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Enumeration strategies (that is, selection of a variable and a value of its domain) are crucial 
components of Constraint Programming: they significantly influence the performances of the solving 
process, sometimes of several orders of magnitude. In this paper, we propose to use Local Search in 
order to help and guide enumeration: we extend the usual variable selection strategies of constraint 
programming and we perform the value selection with respect to the results of some local search. The 
experimental results obtained are rather promising. 
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INTRODUCTION 
 
Constraint programming is a modern and powerful 
programming paradigm devoted to the efficient resolution 
of constraint-based combinatorial problems and 
optimization problems. Apt (2003) revealed in a study the 
formal description of constraint programming and 
Niederlinski (2011) reported a practical introduction of 
constraint logic programming. A constraint satisfaction 
problem (CSP) is a formal problem representation that 
mainly consists in a sequence of variables lying in a 
domain (the possible values of the variable) and a set of 
constraints linking these variables. The goal is to find a 
complete variable-value assignment that satisfies the 
whole set of constraints, and that optimizes an objective 
function in case of optimization. 

Constraint programming is widely used in various 
application areas, such as scheduling, timetabling, 
travelling salesman problem (TSP), computer graphics 
for geometric coherence, conception of complex systems, 
database systems to ensure and/or restore data 
consistency.  

 
 
 
*Corresponding author. E-mail: ericmonfroy@gmail.com. 

 
Abbreviations: CSP, Constraint satisfaction problem; LS, local 
search; TSP, travelling salesman problem.  

Systematic backtracking enhanced with pruning of the 
search space by local consistency enforcement has been 
successfully applied to combinatorial problems for 
decades. One of the main advantages of these 
techniques is their completeness: if the problem has a 
solution they find it, and they give a proof when there is 
no solution. However, they do not always scale well for 
large problems. 

Incomplete methods, such as local search (LS) (Hoos 
and Stützle, 2004) or genetic algorithm (Michalewicz, 
1998) explore some "promising" parts of the search 
space with respect to specific heuristics. These 
techniques are incomplete, but they scale better to large 
problems. 

Constraint propagation based solvers (CP) (Apt, 2003) 
are complete methods designed to solve constraint 
satisfaction problems (CSP). They are based on a search 
tree structure and they proceed by interleaving 
enumeration phases and constraint propagation phases. 
Constraint propagation prunes the search tree by 
eliminating values that cannot participate in a solution: 
hence, they reduce the search space. Enumeration is in 
charge of branching: it creates one branch by 
instantiating a variable with a value of its domain ( ) 
and another branch ( ) which is used for 
backtracking when the first branch does not lead to any 
solution. 
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Every enumeration strategy which preserves solutions is 
valid (for example, first-fail, max-occurrence, brelaz, etc.). 
However, they have a significant impact on solving 
efficiency: there can be a factor of several magnitudes of 
execution time between two strategies. Moreover, it is 
well known that there is no universal strategy being the 
best (or one of the best) in terms of efficiency for all 
problems, that is, no free lunch theorems (Wolpert and 
Macreacdy, 1997). Numerous studies have been 
conducted about enumeration strategies (Beck et al., 
2004), or sometimes for specific classes of problems, 
sometimes for genericity (Caseau and Laburthe, 1994). 

A common idea to get more efficient and robust 
algorithms consists in combining several resolution 
paradigms in order to take advantage of their respective 
assets. Such combinations are now well recognized and 
they have been more and more studied during the last 
years by several communities, including the constraint 
programming community. Considering that very efficient 
constraint solvers are currently available, the challenge is 
to make them cooperate in order to: 

 
1. Get better solution, either in terms of solution quality 
(a better optimum closer to the global optimum can be 
reach by combining various optimization systems) or in 
terms of types of solutions, for example, when there are 
numerous solutions. 
2. Provide a solution that better suits the user (that is, 
when there are numerous solutions, provide a solution 
closer/similar to the solution that would give an expert of 
the domain).  
3. Improve solving efficiency (power of the solver) and 
solving time (speed of the solver).  
4. Tackle and solve more problem classes, for example, 
solve hybrid problems (with different types of domains for 
variables and different types of constraints) that could not 
be solved by a unique solver. 

