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This paper is concerned with the performance tuning of the fuzzy logic controller (FLC) used for the 
process grain sized scheduling of parallel jobs. First, we have proposed a scheduling algorithm called 
agile algorithm. The performance of the agile algorithm depends on how the processes of the 
applications are coscheduled. The performance of the scheduling algorithm is evaluated using the 
features of the scheduling metrics like average waiting time, mean response time, mean reaction time, 
mean slowdown, turn around time and mean utilization. A rule based scheduling system is framed 
using the fuzzy logic controller with the help of the above mentioned metrics to schedule all the parallel 
workload data. The fuzzy controller helps to identify the scheduling strategy using the rule base 
developed and assign the corresponding scheduling class to the parallel jobs. The fuzzy logic 
controller uses Mamdani model for classifying the scheduling class and found that the error rate is high 
during the defuzzification and need to tune the fuzzy controller to reduce the error. The paper 
concentrates about the tuning of the fuzzy logic controller using a neural network where the rule base 
of a fuzzy system is interpreted as a neural network. The performance of the neural network in turn 
depends on the weight determination of its own network and the various optimization techniques like 
genetic and parallel genetic algorithm, particle swarm optimization, hybrid particle swarm optimization 
with the tabu search and the parallel implementation of the hybrid approach of the particle swarm 
optimization with the tabu search are employed to identify the weight determination of the neuro fuzzy 
network. The paper gives very good performance of the fuzzy controller using the neuro fuzzy system 
with weights identified using the above optimization techniques. The paper gives a complete analysis of 
the computational time occurred and the weight identification with the various optimization techniques 
which guides the neural network to speed up the training process. 
 
Key words: Genetic algorithm, agile algorithm, mean reaction time, particle swarm optimization, tabu search. 

 
 
INTRODUCTION 
 
The scheduling of parallel jobs has long been an active 
area of research. Scheduling parallel jobs for execution 
needs a certain number of processors for a certain time 
and the schedule have to pack the  jobs  together.  In  job  
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scheduling, a parallel job is mapped to a subset of 
processors. The set of processors dedicated to a certain 
job is called a partition of the machine. To increase 
utilization, parallel machines are typically partitioned in to 
several non overlapping partitions allocated to different 
jobs running concurrently. Parallel job scheduling is the 
problem of how to run a workload of multiple parallel jobs 
in a single parallel machine. The scheduler is responsible 
for finding  the  best  schedule  allocation,  both  temporal  
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 P1     P2    P3    P4   P5   P6   P7   P8   P9   P10 

 

TS1 J11   J12   J13   J14    

TS2 J21   J22   J23      

TS3 J31   J32   J33    J34   J35 

TS4  J41   J42     

TS5  J51   J52   J53      

TS6 J61    J62   J63     J64   J65 

TS7 J71    J72     

TS8  J81 

TS9 J91    J92   J93   J94   J95 

TS10 J101   J102   J103   J104   J105 

 
 

 

Figure 1. A scheduling matrix. 

 
 
 
and spatial as a function of the existing workload. A good 
way of improving the performance evaluation of a parallel 
system is to consider the frequency of synchronization 
between the processes in a system. The parallel system 
application consists of multiple processes running on the 
different processors that communicate frequently. The 
good performance of the parallel systems mainly 
depends on how the processes are co scheduled. If the 
processes are not co scheduled properly, then the 
system will lead to very poor performance. The various 
co scheduling techniques are first come first served 
scheduling algorithm, gang scheduling, Flexible co 
scheduling. In the first come first served scheduling, 
when a job arrives, each of its thread is placed 
consecutively at the end of the shared queue. When a 
processor becomes idle, it picks the next ready thread, 
executes it until it completes or blocks. A set of related 
threads is scheduled to run on a set of processors at the 
same time on a one to one basis. The concept of 
scheduling a set of processes simultaneously on a set of 
processors uses the threads, which is also called as 
group scheduling or gang scheduling. Flexible co 
scheduling is used to improve overall system 
performance in the presence of heterogeneous hardware 
or software by using dynamic measurement of 
applications. First come first served and gang scheduling 
suffer from internal and external fragmentation. Flexible 
co scheduling saturates at heavy loads. Scheduling is 
done by partitioning the machine’s processor and running 
a job on each partition. Due to the synchronization 

between processes in the application, the jobs do not 
pack perfectly. If the processes are not co scheduled 
properly, it will harm the performance of the parallel 
algorithm. Agile algorithm concentrates on the detailed 
classification of the synchronization granularity of the 
parallel jobs and the algorithm takes heavy loads up to 
10,000 jobs for each granularity and gives better results 
when compared to the traditional ones. Every job arrival 
in the ready queue constitutes a scheduling event in the 
parallel system. For each scheduling event, a new 
scheduling matrix is computed for the system. The 
scheduling matrix defines all the tasks executing in each 
processor and at each time slice. For the implementation 
of the agile algorithm, a 10 processor system with a 
multiprogramming level of 10 is considered and it is 
shown in Figure 1. The matrix is cyclic in that time slice 
10 is followed by time slice 1. Scheduling cycle is defined 
as a cycle which contains an entire row of the matrix 
values at any instant of time. Each row of the matrix 
defines a 10 processor virtual machine which runs at 
1/10th of the speed of the physical machine. In the 
scheduling matrix defined in Figure 1. P1 to P10 represent 
the 10 processor system and TS1 to TS10 represent the 
time slices and J11 to J14 are the partitions of the job J1 
and similarly the scheduling matrix represent for the job 2 
to job 10 (Dutot et al., 2011; Eitan Frachtenberg et al., 
2005). 

The paper subsequently explains the scheduling 
algorithm agile algorithm, after which it talks about the 
grain sizes and also the workload details. It  further  gives  
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the complete scheduling metric used for the comparison 
of the scheduling algorithm, and then states the need for  
the fuzzy and neuro fuzzy system. Afterwards, the paper 
explains the rule base system for the job scheduling and 
the structure of the neuro fuzzy system, and also gives 
the defuzzification results from the fuzzy controller. This 
is followed by a presentation of the weight determination 
and the fitness evaluation, after which the optimization 
techniques used for the weight determination is 
presented. Finally the paper discusses the results and 
the complete analysis of the fitness results and 
computational results from genetic algorithm and its 
parallel implementation, particle swarm optimization, and 
the hybrid approach of the particle swarm optimization 
with the tabu search, after which its conclusions are 
drawn. 
 
