

Scientific Research and Essays Vol. 7(26), pp. 2310-2333, 12 July, 2012

Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.2148
ISSN 1992-2248 © 2012 Academic Journals

Full Length Research Paper

Use of neuro fuzzy network with hybrid intelligent
optimization techniques for weight determination in

parallel Job scheduling

S. V. Sudha1* and K. Thanushkodi2

1
Department of Information Technology, Kalaignar Karunanidhi Institute of Technology Anna University of Technology,

Coimbatore -641 402, India.
2
Akshaya College of Engineering, Anna University of Technology, Coimbatore, India.

Accepted 11 April, 2012

This paper is concerned with the performance tuning of the fuzzy logic controller (FLC) used for the
process grain sized scheduling of parallel jobs. First, we have proposed a scheduling algorithm called
agile algorithm. The performance of the agile algorithm depends on how the processes of the
applications are coscheduled. The performance of the scheduling algorithm is evaluated using the
features of the scheduling metrics like average waiting time, mean response time, mean reaction time,
mean slowdown, turn around time and mean utilization. A rule based scheduling system is framed
using the fuzzy logic controller with the help of the above mentioned metrics to schedule all the parallel
workload data. The fuzzy controller helps to identify the scheduling strategy using the rule base
developed and assign the corresponding scheduling class to the parallel jobs. The fuzzy logic
controller uses Mamdani model for classifying the scheduling class and found that the error rate is high
during the defuzzification and need to tune the fuzzy controller to reduce the error. The paper
concentrates about the tuning of the fuzzy logic controller using a neural network where the rule base
of a fuzzy system is interpreted as a neural network. The performance of the neural network in turn
depends on the weight determination of its own network and the various optimization techniques like
genetic and parallel genetic algorithm, particle swarm optimization, hybrid particle swarm optimization
with the tabu search and the parallel implementation of the hybrid approach of the particle swarm
optimization with the tabu search are employed to identify the weight determination of the neuro fuzzy
network. The paper gives very good performance of the fuzzy controller using the neuro fuzzy system
with weights identified using the above optimization techniques. The paper gives a complete analysis of
the computational time occurred and the weight identification with the various optimization techniques
which guides the neural network to speed up the training process.

Key words: Genetic algorithm, agile algorithm, mean reaction time, particle swarm optimization, tabu search.

INTRODUCTION

The scheduling of parallel jobs has long been an active
area of research. Scheduling parallel jobs for execution
needs a certain number of processors for a certain time
and the schedule have to pack the jobs together. In job

*Corresponding author. E-mail: svsudha.mvenki@gmailcom or
svsudha@rediffmail.com.

scheduling, a parallel job is mapped to a subset of
processors. The set of processors dedicated to a certain
job is called a partition of the machine. To increase
utilization, parallel machines are typically partitioned in to
several non overlapping partitions allocated to different
jobs running concurrently. Parallel job scheduling is the
problem of how to run a workload of multiple parallel jobs
in a single parallel machine. The scheduler is responsible
for finding the best schedule allocation, both temporal

Sudha and Thanushkodi 2311

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

TS1 J11 J12 J13 J14

TS2 J21 J22 J23

TS3 J31 J32 J33 J34 J35

TS4 J41 J42

TS5 J51 J52 J53

TS6 J61 J62 J63 J64 J65

TS7 J71 J72

TS8 J81

TS9 J91 J92 J93 J94 J95

TS10 J101 J102 J103 J104 J105

Figure 1. A scheduling matrix.

and spatial as a function of the existing workload. A good
way of improving the performance evaluation of a parallel
system is to consider the frequency of synchronization
between the processes in a system. The parallel system
application consists of multiple processes running on the
different processors that communicate frequently. The
good performance of the parallel systems mainly
depends on how the processes are co scheduled. If the
processes are not co scheduled properly, then the
system will lead to very poor performance. The various
co scheduling techniques are first come first served
scheduling algorithm, gang scheduling, Flexible co
scheduling. In the first come first served scheduling,
when a job arrives, each of its thread is placed
consecutively at the end of the shared queue. When a
processor becomes idle, it picks the next ready thread,
executes it until it completes or blocks. A set of related
threads is scheduled to run on a set of processors at the
same time on a one to one basis. The concept of
scheduling a set of processes simultaneously on a set of
processors uses the threads, which is also called as
group scheduling or gang scheduling. Flexible co
scheduling is used to improve overall system
performance in the presence of heterogeneous hardware
or software by using dynamic measurement of
applications. First come first served and gang scheduling
suffer from internal and external fragmentation. Flexible
co scheduling saturates at heavy loads. Scheduling is
done by partitioning the machine’s processor and running
a job on each partition. Due to the synchronization

between processes in the application, the jobs do not
pack perfectly. If the processes are not co scheduled
properly, it will harm the performance of the parallel
algorithm. Agile algorithm concentrates on the detailed
classification of the synchronization granularity of the
parallel jobs and the algorithm takes heavy loads up to
10,000 jobs for each granularity and gives better results
when compared to the traditional ones. Every job arrival
in the ready queue constitutes a scheduling event in the
parallel system. For each scheduling event, a new
scheduling matrix is computed for the system. The
scheduling matrix defines all the tasks executing in each
processor and at each time slice. For the implementation
of the agile algorithm, a 10 processor system with a
multiprogramming level of 10 is considered and it is
shown in Figure 1. The matrix is cyclic in that time slice
10 is followed by time slice 1. Scheduling cycle is defined
as a cycle which contains an entire row of the matrix
values at any instant of time. Each row of the matrix
defines a 10 processor virtual machine which runs at
1/10th of the speed of the physical machine. In the
scheduling matrix defined in Figure 1. P1 to P10 represent
the 10 processor system and TS1 to TS10 represent the
time slices and J11 to J14 are the partitions of the job J1
and similarly the scheduling matrix represent for the job 2
to job 10 (Dutot et al., 2011; Eitan Frachtenberg et al.,
2005).

The paper subsequently explains the scheduling
algorithm agile algorithm, after which it talks about the
grain sizes and also the workload details. It further gives

2312 Sci. Res. Essays

the complete scheduling metric used for the comparison
of the scheduling algorithm, and then states the need for
the fuzzy and neuro fuzzy system. Afterwards, the paper
explains the rule base system for the job scheduling and
the structure of the neuro fuzzy system, and also gives
the defuzzification results from the fuzzy controller. This
is followed by a presentation of the weight determination
and the fitness evaluation, after which the optimization
techniques used for the weight determination is
presented. Finally the paper discusses the results and
the complete analysis of the fitness results and
computational results from genetic algorithm and its
parallel implementation, particle swarm optimization, and
the hybrid approach of the particle swarm optimization
with the tabu search, after which its conclusions are
drawn.

