model extracts deformation signals from raw data, which 
usually contain rigid body motion and variation of the 
reference frame (Vaníček et al., 2008; Han et al., 2009). 
The displacement model and the affine model are two 
typical mathematical models. The two models are based 
on distinct theories and have different assumptions. The 
displacement model assumes that the deformation at any 
initial point of an object is affected by several neighboring 
points, and thus the deformation at the initial point can be 
solved by integrating the displacement vectors of the 
neighboring points (Vaníček et al., 2001, 2008; Berber et 
al., 2006; Marjetič et al., 2009). On the other hand, the 
affine model assumes the deformation to be 
homogeneous in the whole study area, and thus it can be 
symbolized by the same parameters (Mikhail et al., 
2001). The strain parameters solved by the displacement 
model represent the deformation at each point on the 
object. Assuming that the deformation varies 
continuously from one point to another, the strain field 
can be estimated. In contrast, the strain parameters 
solved by the affine model represent deformation in each 
study area of the object and therefore lead to 
discontinuity between any two different study areas. In 
practice, strain fields are barely homogeneous due to the 
non-uniformity of materials; for this reason, the 
displacement model is more suitable for practical use. 
Considering the displacement of an initial point as a 
constant vector, the mathematical model can be solved 
easily by an ordinary indirect observations approach. For 
cases involving a large number of observations, 
nevertheless, the displacement of the initial point is more 
likely to be an observation. Therefore, the unified least-
squares approach is adopted in this study. By changing 
the weight of parameter observations, the accuracy of the 
displacement of the initial point can be evaluated properly 
in the model. After evaluating each parameter in the 
model, the quality of every parameter is also assessed 
based on the law of error propagation. Moreover, 
sensitivity analysis (Koch, 1988; Han et al., 2011) is 
introduced to estimate the minimum deformation that can 
be detected by the network. Finally, two strategies are 
built for analyzing a vast number of spatial data. 
Ultimately, a complete deformation analysis procedure is 
established. With a large number of observations like DIC 
or LiDAR datasets, the proposed method determines the 
strain  field  of  an  object,  as  well  as   the   quality   and 
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sensitivity of the parameters. 
 
 

METHODOLOGY 
 

Strain field determination 
 
Choosing an arbitrary point on an object as the starting point, the 
deformation at that point can be expressed by the coordinates and 
displacement measurements of the starting point and its several 
neighboring points: 
 

j i ij i  u H x u                                                      (1) 

 

Where iu  is the displacement vector of the starting point, 
ju  is 

the displacement vector of neighboring points, 
ijx  is the 

coordinate differences between the starting point and its 

neighboring points, and iH  is the displacement gradient tensor of 

the starting point. Rewriting Equation 1 in matrix form, we get: 
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In this study, the unified least-squares approach (Mikhail et al., 
2001) is used to properly provide uncertainty estimation for the 
displacement vector of the starting point and to better evaluate the 
unknown parameters in the model. The general form of the unified 
least-squares approach can be written as: 
 

 Av BΔ f                                                        (3) 
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Where Δ  is the unknown parameter, xl  is the parameter 

observation, 
0
xl  is the parameter approximation, v and xv  are 

residuals, A and B are coefficient matrices, and f and xf  are 

constant vectors. 

By considering the displacement vector of the starting point ( iu ) 

as the parameter observation, the displacement vector of 

neighboring points ( ju ) as observations, coordinate differences 

( ijx ) as constants, and the displacement gradient matrix ( iH ) 

as unknown, the displacement model (Equation 1) can be rewritten 
in least-squares form, forming matrices A, B, and f: 
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Besides forming all the matrices needed, the values and weights of 
parameter observations must be given. For the parameter 
observations related to the displacement gradient matrix, the values 
are assumed to be zero since no information about the deformation 
parameters is provided. For the other parameter observations 
related to the displacement vector of the starting point, the values 
are set to be the displacement measurements at the starting point. 
Note that the governing equations are linear, which means no 

iteration will be needed in the computation, and therefore the 
0
xl  in 

Equation 4 is a zero vector. According to the above, we can form 

the matrix xf : 

 

0 0 0 0 0 0 0 0 0 0
T

x x x xi yi ziu u u       f l l

                                                         (6) 
 
The weight of the parameter observations can be divided into two 
parts: 
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Where aW  represents the weight of parameter observations and 

bW  represents the weight of the displacement vector of the 

starting point. Setting 0a W , since there is no information about 

strain parameters, the value of bW  is given according to the 

accuracy of the observation. Ultimately, applying the least-squares 
principle, we get: 
 

TN B WB                                                          (8) 
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Where W is the weight of observations. Once the least-squares 

problem is solved, the displacement gradient matrix iH  is 

obtained, and the strain tensor of the starting point can be 
computed: 
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Note that the high-order terms can be ignored under the 

assumption of small deformation, and therefore the strain tensor iε  

is symmetric. By applying singular value decomposition, the strain 
tensor can be decomposed into two components: a diagonal matrix 

Λand an orthogonal matrix S : 

 
T

i ε S ΛS                                                   (12) 

 

Where the diagonal entries of matrix Λ  represent three principal 
strains respectively, and the corresponding principal directions are 

defined by the columns of matrix S . 