 
Hybridizations of CP and LS (Focacci et al., 2002; 
Wallace, 2005; Wallace and Schimpf, 2002) are now 
more and more studied in the constraint programming 
community. Our approach is influenced by the works 
described in previous studies (Mazure et al., 1998; 
Wallace and Schimpf, 2002). However, these works 
address SAT problems whereas we consider finite 
domains (that is, finite sets of integers), and thus 
algorithms and strategies are very different. Hulubei and 
O’Sullivan (2005) reported about the importance of the 
enumeration strategy for the heavy-tailed behaviour 
which characterizes problems very sensitive to the 
enumeration strategies. 

In this paper, we propose a Master/Slave hybridization: 
Local search guides the search by helping and improving 
selections of variables and values for enumeration. Our 
goal is to design a solving process in which enumeration 
strategies (and more especially variable selection) impact 
less solving efficiency. In other terms,  we  want  to  avoid  

 
 
 
 
that a “bad” variable assignment and thus, a bad variable 
selection that drastically reduces efficiency, without 
penalizing a “good” selection strategy. Consequently, we 
also want to avoid heavy-tailed behavior phenomenon. 
The idea is thus to reduce the effect that could have a 
bad strategy selected by the user when this one does not 
know which strategy is the best adapted (or well adapted) 
to his problem. 

The technique we use thus consists in improving 
standard enumeration strategies. Local search is 
performed before each enumeration of the solving 
process in order to improve standard variable selection 
strategies (for example, first-fail) by requesting some 
properties of variables (for example, not conflicting 
variables with respect to a local search) and to provide a 
value for the selected variable (for example, with respect 
to the evaluation function of the local search). 

Thus, for each enumeration phase, LS is run on a 
different problem, that is, the problem that remains after 
1) removing variables that have been instantiated during 
the constraint propagation phase (either by enumeration 
or propagation), 2) removing instantiated constraints (for 
example, constraint such that each variable of the 
constraint has been instantiated before) that are satisfied 
by these assignments, 3) and after reducing the domains 
of variables during the various propagation phases that is 
previously achieved. 

Obviously, it can also happen that LS solves the 
remaining problem. Note that our algorithm is still 
complete. The experimental results we obtained with our 
prototype implementation are promising. 
 
 
MOTIVATIONS AND BACKGROUND 
 
A CSP is defined by: 
 

• a set of variables   

• a set of possible values for each 

variable , that is, the domain of ,  

• And a set of constraints. . 
 
A solution is an instantiation of all the variables satisfying 
all the constraints. 
 
 
Constraint propagation based solvers  
 
Systematic backtracking (based on a search tree 
structure) is used in many constraint solvers. This method 
is complete, and can be combined with constraint 
propagation, a technique for pruning the search space. 
However, due to the combinatorial aspect of the 
problems, and thus of the search tree, it often behaves 
poorly for large combinatorial problems. Constraint 
propagation based solvers can be described by the 
generic algorithm of Algorithm 1 (Apt, 2003). They 
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Figure 1. 10-Queen problem solved with 3 standard enumeration strategies.  

 
 
 
interleaved propagation phases with split/enumeration 
steps. Propagation reduces the search space by 
removing values of variables that cannot participate to a 
solution of the CSP. 

A split cuts a CSP  into several CSPs , such that the 
union of solutions of the  is equal to the solutions of . 
In other words, a split preserves the solutions of the initial 
CSP. Each differs from  in that the split domain is 
replaced by a smaller domain. The two main classes of 
split strategies are: 
 
1. Segmentation: split a domain into 2 (leading to a 
binary tree) or several (leading to an n-ary tree).  
2. And enumeration: split a domain into one value 
(assignment of the variable to this value) and the rest of 
the domain (the variable must be different from this 
value).  
 

In the following, we focus on enumeration. The search 
function of Algorithm 1 manages the choice points (that 
is, sub-CSPs created by split) by doing recursive calls to 
the SOLVE algorithm: it may define searches such as 

depth first, or breadth first search; it can enforce finding 
one solution or all solutions; or can manage optimization 
or satisfaction. Finished is a Boolean set to true when the 
problem is either solved or not satisfiable. 
 
