
Scientific Research and Essays Vol. 6(21), pp. 4587-4596, 30 September, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.891
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

Hybrid strategies of enumeration in constraint solving

Eric Monfroy1,4*, Broderick Crawford1,2, Ricardo Soto2,3, and Fernando Paredes5

1
Departamento de Informática, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile.

2
Pontificia Universidad Católica de Valparaíso, Chile.

3
Universidad Autónoma de Chile, Chile.

4
CNRS, LINA, Université de Nantes, France.

5
Escuela de Ingeniería Industrial, Universidad Diego Portales, Santiago, Chile.

Accepted 16 August, 2011

Enumeration strategies (that is, selection of a variable and a value of its domain) are crucial
components of Constraint Programming: they significantly influence the performances of the solving
process, sometimes of several orders of magnitude. In this paper, we propose to use Local Search in
order to help and guide enumeration: we extend the usual variable selection strategies of constraint
programming and we perform the value selection with respect to the results of some local search. The
experimental results obtained are rather promising.

Key words: Constraint programming, local search, hybridization methods, heuristic search.

INTRODUCTION

Constraint programming is a modern and powerful
programming paradigm devoted to the efficient resolution
of constraint-based combinatorial problems and
optimization problems. Apt (2003) revealed in a study the
formal description of constraint programming and
Niederlinski (2011) reported a practical introduction of
constraint logic programming. A constraint satisfaction
problem (CSP) is a formal problem representation that
mainly consists in a sequence of variables lying in a
domain (the possible values of the variable) and a set of
constraints linking these variables. The goal is to find a
complete variable-value assignment that satisfies the
whole set of constraints, and that optimizes an objective
function in case of optimization.

Constraint programming is widely used in various
application areas, such as scheduling, timetabling,
travelling salesman problem (TSP), computer graphics
for geometric coherence, conception of complex systems,
database systems to ensure and/or restore data
consistency.

*Corresponding author. E-mail: ericmonfroy@gmail.com.

Abbreviations: CSP, Constraint satisfaction problem; LS, local
search; TSP, travelling salesman problem.

Systematic backtracking enhanced with pruning of the
search space by local consistency enforcement has been
successfully applied to combinatorial problems for
decades. One of the main advantages of these
techniques is their completeness: if the problem has a
solution they find it, and they give a proof when there is
no solution. However, they do not always scale well for
large problems.

Incomplete methods, such as local search (LS) (Hoos
and Stützle, 2004) or genetic algorithm (Michalewicz,
1998) explore some "promising" parts of the search
space with respect to specific heuristics. These
techniques are incomplete, but they scale better to large
problems.

Constraint propagation based solvers (CP) (Apt, 2003)
are complete methods designed to solve constraint
satisfaction problems (CSP). They are based on a search
tree structure and they proceed by interleaving
enumeration phases and constraint propagation phases.
Constraint propagation prunes the search tree by
eliminating values that cannot participate in a solution:
hence, they reduce the search space. Enumeration is in
charge of branching: it creates one branch by
instantiating a variable with a value of its domain ()
and another branch () which is used for
backtracking when the first branch does not lead to any
solution.

4588 Sci. Res. Essays

Every enumeration strategy which preserves solutions is
valid (for example, first-fail, max-occurrence, brelaz, etc.).
However, they have a significant impact on solving
efficiency: there can be a factor of several magnitudes of
execution time between two strategies. Moreover, it is
well known that there is no universal strategy being the
best (or one of the best) in terms of efficiency for all
problems, that is, no free lunch theorems (Wolpert and
Macreacdy, 1997). Numerous studies have been
conducted about enumeration strategies (Beck et al.,
2004), or sometimes for specific classes of problems,
sometimes for genericity (Caseau and Laburthe, 1994).

A common idea to get more efficient and robust
algorithms consists in combining several resolution
paradigms in order to take advantage of their respective
assets. Such combinations are now well recognized and
they have been more and more studied during the last
years by several communities, including the constraint
programming community. Considering that very efficient
constraint solvers are currently available, the challenge is
to make them cooperate in order to:

1. Get better solution, either in terms of solution quality
(a better optimum closer to the global optimum can be
reach by combining various optimization systems) or in
terms of types of solutions, for example, when there are
numerous solutions.
2. Provide a solution that better suits the user (that is,
when there are numerous solutions, provide a solution
closer/similar to the solution that would give an expert of
the domain).
3. Improve solving efficiency (power of the solver) and
solving time (speed of the solver).
4. Tackle and solve more problem classes, for example,
solve hybrid problems (with different types of domains for
variables and different types of constraints) that could not
be solved by a unique solver.