 
 
 
 

Using the unified least-squares technique, the displacement of 
the starting point can be considered as a constant, observation, or 
unknown by simply giving different weights without changing the 
equation, making the displacement model more feasible for various 
situations. For every point (with displacement observation) in a 
given network, the displacement can be considered as an 
observation properly. Moreover, for points without displacement 
observation, the deformation can be estimated by assuming the 
displacement observation to be unknown. Consequently, 
deformation of any given point in the study area can be solved by 
the proposed method. 

 
 
Quality assessment 
 
The cofactor matrices of the unknown parameter, strain tensor, and 
principal strain can be propagated one by one according to the law 
of propagation. Starting with the cofactor matrix of observation Q 

and the cofactor matrix of parameter observation xxQ , the cofactor 

matrix of unknown parameters can be obtained: 
  

1
xx( )T 

  Q B WB W                                                  (13) 

 
Selecting all the elements related to the displacement gradient 

matrix iH  in Q , we get the cofactor matrix of the displacement 

gradient matrix ( HQ ). Then, the cofactor matrix of the strain tensor 

can be computed based on Equation 11: 
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Where HD  is a coefficient matrix, 
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To get the cofactor matrix of principal components, listing all the 

elements in matrix Λ  and S  firstly: 
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According to Han et al. (2007), the cofactor matrix of principal 

components  ,vec( ) S
Q  can be derived by: 
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Where the operator   denotes the Kronecker product, the 

operator  denotes the Khatri-Rao product, and ED , SD , and 

D  are coefficient matrices. Once the cofactor matrices Q , 

Q , and  ,vec( ) S
Q  have been derived, the quality of deformation 

parameters of the proposed method can be evaluated on a solid 
basis. 
 
 
Sensitivity analysis 
 
Sensitivity analysis was applied to estimate minimum detectable 
deformation signals under a given network and statistical 
distribution. Han et al. (2011) introduced this technique to principal 
strain parameters and derived the significant critical variation value: 
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Where 
2

0  is the variance of unit weight, 0  is the non-centrality 

parameter of a normal distribution expressed by a significant level 

  and a test power  , 
i

  is the ith eigenvalue of 
1
Q , and 

Q  is the cofactor matrix of principal strain parameters.  

The critical value denotes the minimum deformation which can 
be detected under a given network. The smaller the value, the 
better the capability of detecting variations, which implies a higher 
sensitivity. The critical value of principal strain can be calculated by 
substituting the corresponding entry of the cofactor matrix of 

principal strain parameters,  ,vec( ) S
Q , into Equation 21. 

Comparing the critical value with the strain parameter, whether the 
parameters have shown significant differences is determined 
immediately. Given the accuracy of observations, sensitivity 
analysis provides a method of estimating the significance of 
deformation. Equally importantly, if the object is partially changed, 
the deformed area will be distinguished. 

 

 
Strategies for analyzing a large number of data 

 
Since the displacement vectors in the mathematical model are 

related to displacement of the starting point ( iu ) and its 

neighboring points ( ju ), the first step of deformation analysis is to 

specify the study area, namely, to choose the neighboring points 
corresponding to each starting point. When introducing a large 
number of points to the analysis, the study area should be limited to 
several points close to the starting point, because: (1) distant points 
have a minor effect on the deformation of the starting point, and (2) 
too many data will cause low efficiency in computation. In this 
study, two strategies are used to specify the neighboring region for 
each starting point: Nearest Neighbor Search (NNS) and 
Triangulated Irregular Network (TIN). 

The nearest neighbor search identifies the top k nearest 
neighbors to the starting point as neighboring points. In a 3D 
deformation analysis, k should be more than or equal to four in 
order to provide  a  sufficient  number  of  equations  and  solve  the  
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unknown parameters. A larger k means more neighboring points 
will be involved when determining the strain of the starting point. 
While adding new points may reduce the residuals in the least-
squares approach, involving too many distant points will only blur 
the pattern of strain field. To choose an optimal k, one can start 
from the minimum, and gradually increase k until the quality of 
least-squares solution meets the requirements. Furthermore, the 
network configuration corresponding to each starting point will not 
be the same because the nearest neighbor search operates 
independently each time. Since the algorithm chooses neighboring 
points blindly without considering the network configuration, it is 
more suitable for uniform data.  

