
Scientific Research and Essay Vol. 4 (8), pp. 740-744, August, 2009
Available online at http://www.academicjournals.org/SRE
ISSN 1992-2248 © 2009 Academic Journals

Full Length Research Paper

Improving the performance of bubble sort using a
modified diminishing increment sorting

Oyelami Olufemi Moses

Department of Computer and Information Sciences, Covenant University, P. M. B. 1023, Ota, Ogun State, Nigeria. E-

mail: olufemioyelami@yahoo.com or olufemioyelami@gmail.com. Tel.: +234-8055344658.

Accepted 17 February, 2009

Sorting involves rearranging information into either ascending or descending order. There are many
sorting algorithms, among which is Bubble Sort. Bubble Sort is not known to be a very good sorting
algorithm because it is beset with redundant comparisons. However, efforts have been made to
improve the performance of the algorithm. With Bidirectional Bubble Sort, the average number of
comparisons is slightly reduced and Batcher’s Sort similar to Shellsort also performs significantly
better than Bidirectional Bubble Sort by carrying out comparisons in a novel way so that no
propagation of exchanges is necessary. Bitonic Sort was also presented by Batcher and the strong
point of this sorting procedure is that it is very suitable for a hard-wired implementation using a sorting
network. This paper presents a meta algorithm called Oyelami’s Sort that combines the technique of
Bidirectional Bubble Sort with a modified diminishing increment sorting. The results from the
implementation of the algorithm compared with Batcher’s Odd-Even Sort and Batcher’s Bitonic Sort
showed that the algorithm performed better than the two in the worst case scenario. The implication is
that the algorithm is faster.

Key words: Algorithm, sorting, bubble sort, bidirectional bubble sort, Batcher’s sort, Oyelamis’s sort, worst
case, swapping, comparison.

INTRODUCTION

Using computer to solve a problem involves directing it
on what steps it must follow to get the problem solved.
The steps it must follow is called algorithm. An algorithm
is a finite sequence of explicit instructions to solve a
problem with a finite amount of effort in a finite amount of
time (William, 2005; Alfred et al., 2002).

Algorithms are paramount in computer programming,
but an algorithm could be of no use even though it is cor-
rect and gives a desired output if the resources like
storage and time it needs to run to completion are
intolerable.

Instructions can be executed any number of times,
provided the instructions themselves indicate repetition.
However, no matter what the input values may be, an
algorithm terminates after executing a finite number of
instructions. A program is thus an algorithm in as much
as it does not loop infinitely on any input (Sara and Allen,
2000).

Five important features of algorithm are (Donald, 1997):

i.) Finiteness: An algorithm must always terminate after a

finite number of steps.
ii.) Input: An algorithm has zero or more inputs- quantities
that are given to it initially before the algorithm begins, or
dynamically as the algorithm runs. These inputs are
taken from specified sets of objects.
iii.) Definiteness: Each step of an algorithm must be
precisely defined; the actions to be carried out must be
rigorously specified for each case.
iv.) Output: An algorithm has one or more outputs-
quantities that have a specified relation to inputs.
v.) Effectiveness: An algorithm is also generally expected
to be effective, in the sense that its operations must all be
sufficiently basic that they can in principle be done
exactly and in a finite length of time by someone using
pencil and paper.

A sort is a process that rearranges the records of a file
into a sequence that is sorted on some key. Sorting orga-
nizes a collection of data into either ascending or descen-
ding order (Yedidjah and Aaron, 2003; Frank, 2004).

Sorting can be categorized into two categories internal

sorting requires that the collection of data fit entirely in
the computer’s main memory while in external sorting,
the data collectively will not fit in the computer’s main
memory all at once but must reside in auxiliary storage
such as disk (Yedidjah and Aaron, 2003; Frank, 2004;
Shola, 2003). Sorting algorithms for serial computers
(random access machines or RAMs) allow only one
operation to be executed at a time. In sorting algorithms
based on a comparison network model of computation,
many comparison operations can be performed
simultaneously. Comparison networks differ from RAM’s
in two important aspects. First, they can only perform
comparisons. Second, unlike the RAM model in which
operations occur serially, that is, one after another,
operations in a comparison network may occur the same
time or “in parallel”.

A sorting network is a comparison network for which
the output sequence is monotonically increasing (that is,
b1� b2�… � bn) for every input sequence (Thomas et al.,
2003).

