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With the development of graphic accelerated hardware and 3D modeling tools, 3D models will be as 
prevalent as other multimedia data in the future. Thus, effective content-based 3D model retrieval 
systems are required for emerging needs. Many 3D model retrieval methods have been proposed in 
recent years. Shape distributions showed superiority over others due to rotation invariance and ease of 
computation, but the discriminative accuracy is limited for any loss in information. Fuzzy Shape 
Distributions (FSD) is proposed to improve the retrieval performance of distribution-based methods. 
First, two improved shape distributions are presented by using the concentric partition and symmetrical 
partition for 3D models. Second, the two enhanced descriptors are combined with a fuzzy weighted 
procedure. Experimental results show that the proposed FSD can achieve better retrieval performance. 
 
Key words: 3D model retrieval, fuzzy weighted, shape distribution, sequential quadratic programming, content-
based. 

 
 
INTRODUCTION 
 
With the development of computer graphics and virtual 
reality, 3D models are projected to be as prevalent as 
other multimedia data in the future. 3D models play an 
important role in several domains such as computer-
aided design and protein classification. Thus, there is an 
urgent need for an effective content based 3D model 
retrieval system. The key challenge to a content-based 
3D model retrieval system is the extraction of the most 
representative features of 3D models (Tangelder and 
Veltkamp, 2004). The commonly adopted descriptors are 
global features, local features, histograms, topological 
features, 2D image features or combinations of the 
aforementioned. Bustos et al. (2007) surveyed 
techniques for searching for similar content in 3D object 
databases and a comparative study of different 3D model 
retrieval methods was published (Bustos et al., 2004). 
Iyer et al. (2005) classified and compared various 3D 
shape searching techniques based on shape 
representations and indicated directions for further 
research. The performance of the existing algorithms is 
mainly limited due to two major issues: the degeneracy of 
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3D objects and the variance of the description when the 
object is rotated, since other types of Euclidean motion 
such as translation and scaling normalization can be 
easily resolved. Concerning the rotational invariance 
description, two widely acceptable solutions have been 
applied. One is the rotational normalization of 3D models 
prior to feature extraction. The existing rotational 
normalization methods, such as continuous principle 
component analysis (PCA), and normal PCA (Vranic, 
2003), usually improve the discriminative power of the 
descriptors, but some similar models cannot easily be 
normalized using the same coordinates (Papadakis et al., 
2007). 

The other method makes use of a native rotation 
invariant 3D model description, such as a D2 descriptor 
(Osada et al., 2002), spherical harmonics descriptor 
(SHD) (Kazhdan et al., 2003), light field descriptor (LFD) 
(Chen et al., 2003) and shells (Ankerst et al., 1999). A 
shell descriptor is easy to compute but results in low 
retrieval performance. The SHD and LFD can produce 
better results, but they are not so robust against the  
degeneracy of 3D objects. In contrast, a D2 descriptor 
which is a probability distribution histogram of two 
randomly selected points from the object’s surface is 
robust against  a  3D  object’s  degeneracy.  However,  it  



 
 
 
 
sacrifices discriminative accuracy. A modified D2 
descriptor was proposed (Ip et al., 2002) in which each 
D2 histogram is classified into three types: in distance, 
mixed distance, and out distance. The assignment of 
these distances depends on whether the line segment 
connecting the two points lies completely inside, partially 
inside or completely outside an object. However, the 
classification of these three cases is a hard task. The 
angle-distance (AD) and absolute angle-distance (AAD) 
descriptors were proposed to compare 3D models 
(Ohbuchi et al., 2005). AAD measures the distribution of 
absolute angles between the normal vectors of two 
associated surfaces where the randomly selected points 
are located and is then combined with the distance of two 
selected points. It is a two dimensional descriptor which 
contains both the distance and the angle information. An 
exhaustive study of second order 3D shape features was 
carried out, and many combined shape descriptors were 
proposed based on group integration such as 
beta/distance (BD) and alpha/beta/distance (ABD). 
Experiments showed that further improvements of shape 
distributions can also lead to better results than the well-
known methods (Reisert et al., 2006). Principal plane 
analysis was used for 3D model retrieval (Chen and 
Cheng, 2007). A principal plane is a distinctive 
characteristic of 3D models and finding more principal 
planes is useful for representing more information about 
3D models. Combining different descriptors is also a hot 
topic in recent years. 