The simplest solution for the NNS problem is to calculate the 
distance from the starting point to every other point in the network 
(the “brute-force solution”). However, the algorithm has a poor 

performance, that is, a running time of ( )dO n , where n is the 

number of points in the network and d is the dimension of space. In 
this study, the spatial index method is used to improve the 
performance of NNS. A rectangular grid is created first, and then 
every point in the network is allocated to its relevant position in the 
grid. For any starting point i in a grid cell, the search region will be 
reduced to points in the cell and in its adjacent cells (Figure 1). The 
spatial index method yields the same result as the brute-force 
solution but with higher performance, especially when the points 
are uniformly distributed in space. 

Another method of identifying the study area is TIN. Creating a 
TIN specifies a neighboring region for each starting point 
immediately: the neighboring points comprise every point that 
shares an edge with the starting point. For every starting point, the 
study area is a proportion of the entire triangulation, and so the 
complete network configuration remains the same. The number of 
neighboring points for each starting point will be different. For points 
lying on the edge of a network, the number of neighboring points is 
often insufficient; that is, there are fewer equations than unknowns 
in the linear system. In this case, a method that integrates NNS with 
TIN is applied: if the first connection cannot provide enough 
neighboring points, the top m nearest points in the second 
connection will be added as new neighbors in order to solve the 
linear system.  

Summing up, both NNS and TIN can specify the neighboring 
region corresponding to each starting point efficiently. While NNS 
has higher performance, TIN builds a fixed network. In practice, 
NNS is more suitable for a uniformly distributed dense dataset; as 
for a sparse dataset, using TIN to generate a fixed network 
configuration is better. 
 
 
RESULTS AND DISCUSSION 
 
Efficiency of 3D dispersed data analysis 
 
The efficiency of applying the NNS brute-force solution, 
the NNS spatial index solution, and TIN on a LiDAR 
dataset was tested in this experiment. The dataset 
contained a total of 360330 dispersed points. To test the 
efficiency of different search methods, we applied 
systematic sampling on the LiDAR dataset with different 
sampling intervals, and get six subsets containing 5000, 
10000, 15000, 20000, 25000, and 30000 points 
respectively. Four search methods (Table 1) were used 
to find the neighboring points corresponding to each point 
in the subsets. The algorithms were implemented using 
MATLAB (R2013a, 64-bit), and the hardware used to test 
the running time is shown in Table 2.  The  running  times  
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Figure 1. Search region for point i using the spatial index method. 

 
 
 

Table 1. Four different search strategies for specifying the neighboring region. 
 

Method Definition of neighboring region Strategy 

1 Top four nearest points Brute-force solution 

2 Top four nearest points Spatial index method with 5 1 5   grid 

3 Top four nearest points Spatial index method with 20 1 20   grid 

4 TIN (At least four points) TIN (and NNS if the number of points is less than four in the first connection) 

 
 
 

Table 2. Hardware used in the running time test. 
 

Model Toshiba Satellite M840 

Processor Intel Core i5-3210M 2.5/3.1GHz 

Memory 8G DDR3 1600MHz 

Operating system Microsoft Windows 7 Home Premium 64bit 

 
 
 
for each search method are shown in Figure 2. When 
applying the NNS solution, the result showed that even a 
coarse grid could reduce the running time significantly. 
As the number of points increased, the difference 
between the brute-force solution and the spatial index 
method became considerable. In the case in which the 
number of points is 30000, the brute-force solution 
(method 1) took about 98 s to find the neighboring points, 
while method 2 took 27 s and method 3 took only 4 s, 
providing time savings of 72 and 96% respectively. 
Figure 2 also shows that the running time of the TIN 
solution was shorter than that of the NNS brute-force 

solution but longer than that of the NNS 20 1 20   

gridded solution, which indicates that the performance 
will still be poor when the number of points grows larger. 
As a consequence, the NNS solution with a proper grid is 

the best choice when taking performance into 
consideration. 
 
 
Bending test with real data 
 
A bending test and a close-range photogrammetry survey 
were carried out. The sample was fixed on the testing 
machine and subjected to an external load that increased 
at a constant rate until fracture occurred. At the same 
time, the in-plane displacement fields on the sample’s 
surface at each epoch were acquired by the 
photogrammetry technique. The strain fields were 
calculated based on the proposed method and the 
observed displacement fields; in addition, the quality and 
sensitivity of strain parameters were also evaluated. 
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Figure 2. Running time for each method. 