Agile algorithm –Scheduling technique for parallel
job scheduling

The algorithm concentrates on detailed classification of
the frequency of synchronization between processes in a
system. For the implementation of the agile algorithm four
workloads are considered. Each workload may be fine
grain, coarse grain, medium grain and independent which
contain 10,000 jobs. Each 10,000 jobs are divided in to
1000 slots and each slot contains 10 jobs. The jobs in the
slots are scheduled in the scheduling matrix as shown in
Figure 1.

The following explains the grain explanation used in the
workload (Dan et al., 2007).

Fine grain

Fine grained parallelism represents a much more
complex use of parallelism. The processes communicate
often and must be co scheduled effectively due to their
demanding synchronization.

Medium grain

Medium grain parallelism represents enough synchro-
nization between the processes and the scheduling
algorithms should take care of the performance
evaluation of the system.

Coarse grain

With coarse Grain, there is synchronization among
processes, but at a very gross level. This kind of situation
is easily handles as a set of concurrent processes
running on a multiprogrammed uniprocessor and can be
supported on a multiprocessor with little or no change to

the software.

Independent

With independent parallelism, there is no explicit
synchronization among processes. Each represents a
separate, independent application or job.

Workload characteristics

The simulation studies were performed using the agile
algorithm with workload logs available from Feitelson’s
Archive (Thanushkodi and Sudha, 2009).

Fine grain workload

The log considered for the experiment was The Los
Alamos National Lab (LANL) Log. This log contains two
years worth of accounting records produced by the DJM
software running on the 1024 node CM-5 at Los Alamos.
Total Number of jobs present in the Log is 2, 01,387
Jobs. The Log contains the following details: 1) Job Id 2)
Submit Time 3) Start Time and Date 4) End Date and
Time.

Medium grain workload

The log considered for the experiment was LLNL
Thunder Log. This log contains several months’ worth of
accounting records from a large Linux cluster called
thunder installed at Lawrence Livermore. Total number of
jobs present in the Log is 1, 28,662 Jobs. The Log
contains the following details (1) Job ID (2) User ID (3)
Name (4) Job State (5) Start Time (6) End Time
(Thanushkodi and Sudha, 2009; Minh et al., 2010).

Coarse grain workload

The log considered for the experiment was The Lawrence
Livermore National Lab (LLNL) T3D Log. This log
contains 4 months worth of accounting record at the
Lawrence Livermore National Lab (LLNL). Total number
of jobs present in the log is 21323 Jobs. The log contains
the following details (1) Start Date (2) Start Time (3)
Process ID (4) Partition ID.

Independent

The log considered for the experiment was LPC Log. This
log contains 9 months of record. Total number of Jobs
present in the Log is 2, 44,821 Jobs. The log contains the

Sudha and Thanushkodi 2313

Table 1. Fine grain workload (in seconds).

Algorithm/Metric FCFS Gang FCS Agile

AWT 2936 2110 2110 2110

MRT 5752 3350 3350 3350

TAT 31660 16810 16810 16810

MRET 4120 3380 3380 3380

MU 0.5 0.6 0.6 0.6

MS 71.10486 49.2 49.2 49.2

following details (1) Job ID (2) Submit time (3) Wait time
(4) Run time.

Performance metrics

The synthetic workload generated Feitelson’s archive are
used as input to the simulation of various scheduling
strategies. We monitor the parameters of the arrival time,
start time, execution time; finish time etc. Different
scheduling algorithms have different properties and may
favor one class of processes over another. In choosing
which algorithm to use in a particular situation, we must
consider the properties of the various algorithms. Many
criteria have been suggested for scheduling algorithms.
The criteria includes the following as presented by Jintao
et al. (2010)

Mean utilization

We want to keep the CPU as busy as possible. CPU
utilization may range from 0 to 100%. In a real system, it
should range from 40% (for a lightly loaded system) to
90%t (for a heavily loaded system). The mean utilization
is the ratio of CPU busy time to the number of processors
multiplied with total time for execution.

 Σ CPU busy time
Mean utilization =
 Number of processors *Total time

 (1)

Mean response time

In an interactive system, turnaround time may not be the
best criteria. Often, a process can produce some output
fairly early, and can continue computing new results while
previous results are being output to the user. Thus,
another measure is the time from the submission of a
request until the first response is produced. This measure
is called response time.

 Σ Job finish time-Job submit time
Mean response time =
 Number of jobs

 (2)

Mean reaction time

The mean job reaction time defined as the mean time
interval between the submission and the start of the job.

 Σ Job start time-Job submit time
 Mean reaction time =
 Number of Jobs

 (3)

Mean slowdown

Mean slowdown is the sum of jobs response times
divided by the job’s execution times. This metric emerges
as a solution to normalize the high variation of the jobs
response time.

 Σ Job response time/ Job execution time
Mean slow down =
 Number of jobs

 (4)

Turn around time

From the point of view of a particular process, the
important criterion is how long it takes to execute that
process. The interval from the time of submission of a
process to the time of completion is the turn around time.
Turn around time is the sum of periods spent waiting to
get into memory, waiting in the ready queue, executing
on the CPU and doing I/O.

Waiting time

The scheduling algorithm does not affect the amount of
time during which a process executes or does I/O; it
affects only the amount of time that a process spends
waiting in the ready queue. Waiting time is the sum of the
periods spent waiting in the ready queue.

Tables 1 to 4 represents the scheduling features values
(that is) average waiting time (AWT), mean response
time (MRT), turn around time (TAT), mean reaction time
(MRET), mean utilization (MU) and mean slowdown (MS)
during the implementation of the agile algorithm. These

2314 Sci. Res. Essays

Table 2. Medium grain workload (in seconds).

Algorithm/Metric FCFS Gang FCS Agile

AWT 45163 11291 9033 6452

MRT 45989 11497 9198 6570

TAT 25894 6138 3600 93

MRET 45163 11291 9033 6452

MU 0.5 0.5 0.6 0.7

MS 1.83 0.46 0.37 0.26

Table 3. Coarse grain workload (in seconds).

Algorithm/Metric FCFS Gang FCS Agile

AWT 53002 13251 663 221

MRT 53794 13448 672 224

TAT 17110 4278 214 71

MRET 53002 13251 663 221

MU 0.5 0.6 0.7 0.7

MS 3.2 0.8 0.04 0.013

Table 4. Independent grain workload in seconds.

Algorithm/Metric FCFS Gang FCS Agile

AWT 6 0 0 0

MRT 23 0 0 0

TAT 56590 801 174 16

MRET 6 0 0 0

MU 0.5 0.5 0.6 0.5

MS 3.6912 0.0527 0.0114 0.001036

values are taken for the learning analysis using the neuro
fuzzy system in our paper.

For the Log LANL that is for the fine grain application,
the overall running time with the first come served
algorithm (FCFS) was 2 h, 31 min and 6 s. The overall
running time with the Gang scheduling (Gang) was 17
min and 9 s. Flexible co scheduling (FCS) and the agile
algorithm give the same figure as Gang scheduling.

For the Log LLNL that is for the medium grain
application, the overall running time with the First Come
Served Algorithm was 7 h, 11 min and 34 s. The overall
running time with the Gang scheduling was 32 min and
27 s. The overall running time for the flexible co
scheduling was 16 min and 33 s and for the agile
algorithm it was 1 min and 33 s.