Hybridizations of CP and LS (Focacci et al., 2002;
Wallace, 2005; Wallace and Schimpf, 2002) are now
more and more studied in the constraint programming
community. Our approach is influenced by the works
described in previous studies (Mazure et al., 1998;
Wallace and Schimpf, 2002). However, these works
address SAT problems whereas we consider finite
domains (that is, finite sets of integers), and thus
algorithms and strategies are very different. Hulubei and
O’Sullivan (2005) reported about the importance of the
enumeration strategy for the heavy-tailed behaviour
which characterizes problems very sensitive to the
enumeration strategies.

In this paper, we propose a Master/Slave hybridization:
Local search guides the search by helping and improving
selections of variables and values for enumeration. Our
goal is to design a solving process in which enumeration
strategies (and more especially variable selection) impact
less solving efficiency. In other terms, we want to avoid

that a “bad” variable assignment and thus, a bad variable
selection that drastically reduces efficiency, without
penalizing a “good” selection strategy. Consequently, we
also want to avoid heavy-tailed behavior phenomenon.
The idea is thus to reduce the effect that could have a
bad strategy selected by the user when this one does not
know which strategy is the best adapted (or well adapted)
to his problem.

The technique we use thus consists in improving
standard enumeration strategies. Local search is
performed before each enumeration of the solving
process in order to improve standard variable selection
strategies (for example, first-fail) by requesting some
properties of variables (for example, not conflicting
variables with respect to a local search) and to provide a
value for the selected variable (for example, with respect
to the evaluation function of the local search).

Thus, for each enumeration phase, LS is run on a
different problem, that is, the problem that remains after
1) removing variables that have been instantiated during
the constraint propagation phase (either by enumeration
or propagation), 2) removing instantiated constraints (for
example, constraint such that each variable of the
constraint has been instantiated before) that are satisfied
by these assignments, 3) and after reducing the domains
of variables during the various propagation phases that is
previously achieved.

Obviously, it can also happen that LS solves the
remaining problem. Note that our algorithm is still
complete. The experimental results we obtained with our
prototype implementation are promising.

MOTIVATIONS AND BACKGROUND

A CSP is defined by:

• a set of variables

• a set of possible values for each

variable , that is, the domain of ,

• And a set of constraints. .

A solution is an instantiation of all the variables satisfying
all the constraints.

Constraint propagation based solvers

Systematic backtracking (based on a search tree
structure) is used in many constraint solvers. This method
is complete, and can be combined with constraint
propagation, a technique for pruning the search space.
However, due to the combinatorial aspect of the
problems, and thus of the search tree, it often behaves
poorly for large combinatorial problems. Constraint
propagation based solvers can be described by the
generic algorithm of Algorithm 1 (Apt, 2003). They

Monfroy et al. 4589

Figure 1. 10-Queen problem solved with 3 standard enumeration strategies.

interleaved propagation phases with split/enumeration
steps. Propagation reduces the search space by
removing values of variables that cannot participate to a
solution of the CSP.

A split cuts a CSP into several CSPs , such that the
union of solutions of the is equal to the solutions of .
In other words, a split preserves the solutions of the initial
CSP. Each differs from in that the split domain is
replaced by a smaller domain. The two main classes of
split strategies are:

1. Segmentation: split a domain into 2 (leading to a
binary tree) or several (leading to an n-ary tree).
2. And enumeration: split a domain into one value
(assignment of the variable to this value) and the rest of
the domain (the variable must be different from this
value).

In the following, we focus on enumeration. The search
function of Algorithm 1 manages the choice points (that
is, sub-CSPs created by split) by doing recursive calls to
the SOLVE algorithm: it may define searches such as

depth first, or breadth first search; it can enforce finding
one solution or all solutions; or can manage optimization
or satisfaction. Finished is a Boolean set to true when the
problem is either solved or not satisfiable.