A widely used approach is based on fixed weights 
assigned to each descriptor (Atmosukarto et al., 2005; 
Ohbuchi and Hata, 2006). The retrieval performance can 
be improved but many experiments are needed. Two 
improved ABD descriptors are proposed in this paper 
based on the two model-partitioning methods; they are 
concentric circle partition based on spatial distribution 
and symmetrical partition based on principal plane 
analysis. Statistical ABD histograms are applied to 
different parts to express more position information on 
the sample points on the surface of 3D models and then 
the two enhanced shape distributions are combined with 
a fuzzy weighted procedure in order to automatically 
regulate the weights of each descriptor in the retrieval 
process. This leads to high discriminative power. The rest 
of the paper is organized as follows: Subsequently, after 
an overview of the related 3D model work, the two 
improved shape distributions are described after which 
the fuzzy weighted procedure is explained. This is 
followed by the study’s experimental results; finally, the 
study is concluded. 
 
 
RELATED WORK 
 
Principal plane analysis 
 
In the case of 3D feature space S

3
, the principal plane H  
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can be represented as Equation 16: 
 

Ax + By + Cz = D              (1) 
 
The origin of the 3D space is translated to the centroid of 
the 3D model and D becomes zero. A, B and C are the 
directional normal vectors of H that satisfy the following 
relationship: 
 
A

2 
+ B

2 
+ C

2 
= 1                                                               (2) 

 
The principal plane is the plane H with the minimal 

value of 3
( , )S Hδ : 
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Differentiate J with respect to A, B, C and then set to zero 
gives: 
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m  is a 3D moment given by: 
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From Equations 4 and 5, it can be seen that: 
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Combine Equations 2, 6 and 7, and the normal vector (A, 
B, C,) of H is obtained. 
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(8) 

 

Thus, the principal plane of the 3D model is obtained, 
whose normal vector is np1 = (A, B, C). The principal 
plane is considered as the first symmetrical plane in this 
research. 
 
 

ABD descriptor 
 

BD and ABD descriptors are proposed when the shape 
distribution is embedded in the theory of group integration  
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Figure 1. A 3D model.  

 
 
 
(Reisert and Burkhardt, 2006). The feature extraction 
process of 3D models can be briefly explained as follows: 
random points are sampled using the Monte Carlo 
sampling model (Osada et al., 2002), then the distance of 
two points, the angles of two associated surface normal 
vectors and the angle of the distance vector with one of 
the surface normal vectors are measured. Finally their 
probability distributions are computed and the ABD 
histogram obtained. The ABD histogram combines all 
three attributes: the distance, the angles between the 
surface normal vectors, and the angles between the 
distance vector and one of the surface normal vectors in 
a three dimensional histogram. It is defined by: 

 

( ) ( ) ( )
1, 2

1 1 2

1 2 1 2
( )

1 2
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, ,

d
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n p p
ABD d p p n n

p p
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∫           (9) 

 
The dimensions of distance, alpha and beta angles of 
ABD histogram are set as 16, 4 and 4 respectively. 
 
 
MATERIALS AND METHODS 

 
The steps for the two improved ABD descriptors are listed as 
follows: first, a 3D surface is randomly sampled using the Monte 
Carlo sampling method (Osada et al., 2002). A 3D model is shown 
in Figure 1, where its sampled representation is shown in Figure 2. 
It can be seen that the 3D surface can be randomly sampled using 
the Monte Carlo sampling model. A model-partitioning method is 

proposed to improve the ABD descriptor in which a statistical ABD 
histogram is used in different parts of the 3D models in order to 
combine more local information with the ABD descriptor. There are 
two model-partitioning methods; concentric circle partitioning based 
on the distance from the model surface to the center and symmetric 
partitioning based on principal plane analysis (Chen and Cheng, 
2007). 
 
