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This paper considers the finite-time stability of linear time-varying singular impulsive systems. A lemma 
which states an important inequality was first established. Then some sufficient conditions for the 
systems to be finite-time stable were derived. The proposed results remove some restrictions of the 
existing methods and thus can be applied to more general systems. Finally, a numerical example was 
presented to illustrate the proposed approaches. 
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INTRODUCTION 
 
Singular systems are also referred to as descriptor, semi-
state, implicit, constrained, differential-algebraic equation, 
or generalized state-space systems and arise naturally in 
many practical applications (Campbell, 1980). In the past 
several decades, many fundamental system theories 
developed for standard state-space systems have been 
successively generalized to its counterparts for singular 
systems (Ishihara and Terra, 2002; Cobb, 1984). 

On the other hand, since impulsive behaviours which 
are characterized by abrupt changes of states at certain 
instants occur in many practical systems (Yang, 2001), 
impulsive systems have attracted particular interest 
(Zhang and Sun, 2005; Cheng et al., 2010; Wang and 
Liu, 2007). Recently, singular impulsive systems, that is, 
singular systems subject to impulsive effects, have been 
proposed and studied (Guan et al., 1995; 2001; 2005; 
Wang and Lia, 2001; Yao, 2006). The problems of 
stability and  stabilization  of  singular  impulsive  systems  
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are studied in the framework of Lyapunov stability and 

the proposed methods are shown to be useful and 
efficient. 

It is known that Lyapunov stability is concerned with the 
behavior of the system over an infinite time interval. In 
practice, a stable system might be useless because the 
stable domain or the domain of the desired attractor is 
not large enough and on the other hand, sometimes an 
unstable system may be acceptable since the system 
oscillates sufficiently near the desired state on a 
predefined finite time interval. This boundedness on a 
finite time interval is referred to as the notion of finite-time 
stability (or short-time stability) which is firstly introduced 
in La Salle and Lefschetz (1961). Different versions of 
finite-time stability for various systems have been 
proposed by Weiss and Infante (1967), Amato and Ariola 
(2001) and Liu and Sun (2008). 

In Zhao et al. (2008), finite-time stability of linear time-
varying singular impulsive systems is defined and some 
sufficient conditions are derived. The proposed methods 
make some restrictions on the systems under 

consideration including: (1)  The derivative matrix ( )E t  is 

 



 

 

 

 
 
 

nonsingular at each impulsive instant
k

τ ; (2) The 

impulsive control matrix 
k

B  is symmetric and 
k

I B+  is 

nonsingular; (3) The involved disturbance signal is time-
invariant. In this paper, we aimed to study the finite-time 
stability of linear time-varying singular impulsive systems 
and try to remove the above mentioned restrictions. Thus, 
the development of new methods can be applied to more 
general systems. 
 
 
PRELIMINARIES 
 
The notations used in this paper are the same as those in Zhao et 

al. (2008). Let 
n

R  denote the n-dimensional Euclidean space. 

[0, )R+ = +∞ and 
0 0

[ , ]J t t T= +  . The identity matrix of order 

n  is denoted by 
n

I  (or, simply, I if no confusion arises). For any 

matrices
max

, , ( , )
n nX Y R Y Xλ×∈  represents the maximum 

generalized eigenvalue of  ( , )Y X  (the generalized eigenvalues 

of ( , )Y X  are defined by the solutions of det( ) 0sX Y− =  and 

supposed to be real). When 
max

, ( , )X I Y Xλ= denotes the 

maximum eigenvalue of X and is abbreviated as
max

( )Yλ . 

We now recall the definitions and results of Zhao et al. (2008). 
 

Definition 1: Time-varying matrix ( )E t  is singular on time 

interval J , if there exists a t J∈% such that det( ( )) 0E t =% . 

 

Definition 2: Time-varying matrix ( )Q t  is nonnegative definite on 

time interval J , if for all t J∈%  ， ( )Q t%  is nonnegative definite. 

 
Consider the following singular impulsive system: 
 

 

0 0

( ) ( ) ( ) ( ) ( ), ,

( ) ( ), , (1)

( ) , 1,2, ,

k

k k

E t x t A t x t t t

x t B x t t

x t x k

ω τ

τ

= + ≠

∆ = =
 = =

&

L
             (1) 

 

Where t R+∈ , ( )
nx t R∈ is the state variable and ( )

nt Rω ∈ is 

the disturbance signal. ( ), ( )
n nA t E t R ×∈ are time-varying 

matrices and continuous with respect to t , and
n n

k
B R ×∈ . ( )E t  

is singular on J . 
0

x is the initial value of the system state variable 

at
0

t . A sequence { },
k k

Bτ has the effect of suddenly changing 

the state of System (1) at fixed points sequence 

{ }k
τ with ( ) ( )k kx x xτ τ+ −

∆ = − ,  
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Where
0

( ) lim ( )
k k

h
x x hτ τ

+

+

→
= +  and

0

( ) lim ( )
k k

h
x x hτ τ

+

−

→
= − . 