 
The impact of enumeration  
 
Figure 1 show 3 search trees for the resolution of the 10-
queen problem (for example, 
http://en.wikipedia.org/wiki/Eight_queens_puzzle for a 
description of the problem) with 3 different enumeration 
strategies. The first strategy (Figure 1, up-left) directly 
goes to a solution (6 enumerations, no backtrack): thus 
the tree is only composed of one branch. The second one 
(Figure 1, up-right), after a bad choice for the second 
enumeration (generating 17 backtracks), reaches a 
solution. The last strategy (Figure 1, down) performs 
numerous wrong choices (807 backtracks) before 
reaching a solution. Obviously strategies have drastically 
different efficiencies, often several orders of magnitude, 
and   thus   it   is   crucial   to   select   a   good  one  that  
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unfortunately cannot be predicted in the general case. 
 
 
Local search (LS) 
 
While complete methods can prove that a problem is not 
satisfiable (exhaustive exploration of the search space), 
incomplete methods will be ineffective in that case. 
However, they scale very well to large applications since 
they mainly rely on heuristics providing a more efficient 
exploration of interesting areas of the search space. This 
class of methods (called metaheuristics) covers a wide 
panel of paradigms from evolutionary algorithms to local 
search techniques (Michalewicz, 1998; Hoos and Stützle, 
2004) on which we focus in the following. 

LS techniques usually aim at solving optimization 
problems as shown in Hoos and Stützle (2004). In the 
context of constraint satisfaction, these methods 
minimize the number of violated constraints to find a 
solution of the CSP. A local search algorithm (Algorithm 
2), starting from an initial configuration , explores the 
search space by a sequence of moves. At each iteration, 
the next move corresponds to the choice of one of the so-
called neighbors  of . This neighborhood often 
corresponds to small changes of the current 
configuration. Moves are guided by a fitness function (  
on Algorithm 2) which evaluates their benefit from the 
optimization point of view, in order to reach a local 
optimum. The algorithm stops (Boolean finished) when a 
solution is found or when a maximum number of 
iterations is reached. The current optimum is stored in the 
variable  which is updated when the new configuration 
is better than the previous one with respect to the fitness 
function. 

 
 
Hybridizing CP and local search (LS) 

 
A common idea to get more efficient algorithms consists 
in combining resolution paradigms (Focacci et al., 2002; 
Wallace and Schimpf, 2002; Wallace, 2005). Such 
combinations are more and more studied in the constraint 
programming community, mainly for combining CP with 
LS or genetic algorithms. Hybridizations have often been 
tackled through a Master/Slave like management, and 
are often related to specific problems or class of 
problems. Among Master/Slave approaches in which CP 
is the master are, local probing (Kamarainen and 
Sakkout, 2004), selecting variables by LS (Mazure et al., 
1998), S for improving partial assignment (Caseau and 
Laburthe, 1994; Prestwich, 2000), LS for guiding the 
backtrack (Prestwich, 2001). 

Generally, when LS is considered as the master, CP is 
used to improve the quality or the size of the 
neighborhood (Jussien and Lhomme, 2002). Other 
techniques sacrifice completeness. Numerous works also 
consider sequential or parallel hybridization of black-box  

 
 
 
 
solvers Castro C (Monfroy, 2004). Few works focus on 
generic hybrid solvers or hybrid frameworks (Monfroy et 
al., 2005). 
 
 

LOCAL SEARCH (LS) GUIDED ENUMERATION IN A 
CP SOLVER 
 

We are interested in making good choices for 
enumeration, i.e., selection of a variable and a value. Our 
idea is the hybridization LS helping CP for enumerations. 
There exist numerous enumeration strategies for CP, and 
some are known to be efficient for some problems. We 
thus focus on improving these strategies, keeping their 
own qualities. Let us illustrate this on an example. One 
standard strategy, the first-fail, selects the variable with 
the smallest domain, and instantiates it with the first value 
of its domain. In our hybrid solver, we run a LS before 
enumeration. A possible modification of the first-fail is to 
select the smallest variable which is not in conflict in LS, 
and to assign it the tentative value given by the LS. 
 