The impact of enumeration

Figure 1 show 3 search trees for the resolution of the 10-
queen problem (for example,
http://en.wikipedia.org/wiki/Eight_queens_puzzle for a
description of the problem) with 3 different enumeration
strategies. The first strategy (Figure 1, up-left) directly
goes to a solution (6 enumerations, no backtrack): thus
the tree is only composed of one branch. The second one
(Figure 1, up-right), after a bad choice for the second
enumeration (generating 17 backtracks), reaches a
solution. The last strategy (Figure 1, down) performs
numerous wrong choices (807 backtracks) before
reaching a solution. Obviously strategies have drastically
different efficiencies, often several orders of magnitude,
and thus it is crucial to select a good one that

4590 Sci. Res. Essays

unfortunately cannot be predicted in the general case.

Local search (LS)

While complete methods can prove that a problem is not
satisfiable (exhaustive exploration of the search space),
incomplete methods will be ineffective in that case.
However, they scale very well to large applications since
they mainly rely on heuristics providing a more efficient
exploration of interesting areas of the search space. This
class of methods (called metaheuristics) covers a wide
panel of paradigms from evolutionary algorithms to local
search techniques (Michalewicz, 1998; Hoos and Stützle,
2004) on which we focus in the following.

LS techniques usually aim at solving optimization
problems as shown in Hoos and Stützle (2004). In the
context of constraint satisfaction, these methods
minimize the number of violated constraints to find a
solution of the CSP. A local search algorithm (Algorithm
2), starting from an initial configuration , explores the
search space by a sequence of moves. At each iteration,
the next move corresponds to the choice of one of the so-
called neighbors of . This neighborhood often
corresponds to small changes of the current
configuration. Moves are guided by a fitness function (
on Algorithm 2) which evaluates their benefit from the
optimization point of view, in order to reach a local
optimum. The algorithm stops (Boolean finished) when a
solution is found or when a maximum number of
iterations is reached. The current optimum is stored in the
variable which is updated when the new configuration
is better than the previous one with respect to the fitness
function.

Hybridizing CP and local search (LS)

A common idea to get more efficient algorithms consists
in combining resolution paradigms (Focacci et al., 2002;
Wallace and Schimpf, 2002; Wallace, 2005). Such
combinations are more and more studied in the constraint
programming community, mainly for combining CP with
LS or genetic algorithms. Hybridizations have often been
tackled through a Master/Slave like management, and
are often related to specific problems or class of
problems. Among Master/Slave approaches in which CP
is the master are, local probing (Kamarainen and
Sakkout, 2004), selecting variables by LS (Mazure et al.,
1998), S for improving partial assignment (Caseau and
Laburthe, 1994; Prestwich, 2000), LS for guiding the
backtrack (Prestwich, 2001).

Generally, when LS is considered as the master, CP is
used to improve the quality or the size of the
neighborhood (Jussien and Lhomme, 2002). Other
techniques sacrifice completeness. Numerous works also
consider sequential or parallel hybridization of black-box

solvers Castro C (Monfroy, 2004). Few works focus on
generic hybrid solvers or hybrid frameworks (Monfroy et
al., 2005).

LOCAL SEARCH (LS) GUIDED ENUMERATION IN A
CP SOLVER

We are interested in making good choices for
enumeration, i.e., selection of a variable and a value. Our
idea is the hybridization LS helping CP for enumerations.
There exist numerous enumeration strategies for CP, and
some are known to be efficient for some problems. We
thus focus on improving these strategies, keeping their
own qualities. Let us illustrate this on an example. One
standard strategy, the first-fail, selects the variable with
the smallest domain, and instantiates it with the first value
of its domain. In our hybrid solver, we run a LS before
enumeration. A possible modification of the first-fail is to
select the smallest variable which is not in conflict in LS,
and to assign it the tentative value given by the LS.

The hybrid algorithm

We designed a Master/Slave hybridization (Algorithm 3)
in which a LS guides enumeration in CP to quickly find a
solution: a LS is performed before each enumeration to
find information about variables and their tentative values.
The exploration of the search tree is a depth-first left-first
search. The "while loop" of the generic algorithm does not
exist anymore since we are looking for one solution. The
selec_enumeration function is the key point: not only it is
based on criteria for variable and value selection, but also
on the result of the LS, that is, the tentative values
Tentative_Val of the variables. Tentative values are the
result of the search made by LS that maximized the
fitness function that is, in this case, the number of
violated constraints. A LS finds tentative values for the
non instantiated variables of the CSP considering that
values assigned by previous enumeration and
propagation are correct: a LS does not reconsider
previous work (propagation and instantiation); this task is
left to the CP solver that will backtrack when it detects
insatisfiability of the CSP.