For simplicity, it is assumed that ( ) ( )
k k

x xτ τ− = . This means 

the state variable is left continuous at each
k

τ . Moreover, once the 

impulsive control { },
k k

Bτ for the linear singular system has been 

designed, the impulsive points 
k

τ are determined, not related with 

state variable x . For any state vector ( )x t  , quadratic form 

( )
Q

x t is defined as
2

( ) ( ) ( ) ( )
T

Q
x t x t Q t x t= , 

where ( ) ( ) ( ) ( ), ( ) ( ) 0
T TQ t E t P t E t P t P t= = > is an 

arbitrarily specified matrix and continuous with respect to t . 

It should be pointed out that this paper allows the disturbance 

signal ( )tω to be time-varying, while Zhao et al. (2008) requires it 

to be time-invariant. 
 

Definition 3: Assume 0)( ≡tω . Then for given positive real 

numbers 
1 2
,c c and nonnegative definite matrix ( )Q t , system (1) 

is said to be finite-time stable with respect to{ }1 2
, , , ( )c c J Q t  if 

and only if: 
 

2 2

0 1 0 2( ) ( ) , .
Q Q

x t c x t c t J< ⇒ < ∀ ∈  

 

Definition 4: Given two positive real numbers
1 2
,c c , a nonnegative 

definite matrix ( )Q t and a set 
nS R⊂ , system (1) is said to be 

finite-time stable with respect to{ }1 2
, , , ( ),c c J Q t S  if and only if: 

 

.)(,,)()( 2

2

1

2

0 StJtctxctx
QQ

∈∈∀<⇒< ω  

 
 The basic assumptions of Zhao et al. (2008) are stated as follows: 
 

(H1) Time-varying matrices ( )A t and ( )E t are continuous on J . 

(H2) lim
k

k
τ

→∞
= ∞  and there exists m , such that: 

 

0 1 2 0 10 .m mt t Tτ τ τ τ +≤ < < < < ≤ + < <L L  

 

(H3) For any t J∈% , the pair ( ( ), ( ))E t A t% %  is regular, that is, 

there exists a complex number c  such that 

det( ( ) ( )) 0cE t A t− ≠% % . 

(H4) Matrices , 1, 2,
k

B k m= L are symmetrical 

and det( ) 0
k

I B+ ≠ . 

(H5) For each , 1,2, ,det( ( )) 0.
k k

k m Eτ τ= ≠L  
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(H6) Signal ( )tω is time-invariant and the set S  is defined as 

{ }| ,
n T

S R d hω ω ω ω= ∈ ≤ ≤ , where 0 d h< ≤ . 

 

Theorem 1: (Zhao et al., 2008) Suppose 0)( ≡tω ,(H1)-(H5) hold, 

( ) ( ) ( ) ( ) 0
TQ t E t P t E t= ≥  and ( ) ( ) 0

TP t P t= > . Then 

System (1) is finite-time stable with respect to { }1 2
, , , ( )c c J Q t if 

 (H7) 

1

0

( ( ))

1 2

t
M t dt

c e c

τ
Λ∫

≤  and for each 0 k m< ≤ ， we have 

1

0

( ( ))

1 2
1

,

k

t

kM t dt

i
i

c e r c t J

τ +

Λ

=

∫
Π ≤ ∀ ∈  

Where: 
 

1

max
(( ( ) ( ) ( )) ( ) ( ) ( ) ( )( )),

T T T

k k k k k k k k k
r E P E I B E P E I Bλ τ τ τ τ τ τ−= + +

{ }( ( )) max ( ) ( ) ( ) : ( ) ( ) ( ) 1 ,
T T

M t x t M t x t x t Q t x tΛ = =  

 
and the matrix M(t) is defined as: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T T T TM t E t P t E t A t P t E t E t P t E t E t P t A t E t P t E t= + + + +& & &

 
 
Theorem 2: (Zhao et al., 2008) Suppose (H1)-(H6) hold, 

( ) ( ) ( ) ( ) 0
TQ t E t P t E t= ≥ and ( ) ( ) 0

TP t P t= > .  