 

The hybrid algorithm 
 

We designed a Master/Slave hybridization (Algorithm 3) 
in which a LS guides enumeration in CP to quickly find a 
solution: a LS is performed before each enumeration to 
find information about variables and their tentative values. 
The exploration of the search tree is a depth-first left-first 
search. The "while loop" of the generic algorithm does not 
exist anymore since we are looking for one solution. The 
selec_enumeration function is the key point: not only it is 
based on criteria for variable and value selection, but also 
on the result of the LS, that is, the tentative values 
Tentative_Val of the variables. Tentative values are the 
result of the search made by LS that maximized the 
fitness function that is, in this case, the number of 
violated constraints. A LS finds tentative values for the 
non instantiated variables of the CSP considering that 
values assigned by previous enumeration and 
propagation are correct: a LS does not reconsider 
previous work (propagation and instantiation); this task is 
left to the CP solver that will backtrack when it detects 
insatisfiability of the CSP. 

Let us fix first some notions. A variable can only be 
instantiated by propagation or enumeration, but never by 
LS itself. A tentative value is a value given by LS to a 
variable which has not yet been instantiated; this value 
must be an element of the domain of the variable; we 
denote it . A tentative CSP is a CSP in which 
variables which do not have yet a value are given a 
tentative value. A conflicting constraint is a constraint 
which cannot be satisfied with the values and tentative 
values of the variables it contains. Consider the following 
CSP:  .  
 

• 3 is   the   value   of      given    by   enumeration    or  



 
 
 
 
propagation. 

• 4 is the tentative value given to  by the last LS. 

• The constraint  is a conflicting constraint. 
 
A possibly conflicting variable (conflicting variable in 
short) is a not yet instantiated variable that appears in a 
conflicting constraint. Note that the tentative value of this 
variable may participate in a solution. Consider the CSP 
given by  and the tentative 
values, .  is a conflicting variable since it 
appears in  which is a conflicting constraint. 
However, a solution of the CSP is . 
 
 
The local search (LS) algorithm 
 
We use a descent algorithm for LS: we only consider 
improving (in terms of the evaluation function) neighbors 
when moving. Moreover, we do not consider all the 
neighbors to select the best improving neighbor, but we 
selected the first improving neighbor. Diversification is 
achieved by restarting the algorithm (that is, a loop 
around the algorithm of Algorithm 2). The result of the LS 
is thus a local optimum, the best configuration w.r.t. the 
evaluation function. 

A configuration consists in giving a tentative value to 
each non instantiated variable of the CSP. The size of 
configurations thus changes at each LS since the number 
of non instantiated variables varies w.r.t. to enumerations, 
propagations, and backtrackings. The algorithm is as 
much generic as can be. It is parameterized by: 
 
1. , a function to compute the maximum 
number of iterations in a search; 
2.  a function to compute the maximum 
number of restarts, that is, the maximum number of local 
searches to be performed; 
3. , a fitness/evaluation function to estimate 
configurations, 
4. , a neighborhood function to compute 
neighbors of configurations.  
 
We now present some of our functions. This list is not 
exhaustive, and some more functions can be designed. 

 and  are functions based on the 
number of variables and constraints. For example, 
functions such as  where  is a given integer and 

 is the number of non instantiated variables can 
implement  and . 

The evaluation function is based on the constraints, the 
variables, their current domains, and/or their number of 
occurrences in the CSP. Thus, possible functions are 

 (the number of conflicting constraints),  
(the number of conflicting variables), or functions such as 

 defined by 
 where  is a set of 

conflicting variables, and   is  a  function  that  returns  
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the number of values in the domain of a variable. 
Functions such as  give more importance to 
some variables for evaluation (the ones with small 
domains for ) in order to be combined with 
some variable selection strategies of the CP algorithm 
(for example, a first-fail variable selection strategy in the 
case of ). We thus have a set of evaluation 
functions to privilege (or un-privilege) the variables with 
the smallest domain, with the largest domain, the 
variables having more occurrences, etc. We do not detail 
these other functions, their principle being similar to 

. These functions return 0 when the tentative 
CSP is solved. 