Let us fix first some notions. A variable can only be
instantiated by propagation or enumeration, but never by
LS itself. A tentative value is a value given by LS to a
variable which has not yet been instantiated; this value
must be an element of the domain of the variable; we
denote it . A tentative CSP is a CSP in which
variables which do not have yet a value are given a
tentative value. A conflicting constraint is a constraint
which cannot be satisfied with the values and tentative
values of the variables it contains. Consider the following
CSP: .

• 3 is the value of given by enumeration or

propagation.

• 4 is the tentative value given to by the last LS.

• The constraint is a conflicting constraint.

A possibly conflicting variable (conflicting variable in
short) is a not yet instantiated variable that appears in a
conflicting constraint. Note that the tentative value of this
variable may participate in a solution. Consider the CSP
given by and the tentative
values, . is a conflicting variable since it
appears in which is a conflicting constraint.
However, a solution of the CSP is .

The local search (LS) algorithm

We use a descent algorithm for LS: we only consider
improving (in terms of the evaluation function) neighbors
when moving. Moreover, we do not consider all the
neighbors to select the best improving neighbor, but we
selected the first improving neighbor. Diversification is
achieved by restarting the algorithm (that is, a loop
around the algorithm of Algorithm 2). The result of the LS
is thus a local optimum, the best configuration w.r.t. the
evaluation function.

A configuration consists in giving a tentative value to
each non instantiated variable of the CSP. The size of
configurations thus changes at each LS since the number
of non instantiated variables varies w.r.t. to enumerations,
propagations, and backtrackings. The algorithm is as
much generic as can be. It is parameterized by:

1. , a function to compute the maximum
number of iterations in a search;
2. a function to compute the maximum
number of restarts, that is, the maximum number of local
searches to be performed;
3. , a fitness/evaluation function to estimate
configurations,
4. , a neighborhood function to compute
neighbors of configurations.

We now present some of our functions. This list is not
exhaustive, and some more functions can be designed.

 and are functions based on the
number of variables and constraints. For example,
functions such as where is a given integer and

 is the number of non instantiated variables can
implement and .

The evaluation function is based on the constraints, the
variables, their current domains, and/or their number of
occurrences in the CSP. Thus, possible functions are

 (the number of conflicting constraints),
(the number of conflicting variables), or functions such as

 defined by
 where is a set of

conflicting variables, and is a function that returns

Monfroy et al. 4591

the number of values in the domain of a variable.
Functions such as give more importance to
some variables for evaluation (the ones with small
domains for) in order to be combined with
some variable selection strategies of the CP algorithm
(for example, a first-fail variable selection strategy in the
case of). We thus have a set of evaluation
functions to privilege (or un-privilege) the variables with
the smallest domain, with the largest domain, the
variables having more occurrences, etc. We do not detail
these other functions, their principle being similar to

. These functions return 0 when the tentative
CSP is solved.

The neighborhood functions aim at finding an improving
neighbor. A neighbor is computed by changing the
tentative value of variables. is either a given integer,
or the result of a function based on the number of
variables (such as). There are
several criteria to select the variables to be changed:
randomly, a randomly selected conflicting variable, and a
family of functions based on the domain size and/or
occurrences of variables (criteria similar to the criteria of
the evaluation function). For these last functions, a higher
probability is given to the variables we want to privilege.
The new tentative value is a randomly selected value of
the domain of the variable.

Let us illustrate it for the neighborhood
function which gives more probability to change the value
of a variable with a small domain. To this end, we
construct a list of pairs where

 are variables, and are consecutive intervals of width

 defined by:

And

Then, a random real number between 0 and
 is generated, and the selected variable

is the one which interval contains, . Note that
 is defined the same way, but it only

considers conflicting variables. We do not detail the other
neighborhood functions based on smallest/largest
domain, number of occurrences since they are built the
same way as . A LS strategy is thus a
combination of the 4 parameters (that is, functions)
described above.

Strategies of enumeration

The enumeration strategies are a combination of a

4592 Sci. Res. Essays

Table 1. n-queens problem with various strategies and hybrid strategies.