For the Log LLNL T3D that is for the coarse grain
application, the overall running time with the first come
served algorithm was 2 h, 21 min and 7 s. The overall
running time with the Gang scheduling was 17 min and 9
s. The overall running time for the flexible co scheduling

was 5 min and 13 s and for the agile algorithm it was 35
s.

For the Log LPC Log that is for the independent grain
application, the overall running time with the first come
served algorithm was 5 h, 56 min and 2 s. The overall
running time with the Gang scheduling was 1 min and 10
s. The overall running time for the flexible co scheduling
was 40 s and for the agile algorithm it was 16 s.

Need for fuzzy logic controller and neuro fuzzy
system

The agile algorithm concentrates mainly on the frequency
of synchronization between the processes of the
application and the performance of the agile algorithm is
compared with the traditional scheduling algorithm like
first come first served, gang scheduling and flexible co
scheduling with the scheduling metrics like turn around
time, average waiting time, mean response time, mean

Sudha and Thanushkodi 2315

Table 5. Fuzzy controller output for fine grain workload.

Scheduling parameter / error calculation Values Actual Defuzzification results Error in %

AWT 2110 18920 19600 3.47

 TAT 16810

MRESP 3350 6730 6650 1.2

MRECT 3380

MU 0.6 0.6 0.511 17.42

MS 49.2 49.2 51.6 4.65

Table 6. Fuzzy controller output for medium grain workload.

Scheduling parameter/error calculation Values Actual Defuzzification results Error in %

AWT 6452
6595 13500 51.15

TAT 93

MRESP 6570
13022 21400

39.15

 MRECT 6452

MU 0.7 0.7 0.522 34.10

MS 0.26 0.26 0.429 39.39

reaction time, mean slowdown and mean reaction time. A
rule base is evaluated after the complete scheduling of all
the jobs in a workload of fine grain, medium grain, coarse
grain and independent grain sized jobs. The applicability
of the fuzzy logic controller plays an important role in the
scheduling of the parallel system. Furthermore neural
network has been used to optimize the fuzzy logic
controller’s performance. The rule base can be generated
using the fuzzy logic controller. For a rule bases
scheduling approach, every possible scheduling state
must be assigned to a corresponding class that is
described using the available scheduling features. A
complete rule base RB consists of a set of rules Ri. Each
rule Ri contains a conditional and consequence part. The
conditional part describes the conditions for the activation
of the rule using the defined feature and the conse-
quence part represent the corresponding scheduling
strategy. The fuzzy system uses the mamdani model.
Each feature is represented by the real values. This value
defines a domain in the feature space, where the
influence of the rule is very high. In Mamdani model; a
Gaussian membership is used to describe the feature
description. Fuzzy inference systems exhibit complemen-
tary characteristics, offering a very powerful framework
for approximate reasoning as it attempts to model the
human reasoning process at a cognitive level. Fuzzy
system acquire knowledge from domain expects and this
is encoded within the algorithm in terms of the set of if-
then rules. The fuzzy logic controller use heuristic

information to make their rule base and the membership
functions. Optimal design of the knowledge base is
central to the performance of the fuzzy logic controller
and designing a proper knowledge base of a fuzzy logic
controller is not an easy task. The controller also
depends on the number of variables and that of the
linguistic terms used to represent each variable. The
paper uses the results of the agile algorithm for the rule
based scheduling approach. The fuzzy controller results
are shown in Tables 5, 6, 7 and 8. Tables 5, 6, 7 and 8
shows the defuzzification results of the scheduling
parameters like AWT (average waiting time) and TAT
(Turn around time), MRESP (Mean Response Time) and
MRECT (Mean Reaction time), MU (Mean Utilization) and
MS (Mean Slowdown). The Mamdani’s model takes the
input values of the above mentioned parameter
combinations in the antecedent part and the consequent
part represents the defuzzification values. The error rate
is high in the fuzzy system and the performance of the
fuzzy system can be tuned using neural network. So the
paper concentrates on the performance improvement of
the fuzzy logic controller where in the rule base of a fuzzy
system is interpreted as a neural network. Neural network
offer a highly structured architecture with learning and
generalization capabilities. The generalization ability for
new inputs is then based on the inherent algebraic
structure of the neural network. Neural network solve
problems by learning and self organization Fuzzy sets
can be regarded as weights whereas the input and the

2316 Sci. Res. Essays

Table 7. Fuzzy controller for coarse grain workload.

Scheduling parameter / error calculation Value Actual Defuzzification results Error in %

AWT 221

292 7820

96.266

 TAT 71

MRESP 224

445 11900

96.261

 MRECT 221

MU 0.7 0.7 0.5 40.000

MS 0.013 0.013 0.354 96.328

Table 8. Fuzzy controller for independent workload.

Scheduling parameter / error calculation Values Actual Defuzzification results Error

AWT 0
16 6110 99.738

TAT 16

MRESP 0
0 14.5 100.000

MRECT 0

MU 0.6 0.6 0.511 17.417

MS 0.001036 0.001036 0.108 99.041

output variables and the rules are modeled as neurons.
The neuron of the network represents the fuzzy
knowledge base. The performance of a fixed architecture
neural network is dependent on the weights connecting
the neurons of the input and the hidden layer and those if
the hidden and the output layers, bias values and the
coefficient of the transfer function used. The back
propagation algorithm may be utilized to optimize the
above parameters in a supervised learning algorithm. A
back propagation neural network determines its weight
based on the gradient search technique and therefore
runs the risk of encountering the local minimum problem.
The back propagation network is the most well known
and widely used among the currently available neural
network system. The learning algorithm behind the back
propagation network is a kind of gradient descent
technique with backward error propagation. The back
propagation network is used the mathematical formula
present here can be applied to any network and does not
require any special mention of the features of the function
to be learn, the computation time is reduced if the weight
chosen are small at the beginning, The batch update of
weights exist, which provide a smoothing effect on the
weight correction terms and these are the main reasons
for selecting the back propagation as a learning algorithm
in our paper. The paper concentrates on the optimization
techniques like genetic algorithm, particle swarm

optimization, parallel genetic algorithm and the hybrid
Particle swarm optimization with the tabu search to guide
the back propagation network in finding the necessary
connection weights in order to enhance the speed of the
neural training in turn improves the performance of the
fuzzy system (Ghedjati et al., 2010; Avi Nissimov and
Dror, 2007).

Scheduling strategy based on rule base system

A complete rule base is developed with the set of rules
and each rule contains a conditional and a consequent
part. The conditional part specifies the activation of the
rule using the scheduling features defined in the agile
algorithm. The consequence part represents the
scheduling class .In order to specify all scheduling
classes the scheduling features are partitioned in to some
different ranges, which help us to define easily the
scheduling class. The conditional part which combines
the scheduling features are as follows: (1) Average
waiting time and the turn around time (2) Mean response
time and Mean reaction time (3) Mean slowdown and
Mean Utilization. The various features will take linguistic
terms are VS (very small), S (small), M (medium), MH
(medium high), H (high) and EH (extreme high) and the
rule are formed only with the help of the scheduling

Sudha and Thanushkodi 2317

Table 9. Rule table for average waiting time and turn around time (Fine grain).