 
Concentric ABD 
 
The center of 3D model mp is calculated by Equation 10. 
 

1

N

i i

i

p

tp S

m
S

=

×

=
∑

               (10) 

 
Where S is the total surface area, tpi is the center of the triangle 
and Si is the area of the triangle. For example, a model is divided 
into two parts by two concentric circles. Firstly, N random points are 
obtained by the Monte Carlo sampling method (Osada et al., 2002); 
the farthest distance between the points to the center R is 
calculated, then the radius of the two concentric circles are set as 
0.5*R and R respectively. Thus the model is partitioned into two 
parts which are the internal part and the external part. There are 
three types for the two selected random points: both in the internal 
part (type I), both in the external part (type III) and in the different 
parts (type II) as shown in Figure 3. 

All three types of ABD histograms are calculated and the 
dimensions of distance, alpha angle and beta angle of each type 
are set as 8, 4 and 4 respectively. A concentric/alpha/beta/distance 
(CABD) histogram consists of all these three types of concentric 
partitioned ABD histograms combined together which is described  
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Figure 2. The sampled representation of a 3D model. 

 
 
 

 
 
Figure 3. Concentric partitioning for the randomly sampled 
points; type I: the two selected points both in the internal 
part; type II: the two selected points in the different parts; 
type III: the two selected points both in the external part. 

 
 
 
as follows: 
 
CABD = (CABDI, CABDII, CABDIII). 
 
 
Symmetrical ABD 

 
It is noted that np2 = (A2, B2, C2), which is the normal vector of the 

second symmetrical plane. The problem regarding the second 
principal plane should be satisfied by the following conditions: it is 
perpendicular to the first symmetrical plane and points on the 3D 
model’s surface have the least distance to the second symmetrical 
plane. Hence, the problem of solving the second symmetrical plane 
can be transformed into the following constrained quadratic 
programming: 
 

{ }2 2 2
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min 2 2 2f m x m x m x m x x m x x m x x= + + + + +             (11) 
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The objective function, which is shown in Equation 11 is deduced by 
combing Equations 3 and 5. The constraint condition which is given 
in Equation 12 is obtained by geometry. Solving the optimal 
objective function with constraints is calculated by sequential 
quadratic programming (Boggs and Tolle, 1995), giving np2 = (A2, 
B2, C2) = (x1, x2, x3). 

The 3D model is partitioned into four symmetrical parts by the 
two symmetrical planes. There are three different types of the two 
random points: in the same symmetrical part (type I), in the 
adjacent parts (type II) and in the diagonal parts as shown in Figure 
4. All the three types of ABD histograms are calculated. The 
dimensions of distance, alpha angle and beta angle of each type 
are set as 8, 4 and 4 respectively. A symmetrical/alpha/ 
beta/distance (SABD) histogram consists of these three types of 
symmetrical partitioned ABD histograms combined together and is 
represented as follows: 
 
SABD = (SABDI, SABII, SABDIII). 
 
 
Fuzzy weighted procedure 

 
When combining the two improved descriptors, the weights should  
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Figure 4. Symmetrical partition for the randomly sampled points; type I: the two 
selected points both in the same symmetrical part; type II: the two selected points 
in the adjacent parts; type III: the two selected points both in the diagonal parts. 

 
 
 
be adjusted dynamically according to their performance. Fuzzy 
weighted procedure is thus introduced. Firstly, the query model is 
selected, and then the CABD and SABD descriptors are extracted. 
The CABD and SABD descriptors of the query model are compared 
with the feature database and the distance between the query 
model and the searched model is calculated. For example, let a, b 
be two 3D models. ha and hb are in the two histograms (CABD or 
SABD). The distance of the CABD and SABD can be calculated in 
the Equations 11 and 12. 
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The final similarity of the fuzzy shape distributions (FSD) is defined 
as Equation 13. 