 
Then System (1) is finite-time stable with respect to 

{ }1 2
, , , ( ),c c J Q t S  if there exist a constant 0α >  and a matrix 

0
TG G= > such that: 

 

(H8)
( ) ( ) ( ) ( ) ( ) ( )

0;
( ) ( )

T TM t E t P t E t E t P t

P t E t G

α

α

 −
≤ 

− 
 

 

 (H9) 1

1 max min 2
( ( ) ) ( ) ;c e c G h G d c

ατ λ λ+ − ≤�  

 

(H10) For any 2 k m≤ ≤ , we have 

2
1

2

0

,
k

k i

i

c b cα α
−

−

=

+ ≤∑ where { }1( )
max ,k k

k
a e r

α τ τ+ −
=  

 

{ }1( )

max min
max ( ) ( ) ,k kb e G h G d

α τ τ
λ λ+ −

= −

1, 2, , 1k m= −L , and ( )M t  and 
k

r  are the same as those in 

Theorem 1. 
 
 
MAIN RESULTS 
 
It is known that one of the fundamental characteristics of 

singular  systems  is  that  the  derivative  matrix  ( )E t   is 

 

 
 
 

singular. However, assumption (H5) requires ( )E t  to be 

nonsingular at the impulse instant
k

τ . Assumption (H4) is 

also a restrictive condition. The objective of this paper is 
to release the assumptions (H4) and (H5). 

We first give the following lemma. 

Lemma3 ：：：：  Let 
n nQ R ×∈ be a symmetric and semi 

positive definite matrix
n n

P R
×

∈ and be a symmetric 

matrix. Assume [ ]rank P Q rankQ= and there exists a 

symmetric matrix 
n nQ R ×∈ such that [ ]rank Q Q n=  

and 0Q Q× = . Then the generalized eigenvalues 

of ( , )P Q Q+  are real and
max

( , )P P Q Q Qλ≤ + . 

 

Proof ：：：：  Since Q  is a symmetric and semi-positive 

definite, there exists an orthogonal matrix M  such 

that
0

0 0

T
M QM

Σ 
=  
 

，where 0Σ >  is diagonal. Let 

11 12

12 22

T

T

P P
M PM

P P

 
=  
 

 and 
11 12

12 22

.
T

T

Q Q
M QM

Q Q

 
=  
 

 

Since [ ]rank P Q rankQ=  , we 

have [ ]
T T Trank M PM M QM rankM QM= , which 

shows that 

11 12

12 22

0 0
.

0 0 0 0
T

P P
rank rank

P P

Σ Σ   
=   

  
Then it 

follows from 0Σ >  that
12 22

0, 0P P= = . 

In addition, 0Q Q× = implies 

11 12 11 12

12 22

0
.

0 0 0 0

T T

T

Q Q Q Q
M QM M QM

Q Q

Σ Σ Σ    
× = × =    

    

Then it follows from 0Σ >  that
11 12

0, 0Q Q= =  

Since [ ]rank Q Q n= , we have  

[ ] [ ]
T Tn rank Q Q rank M QM M QM= =  

 

 
11 12

12 22

22

0

0 0

0 0 0

0 0 0

T

Q Q
rank

Q Q

rank
Q

Σ 
=  

 

Σ 
=  

              (2) 

Which yields that 
22

Q is nonsingular.  

 
Then we have: 
 



 

 

 

 
 
 
 

11

22

11

22

11

1 1

2 2
11

det( ( )) 0 det( ( ) ) 0

00
det( ) 0

00 0

0
det( ) 0

0

det( ) 0

det( ) 0. (3)

T TsQ P Q sM QM M P Q M

P
s

Q

s P

Q

s P

sI P
− −

− + = ⇔ − + =

Σ   
⇔ − =  

   

Σ− 
⇔ = 

− 

⇔ Σ− =

⇔ −Σ Σ =
      (3) 

 

Since

1 1

2 2
11

P
− −

Σ Σ  is symmetric, the eigenvalues of 

1 1

2 2
11

P
− −

Σ Σ  are real. Then it follows from (3) that the 

generalized eigenvalues of ( , )P Q Q+  are real. 