The neighborhood functions aim at finding an improving 
neighbor. A neighbor is computed by changing the 
tentative value of  variables.  is either a given integer, 
or the result of a function based on the number of 
variables (such as ). There are 
several criteria to select the variables to be changed: 
randomly, a randomly selected conflicting variable, and a 
family of functions based on the domain size and/or 
occurrences of variables (criteria similar to the criteria of 
the evaluation function). For these last functions, a higher 
probability is given to the variables we want to privilege. 
The new tentative value is a randomly selected value of 
the domain of the variable. 

Let us illustrate it for the  neighborhood 
function which gives more probability to change the value 
of a variable with a small domain. To this end, we 
construct a list of pairs  where 

 are variables, and  are consecutive intervals of width 

 defined by: 

 

 
 

And 
 

 
 

Then, a random real number  between 0 and 
  is generated, and the selected variable 

is the one which interval contains, . Note that 
 is defined the same way, but it only 

considers conflicting variables. We do not detail the other 
neighborhood functions based on smallest/largest 
domain, number of occurrences since they are built the 
same way as . A LS strategy is thus a 
combination of the 4 parameters (that is, functions) 
described above.  
 
 

Strategies of enumeration 
 

The  enumeration  strategies  are  a  combination  of  a 
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Table 1. n-queens problem with various strategies and hybrid strategies. 
 

 10 - queens  20 - queens  25 - queens  50 - queens 

t e  t e  t e  t e 

first 0.02    16  44.69 22221  13.05 4508  - - 

S1 0.051  15.01   0.473  51.57   0.937  73.31   12.17  702 

S4 0.055  15.39  0.519 52.07  1.121  87.33   8.68  252.07 

ff 0.02  13   0.09  40   0.20  68   2.78  506 

S6 0.039  13.301  0.384 33.43  0.662 41.58  4.81 84.91 

S14 0.043  13.60  0.385 33.23  0.639 37.51  5.41 114.14 

S15  0.043  13.48   0.383  31.20   0.648  35.31   5.22  100.93 

S16 0.04 13.00  0.401 33.44  0.624 32.64  4.39 65.76 

S23 0.073 12.80  0.578 29.79  1.082 40.095  7.584 67.38 

S35 0.084 12.56  0.576 25.66  1.045 33.56  7.822 77.08 

S36 0.082 11.25  0.620 27.30  1.022 29.73  7.025 50.48 

S42 0.101 7.85  0.790 15.51  1.427 20.26  10.627 33.78 

 
 
 
variable selection criterion and a value selection criterion. 
We consider standard variable selection criteria of CP 
that we can refine using the result of the LS, for example, 
selecting variables that are not conflicting in the LS. Here 
are some of the variable selection criteria: 
 
1.  selects the first variable (resp. the first non 
conflicting variable) occurring in the CSP; 
2. : the first non conflicting variable occurring in 
the CSP; 
3.  the variable with the smallest domain; 
4.  the non conflicting variable with the 
smallest domain;  
5. : the variable with the largest number of 
occurrences in constraints; 
6. : The non conflicting variable with the 
largest number of occurrences in constraints. 
 
The value selection totally relies on the result of the LS: 
the tentative value (in the result of LS) of the variable is 
selected. A hybrid strategy is thus the combination of 6 
parameters: the value selection criterion, the variable 
selection criterion, the function to compute the numbers 
of iterations, the function to compute the number of 
restarts, the evaluation function and, and the 
neighborhood function.  
 
 
RESULTS 
 
Our prototype implementation has been written with the 
ECLiPSe Constraint Programming System (Schimpf and 
Shen, 2010) using finite domain libraries for constraint 
propagation and the repair library which significantly 
eased the handling of tentative values in LS.  

We did not try to optimize the code. Instead, we kept it 
as open and parameterized as possible to allow various 

hybrid strategies. In the same way, we did not specialize 
the LS for specific problems, although it is well known 
that generic LS generally behaves poorly. The tests were 
run on a Athlo 3000+ with 1Go of RAM. For each test we 
performed 1000 runs and we present the average result. 

 
 
Experimentations 
 
Table 1 shows the results of several strategies for some 
instances of the n-queen problem. We use a standard 
model of the problem, as can be found in the examples of 
ECLiPSe. The all different global constraint is duplicated 
into the pair-wise differences of all variables 
( ). Hence, the pruning is more powerful 

using the global constraint, and the LS can better count 
conflicting constraints using the difference constraints 
( ). 