 10 - queens 20 - queens 25 - queens 50 - queens

t e t e t e t e

first 0.02 16 44.69 22221 13.05 4508 - -

S1 0.051 15.01 0.473 51.57 0.937 73.31 12.17 702

S4 0.055 15.39 0.519 52.07 1.121 87.33 8.68 252.07

ff 0.02 13 0.09 40 0.20 68 2.78 506

S6 0.039 13.301 0.384 33.43 0.662 41.58 4.81 84.91

S14 0.043 13.60 0.385 33.23 0.639 37.51 5.41 114.14

S15 0.043 13.48 0.383 31.20 0.648 35.31 5.22 100.93

S16 0.04 13.00 0.401 33.44 0.624 32.64 4.39 65.76

S23 0.073 12.80 0.578 29.79 1.082 40.095 7.584 67.38

S35 0.084 12.56 0.576 25.66 1.045 33.56 7.822 77.08

S36 0.082 11.25 0.620 27.30 1.022 29.73 7.025 50.48

S42 0.101 7.85 0.790 15.51 1.427 20.26 10.627 33.78

variable selection criterion and a value selection criterion.
We consider standard variable selection criteria of CP
that we can refine using the result of the LS, for example,
selecting variables that are not conflicting in the LS. Here
are some of the variable selection criteria:

1. selects the first variable (resp. the first non
conflicting variable) occurring in the CSP;
2. : the first non conflicting variable occurring in
the CSP;
3. the variable with the smallest domain;
4. the non conflicting variable with the
smallest domain;
5. : the variable with the largest number of
occurrences in constraints;
6. : The non conflicting variable with the
largest number of occurrences in constraints.

The value selection totally relies on the result of the LS:
the tentative value (in the result of LS) of the variable is
selected. A hybrid strategy is thus the combination of 6
parameters: the value selection criterion, the variable
selection criterion, the function to compute the numbers
of iterations, the function to compute the number of
restarts, the evaluation function and, and the
neighborhood function.

RESULTS

Our prototype implementation has been written with the
ECLiPSe Constraint Programming System (Schimpf and
Shen, 2010) using finite domain libraries for constraint
propagation and the repair library which significantly
eased the handling of tentative values in LS.

We did not try to optimize the code. Instead, we kept it
as open and parameterized as possible to allow various

hybrid strategies. In the same way, we did not specialize
the LS for specific problems, although it is well known
that generic LS generally behaves poorly. The tests were
run on a Athlo 3000+ with 1Go of RAM. For each test we
performed 1000 runs and we present the average result.

Experimentations

Table 1 shows the results of several strategies for some
instances of the n-queen problem. We use a standard
model of the problem, as can be found in the examples of
ECLiPSe. The all different global constraint is duplicated
into the pair-wise differences of all variables
(). Hence, the pruning is more powerful

using the global constraint, and the LS can better count
conflicting constraints using the difference constraints
().

A column represents a problem instance; a row is the
performance of a strategy for the various instances; t is
the average CPU time (over 1000 runs) in seconds and e
the average (due to the random aspects of the LS)
number of enumerations (both "good" enumerations that
lead to a solution, and "bad" ones that enforced
backtrack). We only consider one LS, that is there is no
restart, and the neighborhood function changes the value
of one variable. The enumeration strategies appearing in
Table 1 are defined as follows:

first: pure CP strategy,

• selection of variable: , that is, the first variable in
the order of appearance in the CSP

• selection of value: smallest value of the domain
S1: hybrid strategy,

• selection of variable:

• selection of value: tentative value of this variable
computed by the LS defined by:
o evaluation function: , that is, number of
conflicting constraints
o neighborhood function: , that is, change of a
conflicting variable
o size of the LS: , that is, twice the
number of variables in the CSP

S4: hybrid strategy,

• selection of variable: , that is, the first non
conflicting variable

• selection of value: tentative value of the LS:
o evaluation function: that is, number of
conflicting variables
o neighborhood function:
o size of the LS:

ff: pure CP strategy,

• selection of variable: , that is, the first
variable with the smallest domain

• selection of value: smallest value of the domain

S6: hybrid strategy,

• selection of variable:

• selection of value: tentative value of the LS:
o evaluation function:
o neighborhood function: , that is, randomly selects a
conflicting variable and gives it a value randomly chosen
in its domain to create a neighbor
o size of the LS:

S14: hybrid strategy,

• selection of variable: , that is, the first non
conflicting variable with the smallest domain

• selection of value: tentative value of the LS:
o evaluation function:
o neighborhood function:
o size of the LS:

