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The improved Riccati equation method combined with the improved (G'/G) - expansion method is an

interesting approach to find more general exact solutions of the nonlinear evolution equations in
mathematical physics. The objective of this article is to employ this method to construct exact
solutions involving parameters of a nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation. When
these parameters are taken to be special values, the solitary wave solutions, the periodic wave
solutions and the rational function solutions are derived from the exact solutions. The proposed
method appears to be effective for solving other nonlinear evolution equations in the mathematical
physics.
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INTRODUCTION

Many problems in the branches of modern physics are
described in terms of suitable nonlinear models, and
nonlinear physical phenomena are related to nonlinear
differential equations, which are involved in many fields
from physics to biology, chemistry, mechanics, and so on.
Nonlinear wave phenomena are very important in
nonlinear science, in recent years, much effort has been
spent on the construction of exact solutions of nonlinear
partial differential solutions. Many effective methods to
construct the exact solutions of these equations have

been established, such as, the inverse scattering
transform method (Ablowitz and Clarkson, 1991), the
Hirota method (Hirota, 1971), the truncated expansion
method( Weiss et al.,, 1983), the Backlund transform
method (Miura, 1979; Rogers and Shadwick, 1982), the
exp-function method (He and Wu, 2006; Yusufoglu,
2008), the tanh- function method (Fan, 2000; Zhang and
Xia, 2008), the Jacobi elliptic function method (Chen and
Wang, 2005; Lu, 2005), the (G'/c)—expansion method

(Wang and Zhang, 2008; Feng and Wan, 2011; Zayed
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and Al-Joudi 2009; Zayed and Abdelaziz, 2010; Zayed
and El-Malky, 2011), the modified simple equation
(Jawad,et al .,2010; Zayed, 2011; Zayed and Hoda
Ibrahim, 2012, Zayed and Hoda Ibrahim, 2014; Zayed
and Arnous, 2012), the Riccati equation method (Zhu,
2008; Li and Zhang, 2010; Zayed and Arnous, 2013), the
improved Riccati equation method ( Li, 2012), the method
of averaging (Leilei et al., 2014) and so on. The objective
of this paper is to apply the improved Riccati equation
method combined with the improved (G'/G) - expansion

method to find the exact solutions of the following

nonlinear Kolmogorov-Petrovskii-Piskunov (KPP)
equation:
U, —U, ++p?+8u°=0, 1)

Where u, y, o are real constants. Equation (1) is
important in the physical fields, and includes the Fisher
equation, the Huxley equation, the Burgers- Huxley
equation, the Chaffee-Infanfe equation and the Fitzhugh-
Nagumo equation. Equation (1) has been investigated
recently in (Feng and Wan, 2011) using the (G'/G)-
expansion method and in (Zayed and Hoda lbrahim,
2014) using the modified simple equation method. The
rest of this paper is organized as follows: First is a
description of the improved Riccati equation method
combined with the improved (G'/G)- expansion
method. Next is application of this method to solve the
nonlinear KPP equation (1). Thereafter, the physical
explanations of the obtained results are given, and
conclusions are obtained.

Description of the Riccati equation method combined
with the (G'/G) - expansion method

Suppose that we have the following nonlinear evolution
equation:

F@,u,,u,,u,,u,,..)=0, (2

Where F is a polynomial in u(x, t) and its partial
derivatives, in which the highest order derivatives and the
nonlinear terms, are involved. In the following, we give
the main steps of the Riccati equation method combined

with the (G'/ G) - expansion method (Li, 2012):
Step 1. We use the traveling wave transformation
u(x,t)=u(é), £=kx +at, 3

Where K, are constants, to reduce Equation (1) to the
following ordinary differential equation (ODE):

...) =0, (4)

Pu,u’,u”,
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Where P is a polynomial in u(&) and its total derivatives,
while the dashes denote the derivatives with respect

to &.

Step 2. We assumes that Equation (4) has the formal
solution:

u(&) =2 alf (O, )
Where ¢, (i =-n,..,n) are constants to be
determined later o,#=0 or o, #0, while f (&)
satisfies the generalized Riccati equation:

f'(&)=p+rf (&) +af (&), (6)

Where p, r and q are real constants, such that = 0and
f (&) will be determined in the Step 4 below.

Step 3. The positive integer n in Equation (5) can be
determined by balancing the highest-order derivatives
with the nonlinear terms appearing in Equation (4).

Step 4. We determine the solutions f (&) of Equation
(6) using the improved (G'/G)-expansion method, by
assuming that its formal solution has the form

G'($)
f = 7
=24 (G(«:)j v
Where S (i =—m,..,m) are constants to be
determined later B, #0 or g _#0, and G(&)

satisfies the following linear ODE:

G'(5)+4G(5)+16(5)=0 (®)

Where A and  are constants.