 
Agile algorithm –Scheduling technique for parallel 
job scheduling 
 
The algorithm concentrates on detailed classification of 
the frequency of synchronization between processes in a 
system. For the implementation of the agile algorithm four 
workloads are considered. Each workload may be fine 
grain, coarse grain, medium grain and independent which 
contain 10,000 jobs. Each 10,000 jobs are divided in to 
1000 slots and each slot contains 10 jobs. The jobs in the 
slots are scheduled in the scheduling matrix as shown in 
Figure 1. 

The following explains the grain explanation used in the 
workload (Dan et al., 2007). 
 
 
Fine grain 
 
Fine grained parallelism represents a much more 
complex use of parallelism. The processes communicate 
often and must be co scheduled effectively due to their 
demanding synchronization.  
 
 
Medium grain 
 
Medium grain parallelism represents enough synchro-
nization between the processes and the scheduling 
algorithms should take care of the performance 
evaluation of the system. 
 
 
Coarse grain 
 
With coarse Grain, there is synchronization among 
processes, but at a very gross level. This kind of situation 
is easily handles as a set of concurrent processes 
running on a multiprogrammed uniprocessor and can be 
supported on a multiprocessor with little or no  change  to  

 
 
 
 
the software. 
 
 
Independent 
 
With independent parallelism, there is no explicit 
synchronization among processes. Each represents a 
separate, independent application or job. 
 
 
Workload characteristics 
 
The simulation studies were performed using the agile 
algorithm with workload logs available from Feitelson’s 
Archive (Thanushkodi and Sudha, 2009). 
 
 
Fine grain workload 
 
The log considered for the experiment was The Los 
Alamos National Lab (LANL) Log. This log contains two 
years worth of accounting records produced by the DJM 
software running on the 1024 node CM-5 at Los Alamos. 
Total Number of jobs present in the Log is 2, 01,387 
Jobs. The Log contains the following details: 1) Job Id 2) 
Submit Time 3) Start Time and Date 4) End Date and 
Time. 
 
 
Medium grain workload 
 
The log considered for the experiment was LLNL 
Thunder Log. This log contains several months’ worth of 
accounting records from a large Linux cluster called 
thunder installed at Lawrence Livermore. Total number of 
jobs present in the Log is 1, 28,662 Jobs. The Log 
contains the following details (1) Job ID (2) User ID (3) 
Name (4) Job State (5) Start Time (6) End Time 
(Thanushkodi and Sudha, 2009; Minh et al., 2010). 
 
 
Coarse grain workload 
 
The log considered for the experiment was The Lawrence 
Livermore National Lab (LLNL) T3D Log. This log 
contains 4 months worth of accounting record at the 
Lawrence Livermore National Lab (LLNL). Total number 
of jobs present in the log is 21323 Jobs. The log contains 
the following details (1) Start Date (2) Start Time (3) 
Process ID (4) Partition ID. 
 
 
Independent 
 
The log considered for the experiment was LPC Log. This 
log contains 9 months of record. Total number of Jobs 
present in the Log is 2, 44,821 Jobs. The log contains the  
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Table 1. Fine grain workload (in seconds). 
 

Algorithm/Metric FCFS Gang FCS Agile 

AWT 2936 2110 2110 2110 

MRT 5752 3350 3350 3350 

TAT 31660 16810 16810 16810 

MRET 4120 3380 3380 3380 

MU 0.5 0.6 0.6 0.6 

MS 71.10486 49.2 49.2 49.2 

 
 
 

following details (1) Job ID (2) Submit time (3) Wait time 
(4) Run time. 
 

 

Performance metrics 
 
The synthetic workload generated Feitelson’s archive are 
used as input to the simulation of various scheduling 
strategies. We monitor the parameters of the arrival time, 
start time, execution time; finish time etc. Different 
scheduling algorithms have different properties and may 
favor one class of processes over another. In choosing 
which algorithm to use in a particular situation, we must 
consider the properties of the various algorithms. Many 
criteria have been suggested for scheduling algorithms. 
The criteria includes the following as presented by Jintao 
et al. (2010) 
 
 

Mean utilization 
 
We want to keep the CPU as busy as possible. CPU 
utilization may range from 0 to 100%. In a real system, it 
should range from 40% (for a lightly loaded system) to 
90%t (for a heavily loaded system). The mean utilization 
is the ratio of CPU busy time to the number of processors 
multiplied with total time for execution.  
 

 
 
                                            Σ CPU busy time 
Mean utilization =            
                                Number of processors *Total time 
 
 

            (1) 
 
 
Mean response time 
 
In an interactive system, turnaround time may not be the 
best criteria. Often, a process can produce some output 
fairly early, and can continue computing new results while 
previous results are being output to the user. Thus, 
another measure is the time from the submission of a 
request until the first response is produced. This measure 
is called response time.  
 

 
                                           Σ Job finish time-Job submit time  
Mean response time   =     
                                                      Number of jobs 
 

        (2)  

Mean reaction time 
 
The mean job reaction time defined as the mean time 
interval between the submission and the start of the job. 

  
                                         Σ Job start time-Job submit time 
    Mean reaction time  =  
                                        Number of Jobs 
 

       (3) 
 
 
Mean slowdown 
 
Mean slowdown is the sum of jobs response times 
divided by the job’s execution times. This metric emerges 
as a solution to normalize the high variation of the jobs 
response time. 
 
 
 
                                 Σ   Job response time/ Job execution time 
Mean slow down =    
                                                  Number of jobs 
 

   (4) 
 
 
Turn around time 
 
From the point of view of a particular process, the 
important criterion is how long it takes to execute that 
process. The interval from the time of submission of a 
process to the time of completion is the turn around time. 
Turn around time is the sum of periods spent waiting to 
get into memory, waiting in the ready queue, executing 
on the CPU and doing I/O. 
 
 
Waiting time 
 
The scheduling algorithm does not affect the amount of 
time during which a process executes or does I/O; it 
affects only the amount of time that a process spends 
waiting in the ready queue. Waiting time is the sum of the 
periods spent waiting in the ready queue.  