Furthermore, from Equation (3), we 

have

1 1 1 1

2 2 2 2
11 max 11 max( ) ( , )P P I P Q Q Iλ λ

− − − −

Σ Σ ≤ Σ Σ = + , 

which shows that 

11 max
( , )P P Q Qλ≤ + Σ .Then

max

0
( , )

0 0

TM PM P Q Qλ
Σ 

≤ +  
 

, which is equivalent to 

max
( , ) .P P Q Q Qλ≤ +  This completes the proof. 

 

Remark 1: From Equation (3), the generalized 

eigenvalues of ( , )P Q Q+ is independent of the choice of 

Q  satisfying [ ]rank Q Q n=  and 0Q Q× = . 

As shown in Zhao et al. (2008), under the assumptions 

(H4) and (H5) and choosing 
k

r  as (H7), one has: 

 

 ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) (4)

T T T

k k k k k k k

T T

k k k k k k

x I B E P E I B x

r x E P E x

τ τ τ τ τ

τ τ τ τ τ

+ +

≤
          (4) 

 

Which plays an important role in the proofs for Theorems 
1 and 2. 
 

Let 
 ( ) ( ) ( ) (5)

T

k k k kX E P Eτ τ τ=
            (5) 

 

And 
 

 ( ) ( ) ( ) ( )( ) (6)
T T

k k k k k kY I B E P E I Bτ τ τ= + +
          (6) 

 

We now introduce the following assumptions: 
 

(H11)    [ ]
k k k

rank Y X rankX=   and   there   exists   a 
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symmetric matrix 
n n

k
X R ×∈ such that 

[ ]
k k

rank X X n= and 0
k k

X X× = . 

We now define 
k

r  as: 

 

 
max

( , ). (7)
kk k k

r Y X Xλ= +
             (7) 

 

From Lemma 3, it can be seen that Inequality (4) holds 

for 
k

r  defined by Equation (7) if (H11) holds. Then, 

similarly to the proofs for Theorems 1 and 2 given in 
Zhao et al. (2008), one can prove the following Theorems 
4 and 5. 
 

Theorem 4：：：： Suppose ( ) 0tω ≡ , (H1)-(H3) and (H11) 

hold, ( ) ( ) 0
T

P t P t= > and ( ) ( ) ( ) ( ) 0.
T

Q t E t P t E t= ≥ Then 

System (1) is finite-time stable with respect 

to { }1 2
, , , ( )c c J Q t  if (H7 ')  

1

0

( ( ))

1 2

t
M t dt

c e c

τ
Λ∫

≤  and for 

each 0 k m< ≤ ，we have: 

 

 

1

0

( ( ))

1 2
1

,

k

t

kM t dt

i
i

c e r c t J

τ +

Λ

=

∫
Π ≤ ∀ ∈  

 

Where 
k

r  is defined by (7), matrix ( )M t and ( ( ))M tΛ  

are the same as those in Theorem 1. 
 

Theorem 5：：：：Suppose (H1)-(H3), (H6) and (H11) hold, 

( ) ( ) 0
TP t P t= >  and ( ) ( ) ( ) ( ) 0.

TQ t E t P t E t= ≥ Then 

System (1) is finite-time stable with respect 

to{ }1 2
, , , ( ),c c J Q t S if there exist a constant 0α >  and 

a matrix 0
TG G= > such that (H8), (H9) and (H10 ') For 

any 2 k m≤ ≤ , we have  
2

1

2

0

,
k

k i

i

a c b a c
−

−

=

+ ≤∑ where 
k

r is 

defined by  Equation (7), { }1( )
max k k

k
a e r

α τ τ+ −
= ， 

{ }1( )

max min
max ( ) ( ) , 1, 2, 1,k kb e G h G d k mα τ τ λ λ+ −= − = −L

and ( )M t is the same as that in Theorem 4. 

 

Remark 2：：：：The newly developed Theorems 4 and 5 are 

less restrictive than Theorems 1 and 2, respectively. 

Assume that (H5) holds. Then 
k

X is nonsingular, which 

implies that [ ] .
k k k

rank Y X rankX=  

Choosing 0
k n n

X
×

= ,one gets [ ]
k k

rank X X n=  



 

 

 

and 0
k k

X X× = .  Thus  we  have  that  assumption  (H5) 
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implies (H11). Furthermore, since the eigenvalues of 

1

k k
X Y−

are the same as the generalized eigenvalues 

of ( , )
k k

Y X , the 
k

r defined in Theorem 1 is the same to 

that defined by Equation (7). Hence, Theorems 4 and 5 
reduce to Theorems 1 and 2, respectively, when 
assumption (H5) holds. 