AWT/TAT VS S M MH H EH

VS D A A A A A

S A A A A A A

M A A A A A A

MH A A A A A A

H A A A A A A

EH A A A A A A

Table 10. Rule table for Average waiting time and turn around time (medium grain).

AWT/TAT VS S M MH H EH

VS D C C C C C

S C C C C C C

M C C C C B B

MH C C B B A A

H C B B A A A

EH B A A A A A

Table 11. Rule table for Average waiting time and turn around time (coarse grain).

AWT/TAT VS S M MH H EH

VS D B B B B B

S B B B A A A

M A A A A A A

MH A A A A A A

H A A A A A A

EH A A A A A A

Table 12. Rule table for average waiting time and turn around time (independent grain).

AWT/TAT VS S M MH H EH

VS D B B A A A

S B B A A A A

M B A A A A A

MH A A A A A A

H A A A A A A

EH A A A A A A

feature partitions and the scheduling classes used are
class A (agile algorithm), class B (flexible co scheduling),
class C (gang scheduling) and class D (first come first
served scheduling), a total of 48 rules are framed for the
learning analysis. The rule table must be created to
determine which output ranges are used. The table is an
intersection of the defined scheduling metrics like
average waiting time and the turn around time and

Tables 9, 10, 11 and 12 shows the rule table for the fine
grain workloads. The rule tables can be created for the
other scheduling parameters also (Moratori et al., 2010;
Sun et al., 2011).

Figure 2 shows the attempt of using the structure of the
feed forward neural network to model the Mamdani
approach of the fuzzy logic controller. It consists of five
layers. Layer 1 (input layer) Layer 2 (fuzzification layer),

2318 Sci. Res. Essays

I1

 s

 Output

 I2

Layer 1 Layer2 Layer 3 Layer 4 Layer5

Linear TF Fuzzification AND Operation Fuzzy Inference Defuzzification

1

5

4

3

2

1

6

2

5

4

3

2

1

6

5

4

3

2

1

6

8

7

9

4

3

2

1

O

31

10

11

12

32

33

34

35

36

Figure 2. Neuro fuzzy model for learning.

Table 13. A sample chromosome.

Gene number Value

Gene 1 5573

Gene 2 1380

Gene 3 2985

Gene 4 2985

Gene 5 4181

Gene 6 7622

Gene 7 1346

Gene 8 8076

Gene 9 8399

Gene 10 4722

Gene 11 6026

Gene 12 2179

Gene 13 6644

Gene 14 3360

Gene 15 7930

Gene 16 1440

Layer 3 (and operation implementation layer, Layer 4
(fuzzy inference layer and Layer 5 (defuzzification layer).
The neurons in the first layer are nothing but transfer
function. Thus the output of the neurons lying on this
layer are nothing but their corresponding input values
(scheduling metrics considered for the analysis). The
second layer performs the fuzzification through which the
membership values of the input variables are determined.
The third layer represents all possible combination of the
input variables (also known as antecedents) and the and
operation. The fourth layer identifies the fired rules
corresponding to the set of the input variables and the
fifth layer performs the defuzzification to convert the
fuzzified output in to its corresponding output layer. Thus,
the weight determination of the neural network is done
with the optimization techniques.

FITNESS EVALUATION

The algorithm for the fitness function is as follows: A back
propagation network is taken as the learning algorithm
with the configuration 2-36-4 (l-m-n) where l is the
number of input neurons, m is the hidden neurons and n
is the output neurons. The number of weights to be
determined is 108. With each weight being a real number
and assuming the number of digits d to be randomly
generated for representing a weight value as 4, the string
S representing a chromosome of weight is 108*4 = 432.
To determine the fitness value for each of the
chromosome, we extract weights from each of the
chromosomes as shown in the figure. The sample
chromosome is shown in Table 13.

Sudha and Thanushkodi 2319

Weight extraction

To determine the fitness value for each of the
chromosome, we extract weights from each of the
chromosomes. Let c1, c2, c3…..cn represent a
chromosome and ck+1, ck+2…….c(k+1)d represent the k

th

gene in the chromosome. x kd+1 represents the position of
the digit in the gene.

The actual weight Wk is given by:

 (ckd+2 *10 d-2 + c kd+3 *10 d-3 +…………..+ c (k+1) d)/10 d-2 if 5<=x kd+1 <=9

 Wk= - (ckd+2 *10 d-2 + c kd+3 *10 d-3 +…………..+ c (k+1) d)/10 d-2 if 0<=x kd+1 <5

 (5)

The algorithm for the fitness function is as follows. A back

Algorithm fitness neural

Step 1: Let (Ii, Oi) represent the input and output pair of
the problem to be solved by the
Back Propagation Network with a configuration of 2-36-4

Step 2: For each chromosome C belonging to the current
population

Step 2.1: Extract Weight W from C with the help of the
Equation 5

Step 2.2: With the weights extracted, train the back
propagation network for the given input and output
instances.

Step 2.3: Calculate the net input to hidden unit Zinph and
its output Zh

 Zinph=W0+ (6)

 Zh=f (Zinph) (7)

Step 2.4: Compute the output Yino and O

Yino=w1+ (8)

propagation network is taken as the learning algorithm

O=f(Yino) (9)

Step 2.3: Calculate error E i for each of the input and
output instances using the

E i= ∑ j (T j-O j)

2
(Tj –target and Oj is the output) (10)

E=√E i /n where n is the number of instances (11)

Step 2.4: Calculate the fitness value F i for each of the
individual string of the population as
 F i=1/E}

2320 Sci. Res. Essays

Initial population Extracted Weight sets

Population Extracted weight sets Input weights for training Fitness

of chromosome Back propagation network Function

c1

c2

c3

-

-

cn

w1

w2

w3

-

-

-

wn

F=1/E

Figure 3. Fitness function computation for the population of chromosomes.

Flowchart Fitness_Neural

 No

Yes

Fig 4: Flowchart for Fitness Neural Network

Start

Consider the input and output pairs in the form of membership values to be
solved by the neural network

For each chromosome C

Extract weight W from C using the weight extraction equation

Calculate the net input to hidden unit and its output.

Calculate the error for each of the input –output pairs

Calculate the fitness value F for each of the individual string of the
population

Chromosomes
over

Output the fitness value to the optimization algorithm

Stop

Figure 4. Flowchart for fitness neural network.

Step 3: Output or return the fitness value to the
GA/PGA/PSO_Tabu algorithm (Figure 4).