Tables 1 to 4 represents the scheduling features values 
(that is) average waiting time (AWT), mean response 
time (MRT), turn around time (TAT), mean reaction time 
(MRET), mean utilization (MU) and mean slowdown (MS) 
during the implementation  of  the  agile  algorithm. These  
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Table 2. Medium grain workload (in seconds). 
 

Algorithm/Metric  FCFS Gang FCS Agile 

AWT 45163 11291 9033 6452 

MRT 45989 11497 9198 6570 

TAT 25894 6138 3600 93 

MRET 45163 11291 9033 6452 

MU 0.5 0.5 0.6 0.7 

MS 1.83 0.46 0.37 0.26 

 
 
 

Table 3. Coarse grain workload (in seconds). 
 

Algorithm/Metric FCFS Gang FCS Agile 

AWT 53002 13251 663 221 

MRT 53794 13448 672 224 

TAT 17110 4278 214 71 

MRET 53002 13251 663 221 

MU 0.5 0.6 0.7 0.7 

MS 3.2 0.8 0.04 0.013 

 
 
 

Table 4. Independent grain workload in seconds. 
 

Algorithm/Metric FCFS Gang FCS Agile 

AWT 6 0 0 0 

MRT 23 0 0 0 

TAT 56590 801 174 16 

MRET 6 0 0 0 

MU 0.5 0.5 0.6 0.5 

MS 3.6912 0.0527 0.0114 0.001036 

 
 
 
values are taken for the learning analysis using the neuro 
fuzzy system in our paper. 

For the Log LANL that is for the fine grain application, 
the overall running time with the first come served 
algorithm (FCFS) was 2 h, 31 min and 6 s. The overall 
running time with the Gang scheduling (Gang) was 17 
min and 9 s. Flexible co scheduling (FCS) and the agile 
algorithm give the same figure as Gang scheduling. 

For the Log LLNL that is for the medium grain 
application, the overall running time with the First Come 
Served Algorithm was 7 h, 11 min and 34 s. The overall 
running time with the Gang scheduling was 32 min and 
27 s. The overall running time for the flexible co 
scheduling was 16 min and 33 s and for the agile 
algorithm it was 1 min and 33 s. 

For the Log LLNL T3D that is for the coarse grain 
application, the overall running time with the first come 
served algorithm was 2 h, 21 min and 7 s. The overall 
running time with the Gang scheduling was 17 min and 9 
s. The overall running time for the  flexible  co  scheduling 

was 5 min and 13 s and for the agile algorithm it was 35 
s. 

For the Log LPC Log that is for the independent grain 
application, the overall running time with the first come 
served algorithm was 5 h, 56 min and 2 s. The overall 
running time with the Gang scheduling was 1 min and 10 
s. The overall running time for the flexible co scheduling 
was 40 s and for the agile algorithm it was 16 s. 
 
 
Need for fuzzy logic controller and neuro fuzzy 
system 
 
The agile algorithm concentrates mainly on the frequency 
of synchronization between the processes of the 
application and the performance of the agile algorithm is 
compared with the traditional scheduling algorithm like 
first come first served, gang scheduling and flexible co 
scheduling with the scheduling metrics like turn around 
time, average waiting time,  mean  response  time,  mean  
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Table 5. Fuzzy controller output for fine grain workload. 
 

Scheduling parameter / error calculation Values Actual Defuzzification results Error in % 

AWT 2110 18920 19600 3.47 

 TAT 16810 

     

MRESP 3350 6730 6650 1.2 

MRECT 3380 

     

MU 0.6 0.6 0.511 17.42 

     

MS 49.2 49.2 51.6 4.65 

 
 
 

Table 6. Fuzzy controller output for medium grain workload. 
 

Scheduling parameter/error calculation Values Actual Defuzzification results Error in % 

AWT 6452 
6595 13500 51.15 

TAT 93 

MRESP 6570 
13022 21400 

39.15 

 MRECT 6452 

MU 0.7 0.7 0.522 34.10 

MS 0.26 0.26 0.429 39.39 

 
 
 
reaction time, mean slowdown and mean reaction time. A 
rule base is evaluated after the complete scheduling of all 
the jobs in a workload of fine grain, medium grain, coarse 
grain and independent grain sized jobs. The applicability 
of the fuzzy logic controller plays an important role in the 
scheduling of the parallel system. Furthermore neural 
network has been used to optimize the fuzzy logic 
controller’s performance. The rule base can be generated 
using the fuzzy logic controller. For a rule bases 
scheduling approach, every possible scheduling state 
must be assigned to a corresponding class that is 
described using the available scheduling features. A 
complete rule base RB consists of a set of rules Ri. Each 
rule Ri contains a conditional and consequence part. The 
conditional part describes the conditions for the activation 
of the rule using the defined feature and the conse-
quence part represent the corresponding scheduling 
strategy. The fuzzy system uses the mamdani model. 
Each feature is represented by the real values. This value 
defines a domain in the feature space, where the 
influence of the rule is very high. In Mamdani model; a 
Gaussian membership is used to describe the feature 
description. Fuzzy inference systems exhibit complemen-
tary characteristics, offering a very powerful framework 
for approximate reasoning as it attempts to model the 
human reasoning process at a cognitive level. Fuzzy 
system acquire knowledge from domain expects and this 
is encoded within the algorithm in terms of the set of if-
then   rules.   The   fuzzy   logic   controller   use  heuristic 

information to make their rule base and the membership 
functions. Optimal design of the knowledge base is 
central to the performance of the fuzzy logic controller 
and designing a proper knowledge base of a fuzzy logic 
controller is not an easy task. The controller also 
depends on the number of variables and that of the 
linguistic terms used to represent each variable. The 
paper uses the results of the agile algorithm for the rule 
based scheduling approach. The fuzzy controller results 
are shown in Tables 5, 6, 7 and 8. Tables 5, 6, 7 and 8 
shows the defuzzification results of the scheduling 
parameters like AWT (average waiting time) and TAT 
(Turn around time), MRESP (Mean Response Time) and 
MRECT (Mean Reaction time), MU (Mean Utilization) and 
MS (Mean Slowdown). The Mamdani’s model takes the 
input values of the above mentioned parameter 
combinations in the antecedent part and the consequent 
part represents the defuzzification values. The error rate 
is high in the fuzzy system and the performance of the 
fuzzy system can be tuned using neural network. So the 
paper concentrates on the performance improvement of 
the fuzzy logic controller where in the rule base of a fuzzy 
system is interpreted as a neural network. Neural network 
offer a highly structured architecture with learning and 
generalization capabilities. The generalization ability for 
new inputs is then based on the inherent algebraic 
structure of the neural network. Neural network solve 
problems by learning and self organization Fuzzy sets 
can be regarded as weights  whereas  the  input  and  the  
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Table 7. Fuzzy controller for coarse grain workload. 
 