 
 
 

The sample used in the bending test was a 

340 mm 50 mm  aluminum specimen. The specimen 

was painted with a coating of coarse particles on one 
side for template matching, and three sets of KYOWA 
strain gauges (Model: KFG-1-120-D17-11L3M2S; 
accuracy: approximately 0.1%) were pasted on the other 
side. The displacement-controlled method was 
conducted, applying a displacement increment and taking 
an image of the specimen every 3 s. Before the fracture 
occurred, displacement fields at 81 different epochs were 
collected, where epoch 1 was the reference epoch (that 
is, without external load), and the specimen failed at 
epoch 81. 

A close-range photogrammetric survey was conducted 
using two digital cameras (Canon EOS 550D). The 
cameras were fixed on tripods during the whole 
experiment, and the object distance was approximately 1 
m. The digital image correlation (DIC) technique of 
template matching, implemented with OpenCV library, 
was used to calculate the coordinates of every point on 
the specimen at each epoch. Taking epoch 1 as the 
reference epoch, the displacement fields at the other 80 
epochs were obtained immediately. The overall accuracy 

was approximately 
510

m since the result of camera 

calibration was 0.2 to 0.4 pixels and 1 pixel in the image 
space was equal to 0.05 mm in the object space. 
 
 
Strain field determination 
 
The strain field on the sample’s surface was determined 
by the displacement gradient model and unified least-
squares technique using the point coordinates and 
displacement field obtained by the DIC technique. The 
NNS spatial index solution  was  adopted  to  choose  the 

nearest eight points as neighboring points. The strain 

parameters were solved with an accuracy of 0.0014 . 

The obtained 1  and 2  strain fields at different epochs 

are shown in Figures 3 and 4, respectively. Since the 
specimen failed at epoch 81, by comparing the pattern of 
fracture shown in Figure 5 and the strain field at epoch 80 
(plot with a different scale in Figure 6 to clearly illustrate 
where the maximum strain happened), one can 
immediately find that the specimen broke where the 
maximum strain happened. The result shows one main 
difference between strain field determination and the 
strain gauges’ measurements: the former solves the 
complete strain field and can thus detect the position at 
which the fracture occurs; the latter only measures strain 
where the gauges are installed. In conclusion, the 
proposed method can determine the strain field, showing 
the differences between epochs; thus, it is able to detect 
the position in which maximum strain happens, which is 
where the fracture may occur. 
 
 
Statistical significance 
 
The main goal of sensitivity analysis is to estimate the 
capability of detecting deformations of a network. Based 
on the result of quality assessment and setting the 

significance level 0.05   and the test power 

0.95  , the significant critical variation values 

corresponding to every point in the network were 
calculated. Whether the deformation at a point was 
detectable could be distinguished by comparing its critical 
value to the strain parameter. The red areas in Figure 7 
show the significant deformed areas on the specimen at 
different epochs. 
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Figure 3. The 1  strain field at eight different epochs. 

 
 
 

The significance of deformation parameters is affected 
by the accuracy of observation and the strength of the 
network. The critical value decreases with increased 
accuracy and strength of the network, implying better 
capability of detecting deformation. In this experiment, 
the average critical value is 0.0046, which means the 
minimum deformation that can be detected is about 
0.46%. The critical value provides a method of 
determining whether or where the statistical significant 
deformation happens. For this reason, it is especially 
important in early epochs, that is, when the deformations 
are small. 

CONCLUSION 
 
 
In this study, the displacement model is chosen to 
estimate nonhomogeneous deformation, and the unified 
least-squares adjustment is used to assess the accuracy 
of deformation parameters properly. By giving different 
weights, the characteristics of parameters can be altered 
easily, making the displacement model more feasible for 
various circumstances. Also, the accuracy and the 
significant critical value of strain parameters are derived, 
providing  a  reliable  quality  assessment  and  effectively  
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Figure 4. The 2  strain field at eight different epochs. 

 
 
 

 
 

Figure 5. Pattern of fracture. 

 
 
 
detecting the significant deformed area. For analyzing 
numerous point data,  the  nearest  neighbor  search  and 

triangulated irregular network are introduced to specify 
the neighboring points, and the  spatial  index  method  is  
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Figure 6. 1  strain field at epoch 80. 

 
 
 

  

  

  

  

 

 
 

Figure 7. The significant deformed area (red area) on the specimen at eight different epochs. 



 
 
 
 
adopted to reduce the running time. Numerical 
experiments showed that the variation as well as the 
extreme value of the strain field can be detected 
efficiently. Summing up, the strain field on the surface of 
an object can be obtained rapidly and accurately by 
applying the proposed method to a large number of 
spatial data. 
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