The algorithm gets the membership function inputs of
the back propagation neural network and using the
weights determined from the various optimization

techniques, trains the network and finds the error value. If
the error value is less, the chromosomes are considered
as the best fittest chromosomes. This is explained neatly
in Figure 3 and Table 14 shows the error in the output
and the fitness values calculation for a sample of

Sudha and Thanushkodi 2321

Table 14. The fitness values from the initial population.

Chromosome SUM(E)/13 SQRT(E/13) F=1/E

1 0.00055972 0.023658358 42.26836

2 0.42416368 0.651278494 1.535441

3 0.01007314 0.100365023 9.96363

4 0.6503452 0.806439828 1.240018

5 0.68484746 0.82755511 1.208379

chromosomes.

OPTIMIZATION TECHNIQUES

Genetic algorithm

Genetic algorithm use a direct analogy of natural
behavior, work with the population of individual strings
each representing a possible solution to determine the
weight values of the neural network. Each individual
string is assigned a fitness value which is an assessment
of how good a solution is to determine the weight values
of the neural network. The high fit individuals participate
in reproduction by cross breeding with other individuals in
the population. This yields new individual strings as
offspring which share some features with each parent.
The least fit individual are kept out from reproduction and
so die out. A whole new population of possible solution to
the problem of finding the weight values is generated by
selecting the best individuals from the current generation.
Genetic and evolutionary algorithms wok based on
Darwin’s principle of natural selection (that is the survival
of the fittest) have been used as a optimization tool for
weight determination in the artificial neural network. It is
basically an iterative search technique working based on
the concept of probability. A Genetic algorithm starts with
a population of initial solutions generated at random. The
fitness or goodness value of each solution in the
population is calculates. The paper uses initial population
of real coded chromosomes which represent the weight
values for the neural network. Until the population
converges, the fitness of the chromosomes are executed
using the algorithm Fitness_Neural, which selects the
best weight values for the consecutive generations. The
genetic algorithm uses the two point cross for best
offspring across the generations. The same concept is
applied to the parallel genetic algorithm where the
population is divided by the master processor and the
fitness evaluation is done in the slave processor. By
doing the parallel implementation of the genetic
algorithm, it guides the back propagation network to
speed up the training by finding the weight calculation for
the network in a quick time.

Algorithm GA

Step 1: Generate the initial population P of real coded

chromosome which represent the weight values for
neural network

Step 2: While the current population P has not converged
{Step 2.1: Calculate the fitness value for each of the
chromosome using the algorithm Fitness Neural
Step 2.2: Keep the best of the individuals and terminate
the worst of the individuals
Step 2.3: Using the two points cross over operation,
reproduce the offspring from the current Population
Step 2.4: Call the current population}

Step 3: Extract weight from the current population to be
used by the back propagation neural Network (Figure 7)
Algorithm Parallel_GA

Step 1: Generate the initial population P of real coded
chromosome, which represent the weight values for the
neural network.

Step 2: The population is divided into subpopulations.
The master processor stores the population and sends
the subset of the population to its slaves .

Step 3: While the current population P has not
converged, the master sends the subset of the population
to its slaves
Step 3.1: Generate the fitness value of the each of the
chromosome in the slave processor by calling the
algorithm Fitness Neural
Step 3.2: Keep the best of the individuals and terminate
the worst
Step 3.3: Send the fitness value to the master processor
Step 3.4: The master processor does the two point
crossover of the subpopulation and sends to the slaves.

Step 4: Extract weight from the current population to be
used by the back propagation neural network (Figure 8)

Figures 5 and 6 shows a sample chromosome and the
weight determination used by all the optimization
techniques. Table 15 shows how the genetic algorithm
makes a two point crossover with the probability of more
that 50% for the new off springs and Table 16 shows the
parameter used by the genetic algorithm and the particle
swarm optimization and the same parameters can also
be used for the hybrid algorithms.

2322 Sci. Res. Essays

6020675586481920213791054921961153409512986423649170528672499361

0859033952376808602275686989175150017537213343686044196041253640

8498565030867480359302519241001635223821112224859326559326939706

3287365745833491119138446377226253580746846641936205085271648181

Figure 5. Initial population of chromosomes.

3.710000 -3.770000 -2.020000 0.940000 -3.760000

-6.390000 5.080000 1.950000 3.900000 -8.730000

2.100000 0.780000 6.020000 -2.650000 9.130000

-1.450000 -1.540000 -7.720000 -2.300000 1.030000

Figure 6. Weights extracted from the initial population.

Flowchart GA

 No

 Yes

Fig 7: Flowchart of GA Optimization for weight determination

Start

Initialize population with real coded value which represents the weight

values of the neural network

For each particle, evaluate fitness function by calling Fitness Neural

Perform Selection Operation from selecting the best individuals and
eliminating the worst individuals

Perform Two point cross over and find the new population

Whether minimum
error criteria has
attended

Stop

Figure 7. Flowchart of GA optimization for weight determination.

Particle swarm optimization

Particle Swarm optimization is a population based

stochastic optimization technique modeled based on
swarm intelligence. Particle swarm optimization is a
computational method that optimizes a problem by

Sudha and Thanushkodi 2323

Flowchart Parallel Genetic Algorithm

 No

 Yes

Fig 8: Flowchart of PGA Optimization for weight determination

Start

Initialize population with real coded value which represents the weight

values of the neural network

For each slave processor, evaluate fitness function for the

chromosomes by calling Fitness Neural

Perform Selection Operation from selecting the best individuals and
eliminating the worst individuals in the slaves

Perform Two point cross over and find the new population

Whether the
current population
has not converged
in the slaves

Stop

The population is divided into sub population and the master processor

stores the population and sends the subset of the population to its slaves

Return the fitness value to the Master Processor

The Master Processor will have the best fitness
valuevalue

A

A

Figure 8. Flowchart of PGA optimization for weight determination.

2324 Sci. Res. Essays

Table 15. Selection of parent pairs and their cross over positions.

S/N
Parent pairs represented by

chromosome number

Cross over position

Start position End position

1. (2, 25) 7 11

2. (3,10) 2 20

3. (4,15) 4 10

4. (5, 6) 3 6

5. (7, 18) 9 16

6. (8, 21) 10 15

7. (9, 27) 20 24

8. (10, 22) 40 47

9. (13, 20) 34 40

10. (17, 28) 36 50

Table 16. Parameters Used in GA and PSO.

S/N Genetic algorithm Particle swarm optimization

1. Population size: 50 Swarm size: 50

2. Max generations: 100 Max generations: 100

3. Selection: Normal geometry c1, c2 = 2

4. Cross over: Two point

iteratively trying to improve a candidate solution with
regard to a given measure of quality. The idea of the
optimizer was inspired by social behavior of bird flocking.
The birds travel through the whole feasible search space
to find the best flowers based on the objective function. In
particle swarm optimization, each single solution is a bird
in the search space, we call it as a particle. All of the
particles have fitness function to be optimized and have
velocities which direct the flying of the particles. Particle
swarm optimization in initiated with a group of random
solutions (that is) in our paper we have considered real
coded particles which represent the weight values for the
neural network. The particles search for the optima by
updating in the generations. In every generation, each
particle is updated by following the two best values. One
is the best solution, the particle achieved so far and the
other is the best solution of all the particles in the
population. This global best value will give us the best
optimism solution to the problem considered.