Scheduling parameter / error calculation Value Actual Defuzzification results Error in % 

AWT 221 

292 7820 

96.266 

 TAT 71 

     

MRESP 224 

445 11900 

96.261 

 MRECT 221 

     

MU 0.7 0.7 0.5 40.000 

MS 0.013 0.013 0.354 96.328 

 
 
 

Table 8. Fuzzy controller for independent workload. 
 

Scheduling parameter / error calculation Values Actual Defuzzification results Error 

AWT 0 
16 6110 99.738 

TAT 16 

     

MRESP 0 
0 14.5 100.000 

MRECT 0 

     

MU 0.6 0.6 0.511 17.417 

     

MS 0.001036 0.001036 0.108 99.041 

 
 
 
output variables and the rules are modeled as neurons. 
The neuron of the network represents the fuzzy 
knowledge base. The performance of a fixed architecture 
neural network is dependent on the weights connecting 
the neurons of the input and the hidden layer and those if 
the hidden and the output layers, bias values and the 
coefficient of the transfer function used. The back 
propagation algorithm may be utilized to optimize the 
above parameters in a supervised learning algorithm. A 
back propagation neural network determines its weight 
based on the gradient search technique and therefore 
runs the risk of encountering the local minimum problem. 
The back propagation network is the most well known 
and widely used among the currently available neural 
network system. The learning algorithm behind the back 
propagation network is a kind of gradient descent 
technique with backward error propagation. The back 
propagation network is used the mathematical formula 
present here can be applied to any network and does not 
require any special mention of the features of the function 
to be learn, the computation time is reduced if the weight 
chosen are small at the beginning, The batch update of 
weights exist, which provide a smoothing effect on the 
weight correction terms and these are the main reasons 
for selecting the back propagation as a learning algorithm 
in our paper. The paper concentrates on the optimization 
techniques   like    genetic    algorithm,    particle    swarm 

optimization, parallel genetic algorithm and the hybrid 
Particle swarm optimization with the tabu search to guide 
the back propagation network in finding the necessary 
connection weights in order to enhance the speed of the 
neural training in turn improves the performance of the 
fuzzy system (Ghedjati et al., 2010; Avi Nissimov and 
Dror, 2007). 
 
 
Scheduling strategy based on rule base system 
 
A complete rule base is developed with the set of rules 
and each rule contains a conditional and a consequent 
part. The conditional part specifies the activation of the 
rule using the scheduling features defined in the agile 
algorithm. The consequence part represents the 
scheduling class .In order to specify all scheduling 
classes the scheduling features are partitioned in to some 
different ranges, which help us to define easily the 
scheduling class. The conditional part which combines 
the scheduling features are as follows: (1) Average 
waiting time and the turn around time (2) Mean response 
time and Mean reaction time (3) Mean slowdown and 
Mean Utilization. The various features will take linguistic 
terms are VS (very small), S (small), M (medium), MH 
(medium high), H (high) and EH (extreme high) and the 
rule   are  formed  only  with  the  help  of  the  scheduling  
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Table 9. Rule table for average waiting time and turn around time (Fine grain). 
 

AWT/TAT VS S M MH H EH 

VS D A A A A A 

S A A A A A A 

M A A A A A A 

MH A A A A A A 

H A A A A A A 

EH A A A A A A 

 
 
 

Table 10. Rule table for Average waiting time and turn around time (medium grain). 
 

AWT/TAT VS S M MH H EH 

VS D C C C C C 

S C C C C C C 

M C C C C B B 

MH C C B B A A 

H C B B A A A 

EH B A A A A A 

 
 
 

Table 11. Rule table for Average waiting time and turn around time (coarse grain). 
 

AWT/TAT VS S M MH H EH 

VS D B B B B B 

S B B B A A A 

M A A A A A A 

MH A A A A A A 

H A A A A A A 

EH A A A A A A 

 
 
 

Table 12. Rule table for average waiting time and turn around time (independent grain). 
 

AWT/TAT VS S M MH H EH 

VS D B B A A A 

S B B A A A A 

M B A A A A A 

MH A A A A A A 

H A A A A A A 

EH A A A A A A 

 
 
 
feature partitions and the scheduling classes used are 
class A (agile algorithm), class B (flexible co scheduling), 
class C (gang scheduling) and class D (first come first 
served scheduling), a total of 48 rules are framed for the 
learning analysis. The rule table must be created to 
determine which output ranges are used. The table is an 
intersection of the defined scheduling metrics like 
average  waiting  time  and  the  turn   around   time   and 

Tables 9, 10, 11 and 12 shows the rule table for the fine 
grain workloads. The rule tables can be created for the 
other scheduling parameters also (Moratori et al., 2010; 
Sun et al., 2011). 

Figure 2 shows the attempt of using the structure of the 
feed forward neural network to model the Mamdani 
approach of the fuzzy logic controller. It consists of five 
layers. Layer 1 (input layer)  Layer  2 (fuzzification  layer),  
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Figure 2. Neuro fuzzy model for learning. 



  

 
 
 
 

Table 13. A sample chromosome. 
  

Gene number Value 

Gene 1 5573 

Gene 2 1380 

Gene 3 2985 

Gene 4 2985 

Gene 5 4181 

Gene 6 7622 

Gene 7 1346 

Gene 8 8076 

Gene 9 8399 

Gene 10 4722 

Gene 11 6026 

Gene 12 2179 

Gene 13 6644 

Gene 14 3360 

Gene 15 7930 

Gene 16 1440 

 
 
 
Layer 3 (and operation implementation layer, Layer 4 
(fuzzy inference layer and Layer 5 (defuzzification layer). 
The neurons in the first layer are nothing but transfer 
function. Thus the output of the neurons lying on this 
layer are nothing but their corresponding input values 
(scheduling metrics considered for the analysis). The 
second layer performs the fuzzification through which the 
membership values of the input variables are determined. 
The third layer represents all possible combination of the 
input variables (also known as antecedents) and the and 
operation. The fourth layer identifies the fired rules 
corresponding to the set of the input variables and the 
fifth layer performs the defuzzification to convert the 
fuzzified output in to its corresponding output layer. Thus, 
the weight determination of the neural network is done 
with the optimization techniques. 