Diminishing increment sort as used by Shellsort pro-
vides a simple and efficient sorting algorithm. This
algorithm improves on Insertion Sort by reducing the
number of inversions and comparisons made on the ele-
ments to be sorted. It sorts an array ‘A’ with ‘n’ elements
by dividing it into subsequences and sorts the subse-
quences. It is called diminishing increment sorting
because the increments continue to decrease from one
pass to the other until the last increment is 1.

Bubble sort is a kind of internal sorting that compares
adjacent items and exchanges them if they are out of
order and continues until the file is sorted (Frank, 2004;
Robert, 1998). Bubble sort is however, not an efficient
algorithm because it is a quadratic-time sorting algorithm.
However, efforts have been made to improve the
performance of the algorithm. With Bidirectional Bubble
Sort, the average number of comparisons is slightly
reduced and Batcher’s Sort similar to Shellsort also
performs significantly better than Bidirectional Bubble
Sort by carrying out comparisons in a novel way so that
no propagation of exchanges is necessary. Bitonic Sort
was also presented by Batcher and the strong point of
this sorting procedure is that it is very suitable for a hard-
wired implementation using a sorting network.

This paper presents an algorithm that combines the
technique of Bidirectional Bubble Sort with a modified
diminishing increment sorting to improve Bubble sort. The
results obtained from the implementation of the algorithm
compared with Batcher’s Odd-Even Sort and Bitonic Sort
showed that the algorithm is the fastest of the three.

MATERIALS AND METHODS

Oyelami’s Sort was developed by modifying diminishing increment
sort as used by Shellsort and then applied it to the elements to be
sorted before applying Bidirectional Bubble Sort. It is to be noted
that the kind of diminishing increment used is different from that of
Shellsort but as used by Oyelami (2008) and Oyelami et al. (2007).

Oyelami 741

Bubble sort

To understand how Bubble Sort works, consider an array con-
taining elements to be sorted. We look through the array and pick
the smallest element and put it in position 1. That is the first pass.
We look through the remaining list from the second element to the
last and pick the smallest and put in position 2 and so on until all
the elements are sorted. Consider the array of numbers below for
instance:

8 4 3 2

Figure 1 gives a pictorial representation of how the sorting will be
done.

Refinements on bubble sort

There have been some improvements on Bubble sort as discussed
below:

Bidirectional bubble sort

Bidirectional Bubble Sort also known as Cocktail Sort or Shaker
Sort is a variation of Bubble Sort that is both a stable sorting
algorithm and a comparison sort. The algorithm differs from Bubble
Sort in that sorts in both directions each pass through the list. The
average number of comparisons is slightly reduced by this
approach (Donald, 1998). This sorting algorithm is only marginally
more difficult than Bubble Sort to implement, and solves the
problem with so-called turtles in Bubble Sort. Consider the problem
of sorting the same set of numbers used for Bubble Sort:

8 4 3 2

The algorithm does the sorting as shown in Figure 2. There are 7
comparisons and 6 swaps in all.

Batcher’s odd and even merge sort

If you have a list of keys arranged from left to right, and you sort the
left and right halves of the list separately, and then sort the keys in
even positions on the list, and in odd positions separately, then all
you need do is compare and switch each even position key
(counting from the left) with the odd position key immediately to its
right, and you will have completely sorted the whole list. The
algorithm can be summarized as follows: Sort Algorithm for 2m
keys = Sort left half and Sort right half; Then Merge the two halves,
and can describe the Merge step as Merge 2m keys = Merge m odd
keys and m even keys. Then compare and switch each even key
with odd key to its right.

For an illustration of how Batcher’s Sort works, consider the
numbers 8 4 3 2 considered above. The numbers are sorted as
shown In Figure 3.

In all, there are 5 comparisons and 4 swaps and these show the
superiority of Batcher’s Sort over Bidirectional Bubble Sort.

Bitonic sort

A Bitonic sequence is one that monotonically increases and
monotonically decreases. A Bitonic sorter is composed of several
stages, each of which is called a half-cleaner. Each half-cleaner is a
comparison network of depth 1 in which input line i is compared

with line i + for I = 1, 2, … (n is assumed to be even).