Step 5. The positive integer m in Equation (7) can be
determined by balancing f '(£) and f ?(&) in Equation
(6) to get m =1. Thus, the solution (7) reduces to.

G'() @ ©)
f (&)= ﬁwﬁ{G(é)}ﬁ_l[G(éJ ,

Where S, B, [, are constants to be determined,such
that 5, #0 or f ,#0. Substituting Equation (9) along
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with Equation (8) into Equation (6) and equating all the
coefficients of powers of (E] to zero, yields a set of

algebraic equations, which can be solved to get the
following two cases:

Casel
—(A+r -1 r’—A’+4
b= (2q )’ ﬂl:E’ B.=0, p=Tﬂ,q¢0.

In this case, the solution of Equation (6) has the form

_—(A+r) 11G'($) (10)
f = -= .
©="% [G(é)}
Case 2
A—r H r’—A*+4u
0: ’ 1:0! 71:_1 =, 0
B 2 B p q p a9 q =

In this case, the solution of Equation (6) has the form

, -1

f=2 r+ﬁ[G (5)} . GEY
G (&)

From the Cases 1 and 2, we deduce that

A2 —4u= r? —4p(Q. On solving Equation (8) we deduce
that (G /G) has the forms:

A JPapg csmh( Jz_m)+czcosh(§M) .
7t clcosh( T 4PQ)+Czsinh(§M) it r2-dpg>0  (12)
(

c©® | 4 \/4pq__rz{—cls|n; 4pq—r2)+czcos(§«[4pq—rz)
—22=-Ty

} if r’-4pg<0 (13

G | 2 2 cicos(g 4pq—r2)+czsin(§q4pq—rz)
i, o
-= if r-4pg=0 (14
2+cl+c2§ . 4

Where c; and ¢, are arbitrary constants.

Step 6. Substituting Equation (5) along Equation (6) into
Equation (4) and equating the coefficients of all powers of
f (&) to zero, we obtain a system of algebraic equations,
which can be solved using the Maple or Mathematica to
get the values of ¢, ,K and @ .\

Step 7. Substituting the values of ¢; ,k and @ as well
as the solutions f (£) given by Equation (10) or

Equation (11) into Equation (5), we finally obtain the exact
solutions of Equation (2) for the both Cases 1 and 2.

An application

Here we apply the proposed method just described to
construct the exact solutions of the nonlinear KPP
Equation (1). To the end, we use the wave transformation
(3) to reduce Equation (1) to the following ODE:

au'(€) =k u"(§)+ (&) + " (§) +ou’(£) = 0. (15)

By balancing u"with u®, we have n=1.

Consequently, we have the formal solution

u(§)=a+aif (§)+af 71(5)1 (16)

Where «,,,, a_, are parameters to be determined later,

suchthat o, #0 or o, #0.

Substituting Equation (16) along with Equation (6) into
Equation (15) and equating the coefficients of all powers
of f () to zero, we get the following system of

algebraic equations:

for  —2k’aq’®+da’ =0,
f2:  aqo-3ar0k’+yaf +35a,0f =0,

f i war-k*(or’+2a,pq)+ ua, + 2ya,0, +6(3aia, +3ala ) =0,

o olop-a g)-k 2(ozlrp +ro0)+ pa, + }/(0{02 +200,)+ 5((13 +6 e ;) =0,
f=  -2%%a,p*+da’ =0,
f2  —a,po-3a,mpk’+ya +30,a’, =0,

fr —wa r-k*a, 1" +20,p9)+ pa + 2pa,a , +6(3eia +3a’a,) =0.

By solving the above algebraic equations with the aid of
Maple or Mathematical, we have the following results:

Result 1

Jr*=4pg
(2K2(r? —4PQ)+,U)((V2 ~4pq)+r4r’ ~4pg )((rz -2pq)-ryr’ —4pq)

V= )
4pg(r?-4pg)a,

al_ol5_kz(“z‘qu)‘rW“”’q)m_%[rwfz—‘*m],

a? 2q

provided that r?—4pq >0.