 
 
FITNESS EVALUATION 

 
The algorithm for the fitness function is as follows: A back 
propagation network is taken as the learning algorithm 
with the configuration 2-36-4 (l-m-n) where l is the 
number of input neurons, m is the hidden neurons and n 
is the output neurons. The number of weights to be 
determined is 108. With each weight being a real number 
and assuming the number of digits d to be randomly 
generated for representing a weight value as 4, the string 
S representing a chromosome of weight is 108*4 = 432. 
To determine the fitness value for each of the 
chromosome, we extract weights from each of the 
chromosomes as shown in the figure. The sample 
chromosome is shown in Table 13. 
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Weight extraction  
 

To determine the fitness value for each of the 
chromosome, we extract weights from each of the 
chromosomes. Let c1, c2, c3…..cn represent a 
chromosome and ck+1, ck+2…….c(k+1)d represent the k

th
 

gene in the chromosome. x kd+1 represents the position of 
the digit in the gene. 

The actual weight Wk is given by: 
 

 

 
               (ckd+2 *10 d-2 + c kd+3 *10 d-3 +…………..+ c (k+1) d)/10 d-2     if 5<=x kd+1 <=9   
       
  Wk=      - (ckd+2 *10 d-2 + c kd+3 *10 d-3 +…………..+ c (k+1) d)/10 d-2    if 0<=x kd+1 <5                    
 
 

 
                                                                                                 (5) 
 

The algorithm for the fitness function is as follows. A back 
 
  

Algorithm fitness neural 
 

Step 1: Let (Ii, Oi) represent the input and output pair of 
the problem to be solved by the   
Back Propagation Network with a configuration of 2-36-4  
 
Step 2: For each chromosome C belonging to the current 
population  
 

Step 2.1: Extract Weight W from C with the help of the 
Equation 5 
 

Step 2.2: With the weights extracted, train the back 
propagation network for the given input and output 
instances. 
 

Step 2.3: Calculate the net input to hidden unit Zinph and 
its output Zh 

    Zinph=W0+                   (6)  
 
    Zh=f (Zinph)                                                (7)   
 

Step 2.4: Compute the output Yino and O 
  

Yino=w1+                                                   (8)  
 

propagation network is taken as the learning algorithm 
    
O=f(Yino)                                                                      (9)  
 

Step 2.3: Calculate error E i for each of the input and 
output instances using the 
  
E i= ∑ j (T j-O j) 

2 
(Tj –target and Oj is the output)         (10) 

E=√E i /n where n is the number of instances        (11) 
 

Step 2.4: Calculate the fitness value F i for each of the 
individual string of the population as  
    F i=1/E} 
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Figure 3. Fitness function computation for the population of chromosomes. 
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Fig 4: Flowchart for Fitness Neural Network 

Start 

Consider the input and output pairs in the form of membership values to be 
solved by the neural network 

For each chromosome C 

Extract weight W from C using the weight extraction equation 

Calculate the net input to hidden unit and its output. 

Calculate the error for each of the input –output pairs  

Calculate the fitness value F for each of the individual string of the 
population  

Chromosomes 
over 

 

Output the fitness value to the optimization algorithm  

Stop 

 
 

Figure 4. Flowchart for fitness neural network. 
 
 
 

Step 3: Output or return the fitness value to the 
GA/PGA/PSO_Tabu algorithm (Figure 4). 

The algorithm gets the membership function inputs of 
the back propagation neural network and using the 
weights    determined    from    the   various   optimization 

techniques, trains the network and finds the error value. If 
the error value is less, the chromosomes are considered 
as the best fittest chromosomes. This is explained neatly 
in Figure 3 and Table 14 shows the error in the output 
and  the  fitness   values   calculation   for   a   sample   of  
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Table 14. The fitness values from the initial population. 
  

Chromosome SUM(E)/13 SQRT(E/13) F=1/E 

1 0.00055972 0.023658358 42.26836 

2 0.42416368 0.651278494 1.535441 

3 0.01007314 0.100365023 9.96363 

4 0.6503452 0.806439828 1.240018 

5 0.68484746 0.82755511 1.208379 
 
 
 

chromosomes. 
 
 

OPTIMIZATION TECHNIQUES 
 

Genetic algorithm 
 

Genetic algorithm use a direct analogy of natural 
behavior, work with the population of individual strings 
each representing a possible solution to determine the 
weight values of the neural network. Each individual 
string is assigned a fitness value which is an assessment 
of how good a solution is to determine the weight values 
of the neural network. The high fit individuals participate 
in reproduction by cross breeding with other individuals in 
the population. This yields new individual strings as 
offspring which share some features with each parent. 
The least fit individual are kept out from reproduction and 
so die out. A whole new population of possible solution to 
the problem of finding the weight values is generated by 
selecting the best individuals from the current generation. 
Genetic and evolutionary algorithms wok based on 
Darwin’s principle of natural selection (that is the survival 
of the fittest) have been used as a optimization tool for 
weight determination in the artificial neural network. It is 
basically an iterative search technique working based on 
the concept of probability. A Genetic algorithm starts with 
a population of initial solutions generated at random. The 
fitness or goodness value of each solution in the 
population is calculates. The paper uses initial population 
of real coded chromosomes which represent the weight 
values for the neural network. Until the population 
converges, the fitness of the chromosomes are executed 
using the algorithm Fitness_Neural, which selects the 
best weight values for the consecutive generations. The 
genetic algorithm uses the two point cross for best 
offspring across the generations. The same concept is 
applied to the parallel genetic algorithm where the 
population is divided by the master processor and the 
fitness evaluation is done in the slave processor. By 
doing the parallel implementation of the genetic 
algorithm, it guides the back propagation network to 
speed up the training by finding the weight calculation for 
the network in a quick time. 
 