 

FSD a CABD b SABD
d W d W d= × + ×

                                                       
(15) 

 
Where Wa + Wb = 1. 

The value of Wa is decided by using a fuzzy logic method. The 
nearest neighbor (NN) and first-tier (FT) are the two important 
measures of the retrieval performance. They are introduced as the 
feedback input values to adjust the weights Wa and Wb. NN is the 
percentage in which the closest match belongs to the same class 
as the query model and FT is the percentage of models which 
belongs to the query class that appears within the C-1 matches, 
where C is the number of 3D models in one category. If the NN or 
FT value of CABD is larger, it means that the CABD descriptor has 
a better retrieval performance than the SABD descriptor, so the 
weight of the CABD, Wa, should be adjusted to a bigger value in 
order to obtain better results. Since it only requires searching the 
top C-1 closest models using the CABD and the SABD descriptors 
respectively, it does not introduce a computational burden to the 
retrieval process. 

Firstly, the NN and FT of Da and Db are calculated, and the two 
fuzzy input values: In1 and In2 are obtained from Equation 14. 
 

1 1
1 , 2

1 2 1 2

NN FT
In In

NN NN FT FT
= =

+ +                                   

(16) 

 
The membership functions of the input value: In1 and In2 are 
shown in Figure 5a, while the membership of the output value is 
shown in Figure 5b. When the percentage of NN or FT of one 
retrieval method increases, experiment results show that one 
particular retrieval method is better than the other one, so the 
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Figure 5. The membership function of the input (a) and the output value (b). 

 
 
 
weight of this method should be bigger. Accordingly, the fuzzy rules 
are defined as follows: 
 
If In1 is small and In2 is small, Wa is big. 
If In1 is small and In2 is middle, Wa is middle. 
If In1 is small and In2 is big, Wa is middle. 
If In1 is middle and In2 is small, Wa is middle. 
If In1 is middle and In2 is middle, Wa is middle. 
If In1 is middle and In2 is big, Wa is small. 
If In1 is big and In2 is small, Wa is middle. 
If In1 is big and In2 is middle, Wa is middle. 
If In1 is big and In2 is big, Wa is small. 
 
The output values of Wa are solved by the weighted average 
method, thus Wb can be obtained by Wb = 1-Wa, finally obtaining the 
similarity of the FSD. 
 
 
RESULTS AND DISCUSSION 

 
The database of the Princeton shape benchmark (PSB) 
is used in the experiment (Shilane et al., 2004). The PSB 
provides a set of 1814 classified 3D models which are 
divided into 907 training and 907 testing models. 500 
models from each of these two groups are selected. The 
training models are classified into 20 categories and each 
category contains 25 models. The testing models are 
classified into 25 categories and each category has 20 
models. The PC test platform is Intel Core 2 Quad, 3 
GHZ CPU, 2 G RAM with Windows XP professional 
operating system. The precision-recall diagram and the 
other four quality measures in the following are used for 
performance evaluation. 
 
 
Recall and precision-recall plot 
 
For each query model in class C and any number K of 
top matches, ‘recall’ is the percentage of models in class 
C accurately retrieved within the top K matches. The 
recall (R) in this research is computed when K = 5C. 
Precision (P) represents the percentage of the top K 
matches which are members of class C, and the 

precision-recall plot indicates the relationship between 
precision and recall in a ranked list of matches. Curves 
closer to the upper right corner represent superior 
retrieval performance. 
 
 
Nearest neighbor (NN) 
 
The percentage of models that are closest to the query 
and which are in the same category. 
 
 
First-tier (FT) and second-tier (ST) 
 
They are the percentage of models belonging to the 
same category as the query that appears within the top 
(C-1) and 2* (C-1) matches respectively. 
 