Now, the solution for the result 1 becomes

u(é) = a, +a, (H— \/"2_4pq}f -1 (&), (17)

2q
Where
P +[#—k2(r2—4DQ)]t_ (18)
Jr?—4pq

Substituting Equation (10) into Equation (17) and using
Equations (12) to (14) we have the hyperbolic wave
solutions of Equation (1) as follows:

clsinh(“g\/rz—4pq )+czcosh(§\/r2 —4pq)
¢, cosh(;‘\/rz ~4pg J+czsinh(§\/r2 -4py )

u(f):an—ao(rh/rz—llpq) r+yri-4pg

y (19)

Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (19), we have respectively
the following exact solutions for Equation (1):

(i) If [c,| >[c, |, then

ul(g):ao—ao(r +\/r2—4pq ){r +\/r2 ~4pq tanh(l;\/r2 ~4pq +sgn(clcz)y/1)}il (20)

Where y, =tanh™ [%}
1

(ii) If [c,| > |c.| # O, then

U, () :%—%(f +r*-4pg ){I’ 4T —4pg coth(g\/r2 ~4pg +Sgn(0102)y/2)=71 (21)

Where w, =coth™ (MJ
e,

(iii) If [c,| >[c,|=0, then

U;(§) =2 —ao(r +yr? —4pq ){r +yr?—4pq coth(%M)}A, (22)

(iv) If |C1| = |Cz|, then we have the trivial solution which is
rejected.
Substituting Equation (11) into Equation (17) and using

Equations (12) to (14) we have the hyperbolic wave
solutions of Equation (1) as follows:

clsinh(§M)+czcosh(:z' e )]]1 (23)

9= ey R »
u(@) ao+a0(r+r DQ) r+ ;{ +r pq{ggesh(jM)”z“”"ﬁM)
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Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (23), we have respectively
the following exact solutions for Equation (1):

(i) If e, >[c,| . then

u4(§):a0+ao(r+«[r2—4pq ){ﬂ—r+4y{—ﬂ+drz—4pq tanh(%}/rz—4pq +sgn(clcz)|y1)}il}i1 (24)
A e

Where y, =tanh™| —= |.

c,|

(ii) I [c,| >c,| # 0, then
us(f):aomo(r +yrE-4pg H/‘L—r+4y[—i+1[rz—4pq coth(iz}[r2 -4pg +sgn(c1cz)%)]4}’1 (25)
c,|

Where w, = COthl(MJ.

(iii) If [c,| >|c,| =0, , then

1) :a°+a°(r +m){&_r+4#[_“\/fz—4pq coth(iQ\/rZ—4pq ﬂl}l

(26)

(iv) If [c,]| =|c,|, then

u7(§)=a0+ao(r+m){ﬂ—r+4y[—ﬂ+mr}4. (27)

Result 2. Consider

o= K —4pa) -
\r*-4pq
(2w —4p0|)+u)((lr2 —4pg)+ryr*-4pq )((r2 ~2pg)—ryr? —4pq)

;/_
4pq(r®—4pa)a,
kz((r2—2pq)—r1/r2—4pq) r+\r2—4pq
a,=00= e Lo =0, T .
0

Now, the solution for the result 2, becomes

/ 2
w f (5), (28)

u(é) =a,+a 2

Where ¢ = kx J{M]L

Jri-4pq

Substituting Equation (10) into Equation (28) and using
Equations (12) to (14) we have the hyperbolic wave
solutions of Equation (1) as follows:
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clsinh(i\/r2 -4pg )+cz cosh(l;\/rZ -4pg )
clcosh(g\/r2 -4pq )+c2 sinh(;\/r2 ~4pg )

u(é)-ao&(rﬂh?mq)‘rh[rzzlpq {

} (29)

Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (29), we have respectively
the following exact solutions for Equation (1):

(i) If [c,| >[c, |, then

us(f):ao—%(r+\/r2—4pq){r+\/r2—4pq tanh(lg\/r2—4pq +sgn(clcz)y/1)}’ (30)
Where y, = tanh™ (MJ
e,
(ii) I [c,| >[c,| %0, then
(31)

U (&) =, —%(r +r* —4pg ){r +yr? —4pq coth(%\/rz ~4pq +59”(°1°2)W2)}v

Where , = Cothl[MJ.
|

(iii) If |c,| > [c,| =0, then

U (&) =a, —%(r +\/r2 —4pq ){r +Jr2 —4pq coth(%,/r2 —4pq )} (32)

(V) If [c,|=[c,|. then
2
un(é):ao—%(r +\/r2—4pq) : (33)

Substituting Equation (11) into Equation (28) and using
Equation (12) to (14) we have the hyperbolic wave
solutions of Equation (1) as follows:

(34)

u(;“):aﬁ%(rhhz—zlpq)

c,cosh (;é\/rZ -4pg ]+52 sinh (;}/rz -4pq )

-1
i +4{—/I+M{Clsmh (:;Jrz ~4pq )Jrc2 cosh (;’Jrz ~4pg )H

Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (34), we have respectively
the following exact solutions for Equation (1):