 

Algorithm GA 
 

Step 1: Generate the  initial  population  P  of  real  coded  

chromosome which represent the weight values for 
neural network 

 
Step 2: While the current population P has not converged  
{Step 2.1: Calculate the fitness value for each of the 
chromosome using the algorithm Fitness Neural 
Step 2.2: Keep the best of the individuals and terminate 
the worst of the individuals  
Step 2.3: Using the two points cross over operation, 
reproduce the offspring from the current Population 
Step 2.4: Call the current population} 
 
Step 3: Extract weight from the current population to be 
used by the back propagation neural Network (Figure 7) 
Algorithm Parallel_GA 
 
Step 1: Generate the initial population P of real coded 
chromosome, which represent the weight values for the 
neural network.  
 
Step 2: The population is divided into subpopulations. 
The master processor stores the population and sends 
the subset of the population to its slaves . 
 
Step 3: While the current population P has not 
converged, the master sends the subset of the population 
to its slaves  
Step 3.1: Generate the fitness value of the each of the 
chromosome in the slave processor by calling the 
algorithm Fitness Neural 
Step 3.2: Keep the best of the individuals and terminate 
the worst 
Step 3.3: Send the fitness value to the master processor 
Step 3.4: The master processor does the two point 
crossover of the subpopulation and sends to the slaves. 

 
Step 4: Extract weight from the current population to be 
used by the back propagation neural network (Figure 8) 
 
Figures 5 and 6 shows a sample chromosome and the 
weight determination used by all the optimization 
techniques. Table 15 shows how the genetic algorithm 
makes a two point crossover with the probability of more 
that 50% for the new off springs and Table 16 shows the 
parameter used by the genetic algorithm and the particle 
swarm optimization and the same parameters can also 
be used for the hybrid algorithms. 
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Figure 5. Initial population of chromosomes. 
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Figure 6. Weights extracted from the initial population. 
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Fig 7: Flowchart of GA Optimization for weight determination 
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Figure 7. Flowchart of GA optimization for weight determination. 
 
 
 

Particle swarm optimization 
 
Particle   Swarm   optimization   is   a   population   based  

stochastic optimization technique modeled based on 
swarm intelligence. Particle swarm optimization is a 
computational  method   that   optimizes   a   problem   by    
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Fig 8: Flowchart of PGA Optimization for weight determination 
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Perform Selection Operation from selecting the best individuals and 
eliminating the worst individuals in the slaves  

 

Perform Two point cross over and find the new population 

Whether the 
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Return the fitness value to the Master Processor 

The Master Processor will have the best fitness 
valuevalue  
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Figure 8. Flowchart of PGA optimization for weight determination. 
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Table 15. Selection of parent pairs and their cross over positions. 
 

S/N 
Parent pairs represented by 

chromosome number 

Cross over position 

Start position End position 

1. (2, 25) 7 11 

2. (3,10) 2 20 

3. (4,15) 4 10 

4. (5, 6) 3 6 

5. (7, 18) 9 16 

6. (8, 21) 10 15 

7. (9, 27) 20 24 

8. (10, 22) 40 47 

9. (13, 20) 34 40 

10. (17, 28) 36 50 
 
 
 

Table 16. Parameters Used in GA and PSO. 
 

S/N Genetic algorithm Particle swarm optimization 

1. Population size: 50 Swarm size: 50  

2. Max generations: 100 Max generations: 100 

3. Selection: Normal geometry c1, c2 = 2 

4. Cross over: Two point  

 
 
 
iteratively trying to improve a candidate solution with 
regard to a given measure of quality. The idea of the 
optimizer was inspired by social behavior of bird flocking. 
The birds travel through the whole feasible search space 
to find the best flowers based on the objective function. In 
particle swarm optimization, each single solution is a bird 
in the search space, we call it as a particle. All of the 
particles have fitness function to be optimized and have 
velocities which direct the flying of the particles. Particle 
swarm optimization in initiated with a group of random 
solutions (that is) in our paper we have considered real 
coded particles which represent the weight values for the 
neural network. The particles search for the optima by 
updating in the generations. In every generation, each 
particle is updated by following the two best values. One 
is the best solution, the particle achieved so far and the 
other is the best solution of all the particles in the 
population. This global best value will give us the best 
optimism solution to the problem considered. 
 
 
Algorithm PSO 
 
Begin PSO 
Step 1: Initialize Particles of real coded value with 
represent the weight values for the neural network 
  Initialize the particle with position vector and 
velocity vector 
  Initialize the size of the swarm, swarm size 
  Initialize particle list to null 

Step 2: do  
  { 
  For each particle 
  Step 2.1: Calculate fitness value 
  Step 2.2: If the fitness value is better than the      
best fitness value in history 
   Set the current value as the new best value 
  Step 2.3: Choose the particle with the best fitness  
value of the entire particle as the gBest 
  For each particle 
  Step 2.4: Calculate particle velocity and update 
particle position 
 } while minimum error criteria is not attended 
Step 3: Optimum solution is available in gBest (Figure 11) 
 
 
Hybrid particle swarm optimization with the Tabu 
search 
 
Tabu search is the metaheuristic local search algorithm 
that can be used for solving combinatorial optimization 
problem. Tabu search uses a local or neighboring search 
procedure to iteratively move from one potential solution 
y to a improved solution y1 in the neighborhood of y, until 
some stopping criteria has been satisfied. The tabu 
search uses a tabu list which is a memory structure used 
to filter which solutions will be admitted to the 
neighborhood of y. The paper discusses about the 
hybridization of PSO and the tabu search. The particle 
swarm optimization results in  a  premature  convergence 



  

 
 
 
 
and produces poor quality of the solution by considering 
the local optimum. The tabu search use the adaptive 
memory processes for guiding search. First the 
population with feasible solution of particles are 
considered and the for each particle the pbest solution is 
being input to the tabu search, where the tabu search 
identifies the neighboring candidate and checks whether 
there are any best solutions .By doing so, the tabu search 
avoids the premature convergence of the particle swarm 
optimization. The same tabu search technique is done 
parallel to get the results in a quick time. The population 
is divided in to subpopulation and the searches are done 
by giving each one of the subpopulation to the various 
tabu search. The master processor in the PSO gets all 
the global solutions and finds the best from the results of 
the tabu search. 