 
E-measure (EM) 
 
This is a composite measure of the precision and recall 
for the first 32 retrieved models which is defined by: 
 

2* *P R
EM

P R
=

+
                                                         (17) 

 
The average retrieval performance evaluation is done in 
such a way that each 3D model in the dataset is used as 
a query model to search for other similar models for 
testing. Thus, the average evaluation is obtained. Taking 
recall values of descriptors in the test dataset as an 
example: the average recall is calculated by: 
 

20 25

1 1

1

500

j

i

i j

recall recall
= =
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(18) 

 

Where 
j

i
recall  represents the recall value when the j-th 

model in the category is selected as the query model.  

 
(a)                                       (b) 
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Table 1. Retrieval performance of descriptors on the training dataset. 
 

Descriptors NN (%) FT (%) ST (%) EM (%) R (%) 

Shells 19.8 16.4 23.3 16.5 39.9 

D2 35.4 22.6 33.1 23.2 54.2 

Moments 55.2 30.9 41.9 30.2 57.9 

AAD 49.8 30.9 43.2 30.7 63.0 

ABD 59.0 33.6 46.6 33.4 67.5 

CABD 63.4 37.2 52.0 36.9 79.9 

SABD 66.2 36.7 48.9 35.5 65.6 

FSD 70.8 39.9 54.5 38.9 82.1 

 
 
 

 
 
Figure 6. The precision-recall curves of the training database. 

 
 
 
The retrieval performances of the descriptors using the 
training dataset are shown in Table 1. In general, the 
proposed CABD and SABD descriptors are better than 
the ABD in Table 1. The proposed FSD method has the 
best retrieval performance and has improved 
performance, especially in NN and R values. The 
precision-recall curves of the testing dataset are shown in 
Figure 6. It is obvious that FSD is greatly improved 
compared to the others, while the retrieval performance 
of CABD and SABD are similar to each other, but both of 
them are better than the ABD descriptor. 

The retrieval performances of the descriptors of the 
testing dataset are shown in Table 2. Compared with D2, 
the NN, FT, ST, EM and R values of FSD are improved 
respectively by 125.6, 82.2, 59.5, 74.1 and 47.63% 

respectively. Obviously, the NN value is highly improved 
by using the proposed FSD. Since NN value measures 
the accuracy of searching the most similar models, FSD 
performs much better than other descriptors, thus, the 
proposed FSD has further potential to be applied in the 
practice. The precision-recall curves of descriptors for the 
testing dataset are shown in Figure 7, while the 
performance measures are shown in Table 2. It can be 
seen that, in the testing dataset, the proposed FSD 
performs better than it is in the training dataset. The 
CABD and SABD also achieve better results than the 
ABD descriptor. In comparing the FSD method with other 
well-known methods, the experiment is also carried out 
on the base-level classification of PSB, which is a test 
dataset containing 907 3D models. All the reference 
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Table 2. Retrieval performance of descriptors on the testing dataset. 
 

Descriptors NN (%) FT (%) ST (%) EM (%) R (%) 

Shells 22.8 17.9 26.7 18.5 47.0 

D2 36.0 24.1 36.5 25.1 59.0 

Moments 57.8 30.9 42.3 31.0 58.7 

AAD 56.8 32.6 46.2 33.5 66.9 

ABD 61.4 34.9 49.9 35.8 72.3 

CABD 65.8 38.7 53.8 39.3 81.0 

SABD 66.8 37.6 50.8 37.9 69.8 

FSD 81.2 43.9 58.2 43.7 87.1 

 
 
 

 
 
Figure 7. The precision-recall curves of the testing database. 

 
 
 
results in Table 3 can be found in previous published 
work (Reisert and Burkhardt, 2006; Shilane et al., 2004). 
The other three methods included are used for 
comparison. 
 
 
Spherical harmonics of GEDT (SH-GEDT) 
 
This is a rotation invariant representation of the GEDT 
obtained by computing the restriction of the function to 
concentric spheres and storing the norm of each 
frequency (Kazhdan et al., 2003). 
 