In practice, the disturbance signal is usually time-
varying. However, the assumptions in Theorems 2 and 5 
require the disturbance signal to be time-invariant. We 
now consider the finite-time stability of singular impulsive 
systems with time-varying disturbance. To do this, we 
make the following assumption: 

 

(H6 ') Signal ( )tω  is time-varying and the set S is 

defined as { }| ,0
n T

S R hω ω ω ω= ∈ ≤ ≤ , where 0h > . 

Theorem 6: Suppose (H1)-(H3), (H6') and (H11) hold, 

( ) ( ) 0
TP t P t= > and ( ) ( ) ( ) ( ) 0.

TQ t E t P t E t= ≥ Then 

System (1) is finite-time stable with respect 

to{ }1 2
, , , ( ),c c J Q t S  if there exist a constant 0α >  and 

a matrix 0
TG G= >  such that (H8) and (H12) 

1

1 max min 2
: ( ( ) ) ( )c e c G h G d c

ατ λ λ= + − ≤  (H13) For 

any 2 k m≤ ≤ we have

2
1

2

0

,
k

k i

i

c b cα α
−

−

=

+ ≤∑ where
k

r is 

defined by Equation (7), 

{ }1( )

max max
max ( ) ( ) ,k kb e G h G h

α τ τ λ λ+ −
= −

{ }1( )
max ,k k

k
a e r

α τ τ+ −
= 1, 2, , 1,k m= −L and ( )M t  is 

the same as that in Theorem 1. 
 

Proof ：：：：  Choose the Lyapunov function 

( , ( )) ( ) ( ) ( ) ( ) ( ).
T T

V t x t x t E t P t E t x t=  

Consider the situation on the interval
0 1

( , )t t τ∈ , one has: 

 

 
 ( , ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ). (8)

T T T T
Vt xt x t Mt xt t Pt Et xt x t E t Pt tω ω= + +&

       (8) 
 
From (H8), it follows that: 
 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 (9)

T T T

T T T T

T T T

x t x tM t E t P t E t E t P t

t tP t E t G

x t M t x t t P t E t x t x t E t P t t

x t E t P t E t x t t G t

α

ω ωα

ω ω

α αω ω

 −   
    

−    

= + +

− −

≤           (9) 
 
 
 
 
By Equations (8) and (9), we have: 
 
 

max

( , ( )) ( , ( )) ( ) ( )

( , ( )) ( ) . (10)

T
V t x t V t x t t G t

V t x t G h

α αω ω

α αλ

≤ +

≤ +

&

                     (10) 
 

Then, using comparison principle (Pachpatte, 1998), we 
have: 
 

 0( )

0 0 max max 0 1( , ( )) ( ( , ( )) ( ) ) ( ) ( , ). (11)
t t

V t x t e V t x t G h G h t t
α λ λ τ−

≤ + − ∀ ∈，
   (11) 

 

It follows from Equation (11) and (H12) 

that
2 2

0 1 2 0 1
( ) ( ) , ( , ).

Q Q
x t c x t c t t τ< ⇒ < ∀ ∈  

Since 
1 1

( ) ( )x xτ τ− =  and
0, 1

( ),tτ τ− ∈  Inequality (11) 

implies: 
  
 1 0( )

1 1 0 0 max max( , ( )) ( ( , ( )) ( ) ) ( ) (12)
t

V x e V t x t G h G h
α ττ τ λ λ−

≤ + −
   (12) 

 

which shows 
2 2

0 1 1 2( ) ( ) .
Q Q

x t c x cτ< ⇒ < Then 

2 2

0 1 2 0 1( ) ( ) , ( , ].
Q Q

x t c x t c t t τ< ⇒ < ∀ ∈  

We now consider the case
2 2

( , ),t τ τ∈ on which Equation 

(10) also holds. 
 
Using comparison principle again, we have: 
 

 1( )

1 1 max max 1 2( , ( )) ( ( , ( )) ( ) ) ( ) ( , ). (13)
t

V t x t e V x Gh Gh t
α τ τ τ λ λ τ τ− + +≤ + − ∀∈，

  (13) 
 
From (H1), (H11), (H13) and Lemma 3, we have: 
 

 
1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

( , ( )) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( , ( )). (14)

T T T

T T T

k k

T T

k

k

V x x E P E x

x I B E P E I B x

r x E P E x

rV x

τ τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ τ

τ τ

+ + + +
=

= + +

≤

=
          (14) 

 
Thus it follows from Inequalities (13) and (14) that: 
 

 1( )