A column represents a problem instance; a row is the 
performance of a strategy for the various instances; t is 
the average CPU time (over 1000 runs) in seconds and e 
the average (due to the random aspects of the LS) 
number of enumerations (both "good" enumerations that 
lead to a solution, and "bad" ones that enforced 
backtrack). We only consider one LS, that is there is no 
restart, and the neighborhood function changes the value 
of one variable. The enumeration strategies appearing in 
Table 1 are defined as follows: 

 
first: pure CP strategy, 
 

• selection of variable: , that is, the first variable in 
the order of appearance in the CSP  

• selection of value: smallest value of the domain 
S1: hybrid strategy,  

• selection of variable:  



 
 
 
 

• selection of value: tentative value of this variable 
computed by the LS defined by: 
o evaluation function: , that is, number of 
conflicting constraints  
o neighborhood function: , that is, change of a 
conflicting variable  
o size of the LS: , that is, twice the 
number of variables in the CSP 
 
S4: hybrid strategy,  
 

• selection of variable: ,  that is, the first non 
conflicting variable  

• selection of value: tentative value of the LS:  
o evaluation function:  that is, number of 
conflicting variables  
o neighborhood function:   
o size of the LS:   
 
ff: pure CP strategy,  
 

• selection of variable: , that is, the first 
variable with the smallest domain  

• selection of value: smallest value of the domain 
 
S6: hybrid strategy,  
 

• selection of variable:   

• selection of value: tentative value of the LS: 
o evaluation function:   
o neighborhood function: , that is, randomly selects a 
conflicting variable and gives it a value randomly chosen 
in its domain to create a neighbor  
o size of the LS:  
 
S14: hybrid strategy,  
 

• selection of variable: , that is, the first non 
conflicting variable with the smallest domain  

• selection of value: tentative value of the LS:  
o evaluation function:  
o neighborhood function:   
o size of the LS:  
 
S15: hybrid strategy,  
 

• selection of variable:   

• selection of value: tentative value of the LS:  
o evaluation function:  
o neighborhood function:   
o size of the LS:  
 
S16: hybrid strategy,  
 

• selection of variable:   

• selection of value: tentative value of the LS:  
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o evaluation function:   
o neighborhood function: , that is, gives 
more probability to change the value of a conflicting 
variable with a small domain  
o size of the LS:  
 
S23: hybrid strategy,  
 

• selection of variable:   

• selection of value: tentative value of the LS:  
o evaluation function:  
o neighborhood function:   
o size of the LS:  
 
S35: hybrid strategy, 
  

• selection of variable:   

• selection of value: tentative value of the LS:  
o evaluation function:  
o neighborhood function:   
o size of the LS:  
 
S36: hybrid strategy,  
 

• selection of variable:    

• selection of value; tentative value of the LS:  
o evaluation function:  
o neighborhood function:   
o size of the LS:  
 
S42: hybrid strategy,  
 

• selection of variable:  

• selection of value: tentative value of the LS:  
o evaluation function:   
o neighborhood function:   
o size of the LS:  
 
We first compare strategies based on the  criterion: 
variable to enumerate are selected in the order of 
appearance in the CSP.  is the pure CP strategy 
(without LS): the smallest value of the domain of the 
selected variable is chosen for enumeration. S1 and S4 

are hybrid strategies. S1 is also based on a  criterion 
for variable selection; the selected value is the tentative 
value of the result of the LS like for each of our hybrid 
strategies. The evaluation function counts the number of 
conflicting constraints ( ). The neighborhood 
change a conflicting variable ( ). The size of the 
LS is twice the number of variables in the problem. S4 
differs in that the first non conflicting variable is selected 
for enumeration ( ), and the evaluation function is 
the number of conflicting variables ( ). Both S1 
and S4 show very good results compared to , both in 
CPU time and number of enumerations. We don’t have 
the results for 50-queens for the pure CP  strategy:  
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for 30-queens, more than 4.000.000 enumerations are 
already required.  