 
 
Algorithm hybrid PSO_Tabu 

 
Begin PSO 
Step 1: Initialize Particles of real coded value with 
represent the weight values for the neural network 
  Initialize the particle with position vector and 
velocity vector 
  Initialize the size of the swarm, swarm size 
  Initialize particle list to null 
Step 2: Do 
 { 
  Do 
  {   
   For each particle 
 Step 2.1: Check the particle with the particle list 
   Step 2.2: If the particle is present in the particle_list 
then 
          Step 2.2.1 The position is already visited and      
makes the particle to move to its  
       Neighboring position that is not visited. 
        Else 
    Step 2.2.1 Evaluate the fitness function to the 
particle particle_fit 
   Step 2.3: If the fitness function particle_fit is better 
than the best value of the  
           Particle (pbest) in history 
    Step 2.4: Set pbest to particle_fit 
    Step 2.5: Input pbest to tabusearch 
Begin Tabusearch 
Step 3: Initialize Tabulist, candidate list to null, sbest 
=pbest 
  Do 
 { 
 Step 3.1: Generate the neighboring candidates 
 Step 3.2: For each candidate  
 { 
  Step 3.3: If candidate not present in the tabulist 
then 
   Add to the candidate list 
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 } 
Step 4: Find the best candidate 
Step 5: Update to the tabulist 
Step 6: Update to the particlelist 
} while (candidates exist) 
Step 7: Update swarm size 
} while (particles exist) 
Step 8: Choose best of all particles and set as gbest 
Step 9: Update particle velocity and particle position 
using the formula 
  v[]= v[] + c1* rand() * (pbest[]-present[]) + c2* 
rand() * ( gbest [] –present[]) 
  present [] =present [] +v [] 
Where v[] is the particle velocity, present [] is the current 
solution. rand() is a random number between (0,1), c1 
and c2 are the learning factors usually takes the value 2. 
} while (all particles converge or maximum number of 
iterations reached) 
End PSO (Figure 13) 
 
 

RESULTS 
 

The problem is to determine the weights for a back 
propagation network with a configuration 2-36-4 using the 
genetic algorithm parallel genetic algorithm and the 
swamp optimization techniques like particle swarm 
optimization a hybrid approach of particle swarm 
optimization and the tabu search and its parallel 
implementations. This analysis is done to tune the fuzzy 
logic controller which is used as a learning step for a 
parallel job scheduling using the neuro fuzzy system. 
Figure 9 show the optimization results that is, the fitness 
value calculation for the genetic algorithm (Figure 10). 
The figure shows a generation up to 100 and it is clear 
that the genetic algorithm converges from the generation 
of 55. Figure 12 shows the comparative results from 
genetic algorithm, parallel genetic algorithm and the 
particle swarm optimization. The parallel genetic 
algorithm and the particle swarm optimization seems to 
be converged quickly than the genetic algorithm that is 
from the generation from 45 onwards. Figures 14 and 15 
show the optimization results of the hybrid PSO and the 
tabu search and its parallel implementation. The parallel 
implementation converges very quickly from the 
generation of 17 and also produces the maximum fitness 
value when compares to all the optimization techniques. 
Table 17 and Figure 16 show the consolidated fitness 
evaluation of the all the techniques and its error 
calculations. The error calculations are very minimum for 
the hybrid algorithms of PSO with the tabu search. Table 
18 and Figure 17 show the computational time analysis 
computational time for the PSO is high when compared 
to the genetic algorithm. The computational time is 
improved for the PSO by the hybridization of the particle 
swarm optimization with the tabu search. The parallel 
implementation approach of the optimization techniques 
converges quickly when compared to the  other.  Thus,  a 
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Figure 9. Optimization results of genetic algorithm. 
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Figure 10. Comparative optimization results of genetic algorithm and particle swarm optimization. 

 
 
 
DISCUSSION AND CONCLUSION 
 

From Table 19 and Figure 18, we find that the 
computational time for the PSO is high when compared 
to the genetic algorithm. The computational time is 
improved  for  the PSO by the hybridization of the particle  

swarm optimization with the tabu search. The parallel 
implementation approach of the optimization techniques 
converges quickly when compared to the other. Thus a 
complete comparative analysis of the optimization 
techniques is done for the weight determination of the 
neural network,  which  will  help the  tuning  of  the  fuzzy 
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Fig 11: Flowchart of PSO Optimization for weight determination 
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Figure 11. Flowchart of PSO Optimization for weight determination. 
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Figure 12. Comparative optimization results of genetic algorithm, parallel genetic algorithm and particle 
swarm optimization. 
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Figure 13. Flowchart of hybrid PSO and the tabu search optimization 
for weight determination. 
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Figure 14. Comparative optimization results of genetic algorithm and particle swarm optimization with tabusearch. 
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Figure 15. Comparative optimization results of genetic algorithm and particle swarm optimization with tabu search (parallel).  
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Table 17. Fitness evaluation of the optimization techniques with error calculation. 
 

Input Output Output(GA) 
Output 

(Parallel GA) 
Output 
(PSO) 

Output (Hybrid 
PSO_Tabu) 

Output parallel 
PSO_Tabu 

Error (GA) 
Error 

(Parallel GA) 
Error 
(PSO) 

Error 
(Hybrid PSO_Tabu) 

Error parallel 
PSO_Tabu 

(0.9,0.793) 0.72 0.72 0.71999 0.71999 0.7211 0.7211 0.000833 0.00083 0.00139 0.15278 0.15278 

(0.75,0.8) 0.54 0.54 0.54 0.53999 0.5401 0.5401 0.000370 0.00037 0.00185 0.01852 0.01852 

(1,0) 1 0.9883 0.98828 0.98999 0.99999 0.99999 1.172000 1.18590 1.00100 0.00100 0.00100 

(0.16,0) 0.16 0.1789 0.17894 0.15998 0.16023 0.16023 11.835625 10.58305 0.01250 0.14375 0.14375 

(0.356,0.98) 0.655 0.655 0.655 0.654998 0.65501 0.65501 0.000305 0.00031 0.00031 0.00153 0.00153 

(0.657,0.645) 0.651 0.651 0.651 0.65099 0.651001 0.651001 0.000307 0.00031 0.00154 0.00015 0.00015 

(0.65,0) 0.65 0.6568 0.65676 0.6521 0.65002 0.65002 1.040462 1.02975 0.32308 0.00308 0.00308 

(0.956,0.965) 0.971 0.9383 0.93834 0.9711 0.9710008 0.9710008 3.363543 3.48061 0.01030 0.00008 0.00008 

(0.955,0.956) 0.956 0.9308 0.93083 0.9559 0.956003 0.956003 2.633159 2.70437 0.01046 0.00031 0.00031 

(0.974,0) 0.974 0.9863 0.98626 0.9743 0.97399 0.97399 1.258932 1.24328 0.03080 0.00103 0.00103 

(1,0.997) 0.997 0.949 0.94905 0.9982 0.9977 0.9977 4.809529 5.05253 0.12036 0.07021 0.07021 

(1,1) 1 0.9501 0.95013 0.9845 0.9999 0.9999 4.987400 5.24920 1.55000 0.01000 0.01000 

(0.998,0) 0.998 0.9881 0.98814 0.99822 0.99801 0.99801 0.987876 0.99773 0.02204 0.00100 0.00100 
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Figure 16. Comparative analysis of optimization results. 
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Table 18. Computational time analysis of all the optimization techniques. 
 