Algorithm PSO

Begin PSO
Step 1: Initialize Particles of real coded value with
represent the weight values for the neural network
 Initialize the particle with position vector and
velocity vector
 Initialize the size of the swarm, swarm size
 Initialize particle list to null

Step 2: do
 {
 For each particle
 Step 2.1: Calculate fitness value
 Step 2.2: If the fitness value is better than the
best fitness value in history
 Set the current value as the new best value
 Step 2.3: Choose the particle with the best fitness
value of the entire particle as the gBest
 For each particle
 Step 2.4: Calculate particle velocity and update
particle position
 } while minimum error criteria is not attended
Step 3: Optimum solution is available in gBest (Figure 11)

Hybrid particle swarm optimization with the Tabu
search

Tabu search is the metaheuristic local search algorithm
that can be used for solving combinatorial optimization
problem. Tabu search uses a local or neighboring search
procedure to iteratively move from one potential solution
y to a improved solution y1 in the neighborhood of y, until
some stopping criteria has been satisfied. The tabu
search uses a tabu list which is a memory structure used
to filter which solutions will be admitted to the
neighborhood of y. The paper discusses about the
hybridization of PSO and the tabu search. The particle
swarm optimization results in a premature convergence

and produces poor quality of the solution by considering
the local optimum. The tabu search use the adaptive
memory processes for guiding search. First the
population with feasible solution of particles are
considered and the for each particle the pbest solution is
being input to the tabu search, where the tabu search
identifies the neighboring candidate and checks whether
there are any best solutions .By doing so, the tabu search
avoids the premature convergence of the particle swarm
optimization. The same tabu search technique is done
parallel to get the results in a quick time. The population
is divided in to subpopulation and the searches are done
by giving each one of the subpopulation to the various
tabu search. The master processor in the PSO gets all
the global solutions and finds the best from the results of
the tabu search.

Algorithm hybrid PSO_Tabu

Begin PSO
Step 1: Initialize Particles of real coded value with
represent the weight values for the neural network
 Initialize the particle with position vector and
velocity vector
 Initialize the size of the swarm, swarm size
 Initialize particle list to null
Step 2: Do
 {
 Do
 {
 For each particle
 Step 2.1: Check the particle with the particle list
 Step 2.2: If the particle is present in the particle_list
then
 Step 2.2.1 The position is already visited and
makes the particle to move to its
 Neighboring position that is not visited.
 Else
 Step 2.2.1 Evaluate the fitness function to the
particle particle_fit
 Step 2.3: If the fitness function particle_fit is better
than the best value of the
 Particle (pbest) in history
 Step 2.4: Set pbest to particle_fit
 Step 2.5: Input pbest to tabusearch
Begin Tabusearch
Step 3: Initialize Tabulist, candidate list to null, sbest
=pbest
 Do
 {
 Step 3.1: Generate the neighboring candidates
 Step 3.2: For each candidate
 {
 Step 3.3: If candidate not present in the tabulist
then
 Add to the candidate list

Sudha and Thanushkodi 2325

 }
Step 4: Find the best candidate
Step 5: Update to the tabulist
Step 6: Update to the particlelist
} while (candidates exist)
Step 7: Update swarm size
} while (particles exist)
Step 8: Choose best of all particles and set as gbest
Step 9: Update particle velocity and particle position
using the formula
 v[]= v[] + c1* rand() * (pbest[]-present[]) + c2*
rand() * (gbest [] –present[])
 present [] =present [] +v []
Where v[] is the particle velocity, present [] is the current
solution. rand() is a random number between (0,1), c1
and c2 are the learning factors usually takes the value 2.
} while (all particles converge or maximum number of
iterations reached)
End PSO (Figure 13)

RESULTS

The problem is to determine the weights for a back
propagation network with a configuration 2-36-4 using the
genetic algorithm parallel genetic algorithm and the
swamp optimization techniques like particle swarm
optimization a hybrid approach of particle swarm
optimization and the tabu search and its parallel
implementations. This analysis is done to tune the fuzzy
logic controller which is used as a learning step for a
parallel job scheduling using the neuro fuzzy system.
Figure 9 show the optimization results that is, the fitness
value calculation for the genetic algorithm (Figure 10).
The figure shows a generation up to 100 and it is clear
that the genetic algorithm converges from the generation
of 55. Figure 12 shows the comparative results from
genetic algorithm, parallel genetic algorithm and the
particle swarm optimization. The parallel genetic
algorithm and the particle swarm optimization seems to
be converged quickly than the genetic algorithm that is
from the generation from 45 onwards. Figures 14 and 15
show the optimization results of the hybrid PSO and the
tabu search and its parallel implementation. The parallel
implementation converges very quickly from the
generation of 17 and also produces the maximum fitness
value when compares to all the optimization techniques.
Table 17 and Figure 16 show the consolidated fitness
evaluation of the all the techniques and its error
calculations. The error calculations are very minimum for
the hybrid algorithms of PSO with the tabu search. Table
18 and Figure 17 show the computational time analysis
computational time for the PSO is high when compared
to the genetic algorithm. The computational time is
improved for the PSO by the hybridization of the particle
swarm optimization with the tabu search. The parallel
implementation approach of the optimization techniques
converges quickly when compared to the other. Thus, a

2326 Sci. Res. Essays

Result -Genetic Algortihm

1.5716

1.5718

1.572

1.5722

1.5724

1.5726

1.5728

0 10 20 30 40 50 60 70 80 90 100

Generations

F
it

n
e
s
s
 V

a
lu

e

GA

Figure 9. Optimization results of genetic algorithm.

Results -Genectic Algorithm and PSO

1.5716

1.5718

1.572

1.5722

1.5724

1.5726

1.5728

1.573

0 10 20 30 40 50 60 70 80 90 100

Generations

F
it

n
e
s
s
 V

a
lu

e

GA

PSO

Figure 10. Comparative optimization results of genetic algorithm and particle swarm optimization.

DISCUSSION AND CONCLUSION

From Table 19 and Figure 18, we find that the
computational time for the PSO is high when compared
to the genetic algorithm. The computational time is
improved for the PSO by the hybridization of the particle

swarm optimization with the tabu search. The parallel
implementation approach of the optimization techniques
converges quickly when compared to the other. Thus a
complete comparative analysis of the optimization
techniques is done for the weight determination of the
neural network, which will help the tuning of the fuzzy

Sudha and Thanushkodi 2327

 Yes

 Yes

Fig 11: Flowchart of PSO Optimization for weight determination

Start

Initialize particles with real coded value which represent the weight values

of the neural network

For each particle, evaluate fitness function by calling Fitness Neural

Set the current value as the best value in pBest

If fitness calculated is better
than the previous best in
history

Set the best of all the particles as gBest and update the

particle velocity and position

Whether minimum error
criteria has attended

Stop: gBest value gives the best Optimum solution

Stop

A

A

B

B

Figure 11. Flowchart of PSO Optimization for weight determination.