 
Gaussian Euclidean distance transform (GEDT) 
 
This is based on the comparison of a 3D function whose 
value at each point is obtained by combining a Gaussian 

with a Euclidean distance transform of the surface 
(Kazhdan et al., 2003). 

 
 

Adaptive views clustering (AVC) 
 
It provides an optimal selection of 2-D views from a 3D 
model and a probabilistic Bayesian method for 3D model 
retrieval from these views. The characteristic view 
selection algorithm is based on an adaptive clustering 
algorithm and uses statistical model distribution scores to 
select the optimal number of views ( Ansary et al., 2007). 
 
It can be seen that the CABD and the SABD have similar 
performances to the SHD and GEDT shown in Table 3, 
while FSD is better than all of them. The NN and EM 
values of FSD are better than that of AVC, Although FSD 
has smaller values in FT and ST than LFD, the size of 
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Table 3. Comparison to the best known methods on the entire PSB dataset. 
 

Descriptors NN (%) FT (%) ST (%) EM (%) Size 

D2 34.2 16.9 25.2 15.2 32 

ABD 54.7 27.4 37.5 22.5 256 

GEDT 60.3 31.3 40.7 23.7 16384 

SHD 55.6 30.9 41.1 24.1 1092 

AVC 60.6 33.2 44.3 25.5 1113 

CABD 60.8 29.7 40.1 23.8 384 

SABD 56.9 28.7 38.6 23.2 384 

FSD 68.3 32.9 43.4 26.1 768 

 
 
 

 
 
Figure 8. Visual retrieval results for ‘Biplane’ category. (a) Query model; (b) D2; (c) ABD; and (d) FSD. 

 
 
 
LFD is bigger than FSD and AVC needs expensive 
computational time. The visual retrieval results using the 
proposed FSD, compared with D2 and ABD are shown in 

Figures 8 and 9. Figure 8a is a query model selected in 
the ‘Biplane’ category. The retrieval results using D2, ABD 
and FSD are shown in Figures 8b, c and d 

 
(a) 

 
(b) 

 
(c) 
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Figure 9. Visual retrieval results for ‘Dining chair’ category. (a) Query model; (b) D2; (c) ABD; and (d) FSD. 

 
 
 
respectively. Only 2 related models are retrieved in the 
top 7 by D2 and 4 models are retrieved by ABD while 6 
models are retrieved by using the proposed FSD. 
Obviously, the retrieval performance using FSD is 
improved by 200 and 50% compared with D2 and ABD 
respectively. Figure 9a is a query model selected in the 
‘Diningchair’ category. The retrieval results using D2, 
ABD and FSD are shown in Figures 9b, 9c and 9d 
respectively. Only 1 model is retrieved in the top 7 by D2 
and 4 models are retrieved by ABD, while 6 models are 
retrieved using the proposed FSD. 

The retrieval performance by using FSD is improved by 
500 and 50% compared with D2 and ABD respectively. It 
is obvious that the proposed FSD can obtain much better 

retrieval results than D2 and ABD greatly in practice. 
 
 
Conclusion 

 
The fuzzy shape distribution (FSD) is proposed for 3D 
model retrieval. First, the concentric ABD (CABD) and 
symmetrical ABD (SABD) are introduced to improve the 
ABD descriptor because they can exploit more location 
information of random points on the surface of 3D 
models. Secondly, FSD is presented by combining CABD 
and SABD with a fuzzy weighted procedure. 
Experimental results show that the proposed methods 
obtain  a  very  good  retrieval  performance.  Due  to  the  
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good characteristic and performance of the shape 
distribution based method, further work is needed to 
extract more meaningful and distinctive characteristics of 
3D models to improve the retrieval results. Furthermore, 
this fuzzy weighted procedure can be also extended to 
other combinations of retrieval methods. Its main 
advantage is that it only needs to compute the top C 
nearest models and adjust the weights according to the 
searching performance of these models. 
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