1 1 max max 1 2( , ( )) ( ( , ( )) ( ) ) ( ) ( , ]. (15)
t

kV t x t e rV x Gh Gh t
α τ τ τ λ λ τ τ−≤ + − ∀∈，

 (15) 
 



 

 

 

By the same progress, for 2,3, , ,k m= L , we have: 

 
 1( )

max max

2
1

1 1 1

0

( , ( )) ( ( , ( )) ( ) ) ( )

( , ( ))

( , ( )) [ , ]. (16)

k k

k k k

k k

k
k i

k k

i

V t x t e rV x G h G h

aV x b

a V x b a t

α τ τ τ τ λ λ

τ τ

τ τ τ τ

+ −

−
−

+

=

≤ + −

≤ +

≤ + ∀ ∈∑ ，
                (16) 

 
 
 
 
Then by (H13), we have  

2 2

0 1 2 1( ) ( ) , ( , ].k kQ Q
x t c x t c t τ τ +< ⇒ < ∀ ∈  

This completes the proof.  
 

Remark 3：：：：It is easy to show that Theorem 6 still holds if 

the time-varying disturbance ( )tω  in system (1) is 

replaced by a bounded nonlinear function ( , )f x t  

satisfying ( , ) ( , )
Tf x t f x t h≤ . Thus Theorem 6 also 

describes a finite-time stability analysis method for a 
class of nonlinear singular impulsive systems. 
 
 
NUMERICAL EXAMPLE 
 
Consider System (1) with: 
 

1 0 1 0 0.03 2 0 1
() , () , () sin(), , (0) .

0 sin(0.05 ) 0 cos(0.05 ) 0.06 1 1 2
kEt At t t B x

t t
ω

−        
= = = = =        

− − −        
 

Let [ ] 1 2
0, 0.1 , 0.0045, 1, 2.5J h c c= = = = and 

0.05 , 1,2.
k

k kτ = =  

Since 
T

k k
B B≠  and 

1

1 0
( )

0 0
E τ

 
=  
 

 is singular, 

assumptions (H4) and (H5) do not hold. 
Furthermore, the disturbance is time-varying, which 
shows that (H6) does not hold. 
Thus Theorems 2 and 4 cannot be used in this example. 
We will use Theorem 6 to study the finite-time stability of 
the system. 

It can be seen that: the matrices ( )A t and ( )E t  are 

continuous on J ; lim
k

k
τ

→∞
= ∞ and for m = 2, it holds 

that
0 1 2

0 0.1t τ τ≤ < < ≤ ; For any 

,det( ( ) ( )) 0; ( ) ( ) .
Tt J cE t A t t t hω ω∈ − ≠ ≤% % %  Thus 

assumptions (H1)-(H3) and (H6') hold. 

 

Let , 2 , 8.P I G I α= = =  Then: 

 

2

1 1 2 22

1 0 1 0 1 0 4 01 sin(0.05) 0
, , , , () .

0 0 0 0 0 sin(0.05) 0 00 0
X Y X Y Mt

 −+       
= = = = =        
        

 

 

Choosing  
1 2

0 0 0 0
, ,

0 1 0 0
X X

   
= =   
   

 we have that 

assumption (H11) holds. 
It can be verified that; 

Zhou et al.          3349 
 
 
 

 

2

4 0 1 0

0 8sin (0.05 ) 0 sin(0.05 )
0

1 0 16 0

0 sin(0.05 ) 0 16

t t

t

− 
 

− − −  ≤
 −
 

− − 

which  

shows that (H8) holds. 
By simple 

calculation,

1 2 max1, 0, ( ) 2, 1.4918, 0.0044, 1.4963.r r G a b cλ= = = = = =

Then H(12) and H(13) hold. From Theorem 6, this system 

is finite-time stable with respect to { }1 2
, , , ( ),c c J Q t S  

with 

[ ] { }1 20,0.1 , 1, 2.5, | ( ) ( ) 0.0045
TJ c c S t tω ω ω= = = = ≤

and 
2

1 0
( ) .

0 sin (0.05 )
Q t

t

 
=  

− 
 

 
 
Conclusion 
 
This paper has investigated the finite-time stability of 
linear time-varying singular impulsive systems. New 
sufficient conditions for the system to be finite-time stable 
have been derived by a newly developed inequality and 
the well-known comparison principle. Compared with the 
existing results, the proposed methods remove some 
basic assumptions and therefore can be applied to more 
general systems. The presented numerical example has 
illustrated the obtained results. 
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