By re-

Sci. Res. Essays 742

First Pass

8 4 3 2

8 4 2 3

8 2 4 3

2 8 4 3

Second Pass

2 8 4 3

2 8 3 4

2 3 8 4

Third Pass

2 3 8 4

2 3 4 8

Figure 1. Illustration of bubble
sort

8 4 3 2

4 8 3 2

4 3 8 2

4 3 2 8

4 3 2 8

4 2 3 8

2 4 3 8

2 3 4 8

Figure 2. Illustration of bidirectional
bubble sort

8 4 3 2

4 8 2 3

2 3 4 8

Figure 3. Illustration of batcher’s
odd and even merge sort.

cursively combining half-cleaners, a Bitonic sorter can be built
which is a network that sorts bitonic sequences (Thomas et al.,
2003). For an illustration of how Bitonic sort works, consider the
usual problem of sorting the numbers: 8, 4, 3 and 2. The numbers
are sorted as follows:
Half Cleaners are used in steps 1 and 2 and Bitonic Mergers used
in steps 3 and 4.

8 4 3 2 Step 1

3 2 8 4 Step 2

2 3 4 8 Step 3

2 3 4 8 Step 4

In all, there are 6 comparisons and 4 swaps.

The proposed algorithm (Oyelami’s sort)

This proposed sorting algorithm divides the elements to be sorted
into subsequences just like Shellsort does but by first of all
comparing the first element with the last. If the last is less than the
first, the two swap positions, otherwise, they maintain their
positions. Later, the second element is compared with the second
to the last, if the second to the last element is smaller than the
second, they are swapped. Otherwise, they maintain their positions.
This process continues until the last two consecutive middle
elements are compared or until it remains only one element in the
middle. After this, Bidirectional Bubble Sort is applied to sort the
adjacent elements. This approach reduces the number of
comparisons and inversions carried out significantly.

Consider the worst-case scenario of sorting the following
elements used for Batcher’s Sort and Bitonic Sort in ascending
order:

8 4 3 2

The algorithm works like this:
8 4 3 2

2 4 3 8

2 3 4 8 (*)

2 3 4 8

2 3 4 8

2 3 4 8

Figure 4. Illustration of Oyelami’s
sort.

Bidirectional Bubble Sort is now applied to (*) to sort the elements
that are adjacent as shown in Figure 4.

Since no swap has occurred, the algorithm stops, eliminating the
need to pass from the top back to the bottom. In all, 5 comparisons
were carried out and only 2 swaps. This shows that this algorithm
performs better than Batcher’s that has 5 comparisons and 4
swaps. When compared with Bitonic Sort (6 comparisons and 4
swaps) it performs better. The algorithm is presented below:

Oyelami’s Sort (array, size)
Begin
1. i = 1
2. j = size
3. while (i < j) do
begin
4. if array[i] > array[j] swap (array, i, j)
5. i = i + 1
6. j = j – 1
end
[Call Bidirectional Bubble Sort to sort the adjacent elements]
7. Bidirectional Bubble Sort (A, size:int)
End

Performance analysis of algorithms

The most important attribute of a program/algorithm is correctness.
An algorithm that does not give a correct output is useless. Correct
algorithms may also be of little use. This often happens when the
algorithm/program takes too much time than expected by the user
to run or when it uses too much memory space than is available on
the computer (Sartaj, 2000). Performance of a program or an
algorithm is the amount of time and computer memory needed to
run the program/algorithm. Two methods are normally employed in
analyzing an algorithm:

i.) Analytical method
ii.) Experimental method

In analytical method, the factors the time and space requirements
of a program depend on are identified and their contributions are
determined. But since some of these factors are not known at the
time the program is written, an accurate analysis of the time and
space requirements cannot be made. Experimental method deals
with actually performing experiment and measuring the space and
time used by the program. Two manageable approaches to
estimating run time are (Sartaj, 2000):

i.) Identify one or more key operations and determine the number of
times they are performed.
ii.) Determine the total number of steps executed by the program.

Oyelami 743

Worst-case, best-case and average-case analysis of sorting
algorithms

The worst-case occurs in a sorting algorithm when the elements to
be sorted are in reverse order. The best-case occurs when the
elements are already sorted. The average–case may occur when
part of the elements are already sorted. The average-case has data
randomly distributed in the list (William and William, 2002). The
average case may not be easy to determine in that it may not be
apparent what constitutes an ‘average’ input. Concentration is
always on finding only the worst-case running time for any input of
size n due to the following reasons (Thomas et al., 2003):

i.) The worst-case running time of an algorithm is an upper bound
on the running time for any input. Knowing it gives us a guarantee
that the algorithm will never take any longer. We need not make
some educated guess about the running time and hope that it never
gets much worse.
ii.) For some algorithms, the worst-case occurs fairly often. For
example, in searching a database for a particular piece of
information, the searching algorithm’s worst-case will often occur
when the information is not present in the database. In some
searching applications, searches for absent information may be
frequent.
iii.) The “average-case” is often roughly as bad as the worst case.