(i) If [c.| >[c,|, then

uu(g):aﬁ%(r +r?-4pg ){/1—”4;{—)& r’-4pq tanh(§\[r2—4pq +sgn(clcz)y/1)T} (35)

Where y, = tanh™ (%]
1

(ii) I [c,| >[c,| # 0, then

1 (36
um(.f):a”%(rﬁ/rz—tlpq){i—r+4u[—i+«[rz—4pq coth(gwlrz—tlpq +sgn(clcz)|//zﬂ } ( )

Where v, = COth{MJ.

c,|

(iii) If [c,| >c,| =0, then

U, () :ao+%(r +M){l—r+4y[—i+\/rz—4pq coth(g\/rz—4pq )T} (37)

(V) If c,| =[c,|, then

U (@) =q, +%(r +r2—4pq ){/I—r +4y[—i+mr} (38)

Result 3. Consider

w=2kJk*(r’=4pq)+2u,
(20~ 2pa)+ 1l ~4pa)+ 20) | (K27~ 4pa) + 20—tk k(7 ~4pa) +2) )
pary (27pg - 1)

s k‘(r"—2pq)+ytrk«/kz(r‘—4pq)+2u

a,

kpao(kl' 1\/k2(r2—4pq)+2,u)

2k pg - p

y=

a =0,

a 1

Now, the solution for the result 3 becomes

kpao(kr R/k 2(r® —4pq)+2y)

U=+ Z f &) (39)
2k "pg - p

Where

E=kx tk\k?(r? —4pq)+2ut, and

k*(r>—4pq)+2u>0. (40)

Substituting Equation (10) into Equation (39) and using
Equations (12) to (14) we have the exact solutions of
Equation (1) as follows:

If r>—4pq >0, we have the hyperbolic wave solutions

u9)=q,-

kpao(krim”L mc,sinh(;m)mzwsh(;m)ﬂ‘ (41)

%'pg - 12q+ X c‘cosh(i\/r’%pq)+czsinh(;’\lr’—4pq)

Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (41), we have respectively
the following exact solutions for Equation (1):



() If [c,| > [c, |, then

k%(kr i _4pq)+2#) [L+ mtanh (?JWHgn(cicz)w)]
2

2k*pg - u 12(4 f

4 (42)

Uy (§) =

C
Where y, =tanh™ (u]
il
(ii) I [c,| >[c,| £ 0, then
kpao(kr%/kz(rz—4PQ)+2ﬂ)JLJrJrZZ_qM)q ﬁoth(g [ —apq Jrsgn(clcz)wz)}1

2A°pg - IZQ

(43)

un(§)=aq

Where y, = coth‘{M}.
|
(iii) If |c,| > [c,| =0, then

kpao(krim)fL+ /r'zz_qztpq coth(;‘M)}l'

2K’pg - p qu

(44)

ug(é)=a,—

) If [c,|=[c,|. then

kpao(kr¢m){r+4/rz4pq }1. (45)
2

2

U (§) = a, -

2k “pg -

If  r®—4pg <0, we have the trigonometric wave
solutions

(46)

u@)=a,

kpaﬂ(kr$«'k2(72*4pq)+2y)[r W wsm( \J4pq- r)+czcos(§‘]4qurz) b
%pg - lzq oy cicos(y\lztm_—r)ﬂzsin(;}/zm_—rz)

Now, we can simplify Equation (46) to get the following
periodic wave solutions:

kpau(kl’ i\/kz(rz—4pq)+2,u) - (47)

2k pq - u

Up(&)=c—

{2L+ (T tan(;-;wpq_—rq}

C
Where & =tan™ (—ZJ :

C,
and
kpau(kr;/k2(r274pq)+2y)1, Jawg—r? . e (48)
(8 = et~ P E ot(& +5fapa - )}

1| C
Where &, =cot™| -2 |.
Cl
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If r*—4pq =0, we have the rational wave solutions

ke (kr F+200) L+;(c_2) T
2k 'pa - p 20 q(C,+C,¢

Where c,, ¢, are arbitrary constants.