All the other strategies (ff and S6 to S42) are based on 

a  variable criterion. ff is the pure CP strategy: 
enumeration with the smallest value of the domain of the 
variable with the smallest domain. S6 and S23 also select 
the variable with smallest domain, whereas S14, 15, 16, 
35, 36, and 42 select the non conflicting variable with the 
smallest domain. We can see with these strategies that it 
tends to be better to select a non conflicting variable. 

The evaluation function for each S14, 15, 16, 35, 36, 42 
is the number of violated constraints. With respect to 
other tests we performed for n-queens, it seems that 
using an evaluation function based on the size of the 
domain (such as ) slightly reduces the 
number of enumerations but also slightly increases the 
CPU time. 

For S14,15,16,35,36,42, the number of iterations is 

, where  for S14,15,16,  
for S23,35,36, and  for S42. We can see that when 

 increases, the number of enumerations decreases, and 
the CPU time increases (due to the overhead of the 
longer LS). Increasing  is more profitable for larger 
problems, such as 100-queens. 

In S14,23,35, the neighborhood function selects 
randomly a variable to change its value to create a 
neighbor; in S6,15,36 it is a random conflicting variable 

whose value is changed; in S16,  gives 
more probability to change the value of a variable with a 
small domain (this is coherent with the 

selection of variable for enumeration). The 
difference between S14,15,16 is only the neighborhood 
function: similarly to the other tests we made, it tends that 
it is slightly worth (in terms of enumerations, and CPU 
time) having more clever neighborhood functions based 
on conflicting variables and probabilities with respect to 
the size of the domains of the variables. 

The advantage of the hybrid strategies over the pure 
CP  strategy is in terms of enumerations, 
lesser enumerations are required to solve the problems. 
But this is at the cost of CPU time, however, the larger 
the instances and the smaller the difference of time. 
Moreover, the overhead could be significantly reduced 
(and erased in most of the case) with a better 
implementation of the LS algorithm: recall that we did not 
specialized it, and let it open and parameterized with 
numerous functions in order to be able to perform some 
tests on other types of problems, with other evaluation 
functions, neighborhood functions, etc. 
 
 

DISCUSSIONS 
 

We tested the same strategies on several instances of 
the Latin square problem (for example, 
http://en.wikipedia.org/wiki/Latin). 

The comments are the same as for n-queens: all the 
hybrid strategies improve the number of enumerations.  

 
 
 
 
The differences between the hybrid strategies are a bit 
more pronounced, but the main differences are coming 
from the length of the search. 

Only S42 behaves differently: it is from far the best 
strategy in terms of enumerations (for example, less than 
half the number of enumerations for Latin-10), but also 
the slowest one (2 to 3 times slower than other strategies 
for Latin-15). S42 is the strategy that performs the 
longest LS: this explains the good enumeration. But the 
overhead is not sufficient to explain the very slow run and 
we could not find any explanation for it. 

The magic sequence problem 
(http://delphiforfun.org/programs/MagicSequence.htm) 
does not show the interest of hybrid strategies: on 
average, the hybrid strategies do not improve the number 
of enumerations for the magic sequence problem. 
However, the overhead is negligible. This is due to the 
solution  for sequences of 
size  and the pruning of the occurrence global 
constraint: quickly, most of the domains are reduced to 

 and whatever enumeration strategy performs well. 
Thus, guiding the search with, a local search does not 
help much. 

We were surprised that on average, all the hybrid 
strategies show quite similar performances. Only the 
length of the LS has a significant impact: the longer the 
LS, the lesser enumerations, but at the cost of CPU time. 
However, it seems that integrating criteria (such as, 
domain size) in the neighborhood and evaluation 
functions pays in term of enumeration and is not too 
costly in time. 
As expected the hybrid strategies reduce the number of 
enumeration. This is due to the fact that better 
enumerations are found using a kind of probing (the LS), 
and that from times to times, it also happens that the 
probing (the LS) finds a solution; most of the time, this 
phenomenon happens at the bottom of the search tree, 
when there remain few variables to be instantiated. 