Results -GA,PSO,Parallel GA

1.5716

1.5718

1.572

1.5722

1.5724

1.5726

1.5728

1.573

0 20 40 60 80 100

Generations

F
it

n
e
s
s
 V

a
lu

e

GA

PSO

Parallel_GA

Figure 12. Comparative optimization results of genetic algorithm, parallel genetic algorithm and particle
swarm optimization.

2328 Sci. Res. Essays

Figure 13. Flowchart of hybrid PSO and the tabu search optimization
for weight determination.

Sudha and Thanushkodi 2329

Results- GA,PSO,ParallelGA,PSO_TABU

1.5716

1.5718

1.572

1.5722

1.5724

1.5726

1.5728

1.573

1.5732

0 20 40 60 80 100

Generations

F
it

n
e
s
s
 V

a
lu

e

GA

PSO

Parallel_GA

Hybrid PSO_Tabu

Figure 14. Comparative optimization results of genetic algorithm and particle swarm optimization with tabusearch.

Results -GA,PSO,Parallel GA,PSO+Tabu,Parallel PSO+TABU

1.5716

1.5718

1.572

1.5722

1.5724

1.5726

1.5728

1.573

1.5732

0 20 40 60 80 100

Generations

F
it

n
e
s
s
 V

a
lu

e GA

PSO

Parallel_GA

Hybrid PSO_Tabu

Parallel_PSO_Tabu

Figure 15. Comparative optimization results of genetic algorithm and particle swarm optimization with tabu search (parallel).

2330 Sci. Res. Essays

Table 17. Fitness evaluation of the optimization techniques with error calculation.

Input Output Output(GA)
Output

(Parallel GA)
Output
(PSO)

Output (Hybrid
PSO_Tabu)

Output parallel
PSO_Tabu

Error (GA)
Error

(Parallel GA)
Error
(PSO)

Error
(Hybrid PSO_Tabu)

Error parallel
PSO_Tabu

(0.9,0.793) 0.72 0.72 0.71999 0.71999 0.7211 0.7211 0.000833 0.00083 0.00139 0.15278 0.15278

(0.75,0.8) 0.54 0.54 0.54 0.53999 0.5401 0.5401 0.000370 0.00037 0.00185 0.01852 0.01852

(1,0) 1 0.9883 0.98828 0.98999 0.99999 0.99999 1.172000 1.18590 1.00100 0.00100 0.00100

(0.16,0) 0.16 0.1789 0.17894 0.15998 0.16023 0.16023 11.835625 10.58305 0.01250 0.14375 0.14375

(0.356,0.98) 0.655 0.655 0.655 0.654998 0.65501 0.65501 0.000305 0.00031 0.00031 0.00153 0.00153

(0.657,0.645) 0.651 0.651 0.651 0.65099 0.651001 0.651001 0.000307 0.00031 0.00154 0.00015 0.00015

(0.65,0) 0.65 0.6568 0.65676 0.6521 0.65002 0.65002 1.040462 1.02975 0.32308 0.00308 0.00308

(0.956,0.965) 0.971 0.9383 0.93834 0.9711 0.9710008 0.9710008 3.363543 3.48061 0.01030 0.00008 0.00008

(0.955,0.956) 0.956 0.9308 0.93083 0.9559 0.956003 0.956003 2.633159 2.70437 0.01046 0.00031 0.00031

(0.974,0) 0.974 0.9863 0.98626 0.9743 0.97399 0.97399 1.258932 1.24328 0.03080 0.00103 0.00103

(1,0.997) 0.997 0.949 0.94905 0.9982 0.9977 0.9977 4.809529 5.05253 0.12036 0.07021 0.07021

(1,1) 1 0.9501 0.95013 0.9845 0.9999 0.9999 4.987400 5.24920 1.55000 0.01000 0.01000

(0.998,0) 0.998 0.9881 0.98814 0.99822 0.99801 0.99801 0.987876 0.99773 0.02204 0.00100 0.00100

Optimization Results

0

0.2

0.4

0.6

0.8

1

1.2

(0
.9

,0
.7

93)

(0
.7

5,
0.

8)

(1
,0

)

(0
.1

6,
0)

(0
.3

56
,0

.9
8)

(0
.6

57
,0

.6
45

)

(0
.6

5,
0)

(0
.9

56
,0

.9
65

)

(0
.9

55
,0

.9
56

)

(0
.9

74
,0

)

(1
,0

.9
97

)
(1

,1
)

(0
.9

98
,0

)

Input Membership

F
it

n
e
s
s
 V

a
lu

e

Output

Output(GA)

Output

(Parallel GA)

Output

(PSO)

Ouput

(Hybrid PSO_Tabu)

Output

Parallel PSO_Tabu

Figure 16. Comparative analysis of optimization results.

Sudha and Thanushkodi 2331

Table 18. Computational time analysis of all the optimization techniques.

S/N
Input

(in membership values)

Output

(in membership values)

Serial GA
(ms)

Parallel GA
(ms)

PSO

(ms)

Hybrid PSO_Tabu

(ms)

Parallel implementation
PSO_Tabu (ms)

1 (0.9, 0.793) 0.72 9275.6 6456.7 9457.8 7426.5 5023.4

2 (0.75, 0.8) 0.54 8682.5 6072.4 8925.1 6993.2 4624.5

3 (1,0) 1 4060.3 3233.4 4311.4 3991.4 3214.5

4 (0.16,0) 0.16 6393.7 4910.4 6410.3 6012.1 5912.6

5 (0.356, 0.98) 0.655 9876.9 6993.5 9942.1 8624.8 7982.1

6 (0.657, 0.645) 0.651 11492.3 7547.9 12134.6 10342 9108

7 (0.65,0) 0.65 6739.9 4223.4 6825.6 5231.4 4921.1

8 (0.956, 0.965) 0.971 12285 7512.2 13212 12122 10123.4

9 (0.955, 0.956) 0.956 11064.6 6295.8 12116.1 10034.1 9346.9

10 (0.974, 0) 0.974 8143.2 5192 8242.1 8042.1 6643.8

11 (1, 0.997) 0.997 6778.3 5952.9 6991.2 6445.2 5892.6

12 (1,1) 1 2629 2496.5 2878.1 2512 1967

13 (0.998, 0) 0.998 6025.5 4898.5 6123.1 6004.3 5638.1

Time (ms) 103446.8 71785.6 107569.5 93781.1 80398

Time (sec) 103.4468 71.7856 107.5695 93.7811 80.398

Time (min) 1 min 43 s 1 min 1 s 1 min 47 s 1 min 34 s 1 min 20 s

Analysis -Computational Time

0

2000

4000

6000

8000

10000

12000

14000

(0
.9

,0
.7

93
)

(0
.7

5,
0.