S/N 
Input 

(in membership values) 

Output  

(in membership values) 

Serial GA 
(ms) 

Parallel GA 
(ms) 

PSO  

(ms) 

Hybrid PSO_Tabu 

(ms) 

Parallel implementation 
PSO_Tabu (ms) 

1 (0.9, 0.793) 0.72 9275.6 6456.7 9457.8 7426.5 5023.4 

2 (0.75, 0.8) 0.54 8682.5 6072.4 8925.1 6993.2 4624.5 

3 (1,0) 1 4060.3 3233.4 4311.4 3991.4 3214.5 

4 (0.16,0) 0.16 6393.7 4910.4 6410.3 6012.1 5912.6 

5 (0.356, 0.98) 0.655 9876.9 6993.5 9942.1 8624.8 7982.1 

6 (0.657, 0.645) 0.651 11492.3 7547.9 12134.6 10342 9108 

7 (0.65,0) 0.65 6739.9 4223.4 6825.6 5231.4 4921.1 

8 (0.956, 0.965) 0.971 12285 7512.2 13212 12122 10123.4 

9 (0.955, 0.956) 0.956 11064.6 6295.8 12116.1 10034.1 9346.9 

10 (0.974, 0) 0.974 8143.2 5192 8242.1 8042.1 6643.8 

11 (1, 0.997) 0.997 6778.3 5952.9 6991.2 6445.2 5892.6 

12 (1,1) 1 2629 2496.5 2878.1 2512 1967 

13 (0.998, 0) 0.998 6025.5 4898.5 6123.1 6004.3 5638.1 

Time (ms) 103446.8 71785.6 107569.5 93781.1 80398 

Time (sec) 103.4468 71.7856 107.5695 93.7811 80.398 

Time (min) 1 min 43 s 1 min 1 s 1 min 47 s 1 min 34 s 1 min 20 s 
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Figure 17. Computational time analysis of all the optimization techniques. 
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Table 19. Improvement of the computational time for the various optimization techniques. 
 

Input (in 
membership 

values) 

Output (in 
membership 

values) 

Improvement  
of GA over PSO 

Improvement  
of Parallel GA 

over GA 

Improvements 
of  

PSO_Tabu 
over PSO 

Improvement  
of PSO_Tabu 

over GA 

Improvement  
of Parallel 

PSO_Tabu over 
GA 

Improvement  
of Parallel 
PSO_Tabu 
over PSO 

Improvement  
of Parallel 

PSO_Tabu over 
serial PSO_Tabu 

(0.9,0.793) 0.72 1.92645224 30.3904869 21.4775106 19.93509854 45.84285653 46.88616803 32.3584461 

(0.75,0.8) 0.54 2.71817683 30.0616182 21.6456958 19.45637777 46.73769076 48.1854545 33.8714751 

(1,0) 1 5.824094262 20.3654902 7.42218305 1.696918947 20.83097308 25.44185183 19.4643483 

(0.16,0) 0.16 0.258958239 23.1993994 6.21187776 5.968375119 23.16499054 23.36396113 18.288119 

(0.356,0.98) 0.655 0.655797065 29.1933704 13.2497159 12.67705454 19.18415697 19.7141449 7.451767 

(0.657,0.645) 0.651 5.293128739 34.3221113 14.7726336 10.00931058 37.27974383 40.59960773 30.3036163 

(0.65,0) 0.65 1.255567276 37.3373492 23.3561885 22.38163771 26.98556358 27.90230895 5.93149061 

(0.956,0.965) 0.971 7.016348774 38.8506309 8.25007569 1.326821327 30.61945462 35.48743566 29.6865204 

(0.955,0.956) 0.956 8.678535172 43.099615 17.1837472 9.313486253 42.63778175 47.61598204 36.7466938 

(0.974,0) 0.974 1.199936909 36.2412811 2.42656605 1.241526673 39.28922291 40.01771393 38.5260069 

(1,0.997) 0.997 3.045256894 12.1770946 7.80981806 4.914211528 13.06669814 15.71404051 8.57382238 

(1,1) 1 8.655015462 5.03993914 12.7201974 4.450361354 25.18067706 31.65630103 21.6958599 

(0.998,0) 0.998 1.593963842 18.703842 1.94019369 0.351838022 18.04663513 19.35294214 17.757274 
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Figure 18. Improvements in computational time for the various optimization techniques. 



  

 
 
 
 
logic controller used for the parallel job scheduling. The 
hybrid approach produces an average of 25 to 30% 
improvement in the computational time of the algorithm. 

In this paper, an attempt is made to improve the 
performance of the fuzzy logic controller for the learning 
step of parallel job scheduling using the neural network. 
The fuzzy logic controller was used due to its robustness 
and can be easily modified, but the controller fails to give 
the correct defuzzification results, thus the structure of 
the neuro fuzzy approach is used to improve the 
performance of the fuzzy logic controller. The neural 
network’s performance depends mainly on the weight 
determination of its layers and the paper concentrates on 
the determination of 108 weights. The weight determi-
nation is made with the optimization algorithms like 
genetic algorithm, parallel implementation of the genetic 
algorithm, Particle swarm optimization and the hybrid 
approach of PSO with the tabu search and with its 
parallel implementation. All these types of analysis are 
done to speed up training of the neural network. The 
results shows that the hybrid approach and its parallel 
implementation of the PSO with the tabu search 
produces good results in terms of the weight 
determination and also in terms of the converge.  
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