We observed the standard deviation and variance of 
the number of enumerations and of the CPU time: the 
shorter is the LS, the larger is the variance. It could be 
interesting to study more deeply this deviation to classify 
hybrid strategies for some practical use. Indeed, when 
one has to solve few problems, it can be more useful to 
have a strategy which is maybe a bit worse in average 
but that has a smaller deviation/variance; this way, runs 
would be more homogeneous without bad runs. When 
one has to solve numerous problems, we think a strategy 
with a smaller average (even with a large variance) is 
well suited:  
 

1. First, the time lost in the long runs is partially erased 
by the average on numerous problems. 
2. But also, one could give a time out; a run exceeding 
this time out would be stopped and tried again with 
another strategy (preferably one having a worse average, 
but having a smaller variance). 

In our experimental results, the difference  (in  terms  of 



 
 
 
 
enumeration and time) between our hybrid strategies is 
less noticeable than between the pure CP strategies. For 
example, there are several orders of magnitude between 
the first and first-fail strategies in the n-queens. Moreover, 
our hybrid strategies are better (enumeration and time) 
than the pure first one, and close (better for 
enumerations, worse in time due to the non specialized 
implementation of LS, but less than an order of 
magnitude) to the  one. 

Thus, if one does not know which strategy is adapted to 
his problem, it is convenient to select an hybrid one: it will 
either gives good performance, or acceptable 
performance with respect to the best strategy. Moreover, 
the LS implementation can significantly be improved to 
reduce and even erase the overhead of the hybrid 
strategies.  
 
 
CONCLUSION  
 
In this paper, a hybrid (and complete) solver that uses a 
hybrid enumeration strategy, that is, LS to guide the 
enumeration process was presented. Our technique is 
rather simple to integrate in a constraint programming 
system, and the first experimental results are rather 
promising. In a study by Mazure et al. (1998) a GSAT-like 
procedure guides the branching of logically-complete 
algorithms based on Davis and Putnam’s like techniques. 
Although, this could be seen as similar to our technique, 
this happen in the context of SAT, and the heuristics and 
algorithms (both the complete and incomplete ones) are 
quite different.  

Wallace and Schimpf (2002) also reports about a 
repair-based algorithm, GSAT, combined with a 
constructive algorithm using propagation. At each node of 
the search tree, GSAT is run on all variables in order to 
choose which variable to enumerate. Our work is close to 
this algorithm since the systematic backtracking 
techniques are both enhanced with propagation. 
However, Wallace and Schimpf (2002) addresses SAT 
problems, and thus the enumeration strategies, and the 
incomplete techniques are also quite different. From 
some aspects, in the local probing of Kamarainen and 
Sakkout (2004), LS helps in selecting variables. However, 
the key idea is that LS creates assignments, and CP 
modifies the sub-problem that LS is solving in order to 
guide it to search method where solutions can be found. 

Although, we did not see the heavy-tailed behavior 
(Hulubei and O’Sullivan, 2005) in our runs and tests, 
more observations are needed to determine whether we 
definitively avoided it. We plan to improve the 
implementation of our LS algorithm in order to  reduce  or 
even erase the overhead given by the hybrid strategies. 
We think of refining the notions of neighborhood and 
evaluation to integrate some constraints of the model in 
these functions, that is, to obtain a generic LS which can 
adapt itself to some specific constraints of the problem.  
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We plan to extend our hybridization to optimization and 
perform some tests with other enumeration strategies.  
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Algorithm 1: A Generic SOLVE algorithm. 
 

WHILE not finished 

constraint propagation 

IF not finished THEN 

select an enumeration   

apply  

search 

 
 
 
Algorithm 2. A generic local search algorithm. 

 

choose  (an initial configuration) 

 (record the best configuration) 

WHILE not finished DO 

choose  a neighbour of  

 (move to ) 

 if  

 
 
 
Algorithm 3. A Depth-First Left-First hybrid SOLVE algorithm for 
finding ONE solution. 
 

solve(CSP) 

CSP’ ← constraint_propagation(CSP) 

IF solution(CSP’) OR failed(CSP’) 

THEN RETURN(CSP’) 

ELSE  

Tentative_Val ← LS(CSP’) 

(Var,Val)← select_enumeration(CSP’,VarCrit,ValCrit, Tenta-
tive_Val) 

RES ← solve(CSP’ ∧ Var=Val) 

IF failed(RES) 

THEN solve(CSP’ ∧ Var Val) 

ELSE RETURN(RES) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