8)

(1
,0

)

(0
.1

6,
0)

(0
.3

56
,0

.9
8)

(0
.6

57
,0

.6
45

)

(0
.6

5,
0)

(0
.9

56
,0

.9
65

)

(0
.9

55
,0

.9
56

)

(0
.9

74
,0

)

(1
,0

.9
97

)

(1
,1

)

(0
.9

98
,0

)

1 2 3 4 5 6 7 8 9 10 11 12 13

Optimization Techniques

T
im

e
(m

s)

Output (in Membership values)

Serial GA (ms)

Parallel GA (ms)

PSO

Hybdrid PSO_Tabu

Figure 17. Computational time analysis of all the optimization techniques.

2332 Sci. Res. Essays

Table 19. Improvement of the computational time for the various optimization techniques.

Input (in
membership

values)

Output (in
membership

values)

Improvement
of GA over PSO

Improvement
of Parallel GA

over GA

Improvements
of

PSO_Tabu
over PSO

Improvement
of PSO_Tabu

over GA

Improvement
of Parallel

PSO_Tabu over
GA

Improvement
of Parallel
PSO_Tabu
over PSO

Improvement
of Parallel

PSO_Tabu over
serial PSO_Tabu

(0.9,0.793) 0.72 1.92645224 30.3904869 21.4775106 19.93509854 45.84285653 46.88616803 32.3584461

(0.75,0.8) 0.54 2.71817683 30.0616182 21.6456958 19.45637777 46.73769076 48.1854545 33.8714751

(1,0) 1 5.824094262 20.3654902 7.42218305 1.696918947 20.83097308 25.44185183 19.4643483

(0.16,0) 0.16 0.258958239 23.1993994 6.21187776 5.968375119 23.16499054 23.36396113 18.288119

(0.356,0.98) 0.655 0.655797065 29.1933704 13.2497159 12.67705454 19.18415697 19.7141449 7.451767

(0.657,0.645) 0.651 5.293128739 34.3221113 14.7726336 10.00931058 37.27974383 40.59960773 30.3036163

(0.65,0) 0.65 1.255567276 37.3373492 23.3561885 22.38163771 26.98556358 27.90230895 5.93149061

(0.956,0.965) 0.971 7.016348774 38.8506309 8.25007569 1.326821327 30.61945462 35.48743566 29.6865204

(0.955,0.956) 0.956 8.678535172 43.099615 17.1837472 9.313486253 42.63778175 47.61598204 36.7466938

(0.974,0) 0.974 1.199936909 36.2412811 2.42656605 1.241526673 39.28922291 40.01771393 38.5260069

(1,0.997) 0.997 3.045256894 12.1770946 7.80981806 4.914211528 13.06669814 15.71404051 8.57382238

(1,1) 1 8.655015462 5.03993914 12.7201974 4.450361354 25.18067706 31.65630103 21.6958599

(0.998,0) 0.998 1.593963842 18.703842 1.94019369 0.351838022 18.04663513 19.35294214 17.757274

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13

Instances

Improvement of GA over PSO

Improvement of Parallel GA

over GA

Improvements of
PSO_Tabu over PSO

Improvement of PSO_Tabu

over GA

Improvement of Parallel

PSO_Tabu over GA

Improvement of Parallel

 PSO_Tabu over PSO

Improvement of Parallel

PSO_Tabu over serial

Im
p

ro
v
em

e
n

t
(%

)

Figure 18. Improvements in computational time for the various optimization techniques.

logic controller used for the parallel job scheduling. The
hybrid approach produces an average of 25 to 30%
improvement in the computational time of the algorithm.

In this paper, an attempt is made to improve the
performance of the fuzzy logic controller for the learning
step of parallel job scheduling using the neural network.
The fuzzy logic controller was used due to its robustness
and can be easily modified, but the controller fails to give
the correct defuzzification results, thus the structure of
the neuro fuzzy approach is used to improve the
performance of the fuzzy logic controller. The neural
network’s performance depends mainly on the weight
determination of its layers and the paper concentrates on
the determination of 108 weights. The weight determi-
nation is made with the optimization algorithms like
genetic algorithm, parallel implementation of the genetic
algorithm, Particle swarm optimization and the hybrid
approach of PSO with the tabu search and with its
parallel implementation. All these types of analysis are
done to speed up training of the neural network. The
results shows that the hybrid approach and its parallel
implementation of the PSO with the tabu search
produces good results in terms of the weight
determination and also in terms of the converge.

REFERENCES

Avi N, Dror GF (2007). Probabilistic Backfilling 13th Workshop on Job

Scheduling Strategies for Parallel Processing In Conjuction with 21st
ACM Int. Conf. Super Comput. pp. 102-115.

Dan T, Yoav E, Dror GF (2007). Backfilling Using System –Generated
Predictions Rather than User Runtime Estimates. IEEE Trans.
Parallel Distrib. Syst. 18(6):789-803.

Sudha and Thanushkodi 2333

Dutot P, Pascual F, RZadca K, Trystram D (2011). Approximation

Algorithms for the multiorganization scheduling problem. Parall.
Distrib. Syst. IEEE Trans. 99(1).

Eitan F, Dror GF, Fabrizio P, Juan F (2005). Adaptive Parallel Job
Scheduling with Flexible Coscheduling. IEEE Trans. Parallel Distrib.
Syst. 16(11):1066-1077.

Ghedjati F (2010). Heuristic and a hybrid meta-heuristic for a
generalized job shop scheduling problem. Evolutionary computing.
Proc. IEEE Conf. pp. 1-8

Jintao M, Jun Y, Xiaoxu L (2010). Parallel- batching scheduling problem
with family jobs for minimizing makespan, Industrial and Information
systems. Proceed. Int. Conf. IEEE Explore, pp. 159-162.

Minh TN, Wolters L (2010). Using Historical Data to Predict Application
Runtimes on Backfilling Parallel Systems, Parallel, Distr. Network
based Process. 18th Eur. micro Int. Conf. pp. 246-252.

Moratori P, Petrovic S, Vazquez-Rodringuez JA (2010). Fuzzy
Approach for Robust Job Shop Rescheduling. Proc. Fuzzy Syst.
IEEE Int. Conf. pp. 1-7.

Sun H, Cao Y, Hsu WJ (2011). Effective adaptive scheduling of
multiprocessor with stable parallelism feedback. Parall. Distrib. Syst.
IEEE Trans. 22(4):594-607.

Thanushkodi K, Sudha SV (2009). A comparative evaluation of medium
and coarse grain parallel jobs in job scheduling. IJSCI, ISSN,
21:0973-4864.

Thanushkodi K, Sudha SV (2009). An Approach for Parallel Job
Scheduling Using Nimble Algorithm. IEEE Catalog Number:
CFP0811G, ISBN: 978-1-4244-3595-1, Library of Congress:
2008911559.1-9.

Thanushkodi K, Sudha SV (2009). Synchronization granularity and
processes based scheduling of parallel jobs with agile algorithm.
AMSE France 30(2):1.