S15: hybrid strategy,

• selection of variable:

• selection of value: tentative value of the LS:
o evaluation function:
o neighborhood function:
o size of the LS:

S16: hybrid strategy,

• selection of variable:

• selection of value: tentative value of the LS:

Monfroy et al. 4593

o evaluation function:
o neighborhood function: , that is, gives
more probability to change the value of a conflicting
variable with a small domain
o size of the LS:

S23: hybrid strategy,

• selection of variable:

• selection of value: tentative value of the LS:
o evaluation function:
o neighborhood function:
o size of the LS:

S35: hybrid strategy,

• selection of variable:

• selection of value: tentative value of the LS:
o evaluation function:
o neighborhood function:
o size of the LS:

S36: hybrid strategy,

• selection of variable:

• selection of value; tentative value of the LS:
o evaluation function:
o neighborhood function:
o size of the LS:

S42: hybrid strategy,

• selection of variable:

• selection of value: tentative value of the LS:
o evaluation function:
o neighborhood function:
o size of the LS:

We first compare strategies based on the criterion:
variable to enumerate are selected in the order of
appearance in the CSP. is the pure CP strategy
(without LS): the smallest value of the domain of the
selected variable is chosen for enumeration. S1 and S4

are hybrid strategies. S1 is also based on a criterion
for variable selection; the selected value is the tentative
value of the result of the LS like for each of our hybrid
strategies. The evaluation function counts the number of
conflicting constraints (). The neighborhood
change a conflicting variable (). The size of the
LS is twice the number of variables in the problem. S4
differs in that the first non conflicting variable is selected
for enumeration (), and the evaluation function is
the number of conflicting variables (). Both S1
and S4 show very good results compared to , both in
CPU time and number of enumerations. We don’t have
the results for 50-queens for the pure CP strategy:

4594 Sci. Res. Essays

for 30-queens, more than 4.000.000 enumerations are
already required.

All the other strategies (ff and S6 to S42) are based on

a variable criterion. ff is the pure CP strategy:
enumeration with the smallest value of the domain of the
variable with the smallest domain. S6 and S23 also select
the variable with smallest domain, whereas S14, 15, 16,
35, 36, and 42 select the non conflicting variable with the
smallest domain. We can see with these strategies that it
tends to be better to select a non conflicting variable.

The evaluation function for each S14, 15, 16, 35, 36, 42
is the number of violated constraints. With respect to
other tests we performed for n-queens, it seems that
using an evaluation function based on the size of the
domain (such as) slightly reduces the
number of enumerations but also slightly increases the
CPU time.

For S14,15,16,35,36,42, the number of iterations is

, where for S14,15,16,
for S23,35,36, and for S42. We can see that when

 increases, the number of enumerations decreases, and
the CPU time increases (due to the overhead of the
longer LS). Increasing is more profitable for larger
problems, such as 100-queens.

In S14,23,35, the neighborhood function selects
randomly a variable to change its value to create a
neighbor; in S6,15,36 it is a random conflicting variable

whose value is changed; in S16, gives
more probability to change the value of a variable with a
small domain (this is coherent with the

selection of variable for enumeration). The
difference between S14,15,16 is only the neighborhood
function: similarly to the other tests we made, it tends that
it is slightly worth (in terms of enumerations, and CPU
time) having more clever neighborhood functions based
on conflicting variables and probabilities with respect to
the size of the domains of the variables.

The advantage of the hybrid strategies over the pure
CP strategy is in terms of enumerations,
lesser enumerations are required to solve the problems.
But this is at the cost of CPU time, however, the larger
the instances and the smaller the difference of time.
Moreover, the overhead could be significantly reduced
(and erased in most of the case) with a better
implementation of the LS algorithm: recall that we did not
specialized it, and let it open and parameterized with
numerous functions in order to be able to perform some
tests on other types of problems, with other evaluation
functions, neighborhood functions, etc.

DISCUSSIONS

We tested the same strategies on several instances of
the Latin square problem (for example,
http://en.wikipedia.org/wiki/Latin).

The comments are the same as for n-queens: all the
hybrid strategies improve the number of enumerations.

The differences between the hybrid strategies are a bit
more pronounced, but the main differences are coming
from the length of the search.