Analysis of the proposed algorithm

Generally, the running time of a sorting algorithm is proportional to
the number of comparisons that the algorithm uses, to the number
of times items are moved or exchanged, or both (Robert, 1998).
The approach used in this paper is to measure the number of
comparisons and exchanges carried out by each algorithm
(Batcher’s Sort, Bitonic Sort and Oyelami’s Sort) in the worst case
scenario.

RESULTS AND DISCUSSION

Table 1 shows the result obtained. From the results in
Table 1, the proposed algorithm has fewer numbers of
comparisons and swaps compared with both Batcher’s
Odd-Even Sort and Bitonic Sort. The results also show
that as the size of the input increases, the proposed
algorithm tends to be more efficient as both Batcher’s
Odd-Even and Bitonic sorts are not good for large values
of input. The implication of these is that the proposed
algorithm is faster and therefore, more efficient. The algo-
rithm is also recommended for large values of inputs to
be sorted.

Conclusion

Bubble Sort is not known to be a good algorithm because
it is a quadratic-time sorting algorithm. However, efforts
have been made to improve the performance of the
algorithm. With Bidirectional Bubble Sort, the average
number of comparisons is slightly reduced and Batcher’s
Sort similar to Shellsort also performs significantly better
than Bidirectional Bubble Sort by carrying out compa-
risons in a novel way so that no propagation of exchange
Is necessary. This paper has further improved on Batch-

Sci. Res. Essays 744

Table 1. Comparison of Batcher’s Sort, Bitonic Sort and Oyelami’s Sort Performances.

 Batcher’s Odd-Even Sort Bitonic Sort Oyelami’s Sort
Size of
Input

Number of
Comparisons

Number
of Swaps

Number of
Comparisons

Number
of Swaps

Number of
Comparisons

Number
of Swaps

4 5 4 6 4 5 2
8 19 12 24 14 11 4

16 63 32 80 44 23 8
32 191 80 240 128 47 16
64 543 192 672 312 219 41

128 1471 448 1792 928 191 64
256 3839 1024 4608 2368 383 128

er’s Sort using the technique of Bidirectional Bubble Sort
and a modified diminishing increment sorting. The experi-
mentation of the proposed algorithm and Batcher’s Sort
has shown that the proposed algorithm is more efficient.
The algorithm is recommended for all sizes of elements
to be sorted but much more efficient as the elements to
be sorted increases.

REFERENCES

Alfred V, Aho J, Horroroft, Jeffrey DU (2002). Data Structures and

Algorithms (India: Pearson Education Asia).
Donald EK (1997). The Art of Computer Programming, Volume I,

Fundamental Algorithms; Third Edition. US: Addison-Wesley.
Donald EK (1998). The Art of Computer Programming, Volume 3,

Sorting and Searching, Second Edition. Addison-Wesley.
Frank MC (2004). Data Abstraction and Problem Solving with C++. US:

Pearson Education, Inc.
Oyelami MO (2008). A Modified Diminishing Increment Sort for

Overcoming the Search for Best Sequence of Increment for
Shellsort”. J. Appl. Sci. Res., 4 (6): 760- 766.

Oyelami MO, Azeta AA, Ayo CK (2007). Improved Shellsort for the
Worst-Case, the Best-Case and a Subset of the Average-Case
Scenarios. J. Comput. Sci Appl. 14 (2): 73- 84.

Robert S (1998). Algorithms in C. Addison-Wesley Publishing
Company, Inc.

Sara B, Allen G (2000). Computer Algorithms. US: Addison Wesley
Longman.

Sartaj S (2000). Data Structures, Algorithms and Applications in Java.
McGrawHill.

Shola PB (2003). Data Structures With Implementation in C and Pascal.
Nigeria: Reflect Publishers.

Thomas HC, Charles EL, Ronald LR, Clifford S (2003). Introduction to
Algorithms. The Massachusetts Institute of Technology.

William F, William T (2002). Data Structures With C++ Using STL.
Prentice Hall.

William JC (2005). Data Structures and the Java Collections Framework
(US: The McGrawHill Companies, Inc).

Yedidjah L, Moshe A, Aaron MT (2003). Data Structures Using Java.
US:Pearson Education, Inc.