Only S42 behaves differently: it is from far the best
strategy in terms of enumerations (for example, less than
half the number of enumerations for Latin-10), but also
the slowest one (2 to 3 times slower than other strategies
for Latin-15). S42 is the strategy that performs the
longest LS: this explains the good enumeration. But the
overhead is not sufficient to explain the very slow run and
we could not find any explanation for it.

The magic sequence problem
(http://delphiforfun.org/programs/MagicSequence.htm)
does not show the interest of hybrid strategies: on
average, the hybrid strategies do not improve the number
of enumerations for the magic sequence problem.
However, the overhead is negligible. This is due to the
solution for sequences of
size and the pruning of the occurrence global
constraint: quickly, most of the domains are reduced to

 and whatever enumeration strategy performs well.
Thus, guiding the search with, a local search does not
help much.

We were surprised that on average, all the hybrid
strategies show quite similar performances. Only the
length of the LS has a significant impact: the longer the
LS, the lesser enumerations, but at the cost of CPU time.
However, it seems that integrating criteria (such as,
domain size) in the neighborhood and evaluation
functions pays in term of enumeration and is not too
costly in time.
As expected the hybrid strategies reduce the number of
enumeration. This is due to the fact that better
enumerations are found using a kind of probing (the LS),
and that from times to times, it also happens that the
probing (the LS) finds a solution; most of the time, this
phenomenon happens at the bottom of the search tree,
when there remain few variables to be instantiated.

We observed the standard deviation and variance of
the number of enumerations and of the CPU time: the
shorter is the LS, the larger is the variance. It could be
interesting to study more deeply this deviation to classify
hybrid strategies for some practical use. Indeed, when
one has to solve few problems, it can be more useful to
have a strategy which is maybe a bit worse in average
but that has a smaller deviation/variance; this way, runs
would be more homogeneous without bad runs. When
one has to solve numerous problems, we think a strategy
with a smaller average (even with a large variance) is
well suited:

1. First, the time lost in the long runs is partially erased
by the average on numerous problems.
2. But also, one could give a time out; a run exceeding
this time out would be stopped and tried again with
another strategy (preferably one having a worse average,
but having a smaller variance).

In our experimental results, the difference (in terms of

enumeration and time) between our hybrid strategies is
less noticeable than between the pure CP strategies. For
example, there are several orders of magnitude between
the first and first-fail strategies in the n-queens. Moreover,
our hybrid strategies are better (enumeration and time)
than the pure first one, and close (better for
enumerations, worse in time due to the non specialized
implementation of LS, but less than an order of
magnitude) to the one.

Thus, if one does not know which strategy is adapted to
his problem, it is convenient to select an hybrid one: it will
either gives good performance, or acceptable
performance with respect to the best strategy. Moreover,
the LS implementation can significantly be improved to
reduce and even erase the overhead of the hybrid
strategies.

CONCLUSION

In this paper, a hybrid (and complete) solver that uses a
hybrid enumeration strategy, that is, LS to guide the
enumeration process was presented. Our technique is
rather simple to integrate in a constraint programming
system, and the first experimental results are rather
promising. In a study by Mazure et al. (1998) a GSAT-like
procedure guides the branching of logically-complete
algorithms based on Davis and Putnam’s like techniques.
Although, this could be seen as similar to our technique,
this happen in the context of SAT, and the heuristics and
algorithms (both the complete and incomplete ones) are
quite different.

Wallace and Schimpf (2002) also reports about a
repair-based algorithm, GSAT, combined with a
constructive algorithm using propagation. At each node of
the search tree, GSAT is run on all variables in order to
choose which variable to enumerate. Our work is close to
this algorithm since the systematic backtracking
techniques are both enhanced with propagation.
However, Wallace and Schimpf (2002) addresses SAT
problems, and thus the enumeration strategies, and the
incomplete techniques are also quite different. From
some aspects, in the local probing of Kamarainen and
Sakkout (2004), LS helps in selecting variables. However,
the key idea is that LS creates assignments, and CP
modifies the sub-problem that LS is solving in order to
guide it to search method where solutions can be found.

Although, we did not see the heavy-tailed behavior
(Hulubei and O’Sullivan, 2005) in our runs and tests,
more observations are needed to determine whether we
definitively avoided it. We plan to improve the
implementation of our LS algorithm in order to reduce or
even erase the overhead given by the hybrid strategies.
We think of refining the notions of neighborhood and
evaluation to integrate some constraints of the model in
these functions, that is, to obtain a generic LS which can
adapt itself to some specific constraints of the problem.

Monfroy et al. 4595

We plan to extend our hybridization to optimization and
perform some tests with other enumeration strategies.

REFERENCES

Apt KR (2003). Principles of Constraint Programming. Cambridge

University Press.
Beck JC, Prosser P, Wallace R (2004). Variable Ordering Heuristics

Show Promise. In Proceedings of CP’2004, LNCS, 3258: 711-715.
Caseau Y, Laburthe F (1994). Improved clp scheduling with task

intervals. In Proceedings of ICLP’1994, pages, MIT Press, pp. 369-
383.

Castro C, Monfroy E (2004). Designing hybrid cooperations with a
component language for solving optimization problems. In
Proceedings of AIMSA'2004, volume LNSC, Springer, 3192: 447-458

Focacci F, Laburthe F, Lodi A (2002). Local search and constraint
programming. In Handbook of Metaheuristics, volume 57 of
International Series in Operations Research and Management
Science. Kluwer Academic Publishers.

Hoos H, Stützle T (2004). Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann, San Francisco (CA), USA.

Hulubei T, O’Sullivan B (2005). Search heuristics and heavy-tailed
behaviour. In Proceedings of CP’2005, LNCS, Springer, 3709: 328-
342.

Jussien N, Lhomme O (2002). Local search with constraint propagation
and conflict-based heuristics. Artif. Intell., 139(1): 21-45.

Kamarainen O, Sakkout H (2004). Local probing applied to network
routing. In Proceedings of CPAIOR'2004, LNCS, Springer, 3011: 173-
189.

Mazure B, Sais L, Grégoire E (1998). Boosting complete techniques
thanks to local search methods. Annals of Mathematical Artif. Intell.,
22(3-4): 319-331.

Michalewicz Z (1998). Genetic Algorithms + Data Structures = Evolution
Programs. Springer.

Monfroy E, Saubion F, Lambert T (2005). Hybrid csp solving. In
Proceedings of FroCos'2005, LNCS, Springer. Invited, 3717: 138-
167.

Niederlinski A (2011). A Quick and Gentle Guide to Constraint Logic
Programming via ECLiPSe (also available through
http://www.anclp.pl/).

Prestwich S (2000). A hybrid search architecture applied to hard
random 3-sat and low-autocorrelation binary sequences. In
Proceedings of CP’2000, LNCS, Springer, 1894: 337-352.

Prestwich S (2001). Local search and backtracking vs non-systematic
backtracking. In Proceedings of AAAI'2001, Fall Symposium on Using
Uncertainty within Computation, pp. 109-115. AAAI Press. Also
Technical Report FS-01-04.

Schimpf J, Shen K (2010). ECLiPSe - from LP to CLP. To appear in
Theory and Practice of Logic Programming - Special issue on Prolog
systems, Preprint ar 14: 1012.4240v1.

Wallace M (2005). Hybrid algorithms, local search, and Eclipse. CP

Summer School 05. http://www.math.unipd.it/ frossi/cp-

school/wallace-lec_notes.pdf.
Wallace M, Schimpf J (2002). Finding the right hybrid algorithm - a

combinatorial meta-problem. Ann. Math. Artif. Intell., 34(4): 259-269.
Wolpert DH, Macreacdy WG (1997). No Free Lunch Theorems for

Optimization. IEEE Trans. Evol. Comput. 1(1): 67-87.

4596 Sci. Res. Essays

Algorithm 1: A Generic SOLVE algorithm.

WHILE not finished

constraint propagation

IF not finished THEN

select an enumeration

apply

search

Algorithm 2. A generic local search algorithm.

choose (an initial configuration)

 (record the best configuration)

WHILE not finished DO

choose a neighbour of

 (move to)

 if

Algorithm 3. A Depth-First Left-First hybrid SOLVE algorithm for
finding ONE solution.

solve(CSP)

CSP’ ← constraint_propagation(CSP)

IF solution(CSP’) OR failed(CSP’)

THEN RETURN(CSP’)

ELSE

Tentative_Val ← LS(CSP’)

(Var,Val)← select_enumeration(CSP’,VarCrit,ValCrit, Tenta-
tive_Val)

RES ← solve(CSP’ ∧ Var=Val)

IF failed(RES)

THEN solve(CSP’ ∧ Var Val)

ELSE RETURN(RES)