U, (&) =a,

Substituting Equation (11) into Equation (39) and using
Equations (12) to (14) we have the exact solutions of
Equation (1) as follows:

If r? —4pq >0, we have the hyperbolic wave solutions

(50)

u@)=a

kpu(krhlk (r*-4pq) +2;1)J; o 2 W‘csmh( r* 4p +c cosh r Ap
%'~ IZQ q 2 2 \ccosh( r-dpq +csmh(,r Ap

)

Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (50), we have respectively
the following exact solutions for Equation (1):

(i) If [c,| > [c,|, then

e .(31)
kprxu(kf+ k)(r —4p(1)+2/l”/1—r ,u( 2 i —apg tanh(; P am +Sgn(c]cz),,,1)yl
20 s IZq al 2 2 j

Un(§)=a

Where w, =tanh™ [MJ

|
(ii) I [c,] > || # 0, then

b 4020 4#(_&«/#;4;1& a5~ 4pq +sgn(clcz)u/2)} ]}

2%pg - lZQ q[ 2

% (52)

Uy (€)= +

Where w, = COthl[MJ.
&
(iii) If |c,| > [c,| =0, then

2 2

2kpg -y 1 2q q 2

Ups(§) =0, +

(V) If o, =[c,|, then

-l
kpao(kr$«/k2(rz—4pq)+2y) aet ul 2 Jr-apg ! (54)

Uy (&) =y +

%'pg-u 2 q 2

If  r®—4pg <0, we have the trigonometric wave
solutions
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(59)

u(E)=a,+

4
kpug(Kl'1-,k2(|’2*4pq)+2}1)J/«L?rl,u" AA‘/AW_,rz(wlsintf\jqu—r2)+czcos(;\4pq—rz) '
& qu a2 2| e[t scsinfifamar)

Now, we can simplify Equation (55) to get the following
periodic wave solutions:

Un(§)=a5+

kpao(krh/kz(rz4PQ)+2#)Jﬂv—r+l{_ i fipg—1° tan(g -v\/m_r)}l}l (56)
2 1

x'pg-p 1 2 q 2

4| C
Where & =tan 1(—2j
Cl

and

1 (57)

kpau(kr+ k2(r? 4pq)+2;;)

Up($) =ty + Kpa—n {

-1
}27 L{ . \,Mpl; r cot(§2+§(\/4pq_frz)} }

q

C
Where &, =cot™ (—2] :

C,

If r? —4pq =0, we have the rational wave solutions

Uzg(é_‘,’):a0+kpa0(kr¢ Zﬂ){z—r+u(—zﬂ+ch'l}, (58)

2k *pg — p 29 q C,+C,¢

Where ¢, ¢, are arbitrary constants.

Result 4. Consider

=1k k2(r*—4pg)+2u,

(k (r*-2pq) + p+1k Jk 2(r? —4pq) +2u) )(k (r?-4pg)+2u -tk Jk 3(r? —4pq)+2y)

qag (2k°pa - )

22 N \/ﬁ
0ﬁzk (r 2pq)+u_r1<zk (r 4pq)+2p’a1:
%y

r=

kqao(kriﬂlkZ(r7—4pq)+2y)

2k?pq -

a,=

Now, the solution for the result 4 becomes

kqao(kr J_r\/kz(r2 —4pq)+2y)

= f 59
u(O) =, + e @ 9
Where fzkxik\/kz(r2—4pq)+2yt, and
k2(r*—4pq)+2u>0. (60)

Substituting Equation (10) into Equation (59) and using
Equations (12) to(14) we have the exact solutions of
Equation (1) as follows:

If r?—4pq >0, we have the hyperbolic wave solutions

61
7kqa0(krtWHL+m[c,sinh(’;m)ﬂ}cosh(;m)}}d ( )

v 27pq—u ENER e )

Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (61), we have respectively
the following exact solutions for Equation (1):

() If || > [, then

Q iq’ (= [ 100 -1 (62)
Uau(f):%-kq D(kr 2kk2:;7:pq)+2”){i} : 2*q4pq ta”h(§M+sgn(clcz)%)}
[ e
Where , =tanh™| —= |.
e,
(ii) If [c,] >|c,] # O, then
kqao(kr g/W)J \/_4 : (63)
uy(@)=a, PTe— 12 r’-4pg Ulh(§M+sgn(clcz)u/z)}
4 e
Where 1, =coth™| = |.
c,|
(iii) If [c,| > |c,| =0, then
kqa, (kr £k 2(r?—4pq)+2 2 _ -t (64)
Un(&) = - a ( r+2«/k2pc:7ﬂ pg)+ #){%+ r 2q4pq coth(gm)} .

(V) If c,| =[c,|, then

kaa, (kr + K27 ~4pa) + 24 {/— T } (65)
2q '

Ugs (&) =ty - 2k ?pq — 2q

If  r?—4pg <0, we have the trigonometric wave
solutions

kqan(kri\,kz(TZ*APq)‘*Z/l}{r W7$]sin(§«l4pq rz)+c cos(‘\Mpq rz) B
2k *pq - IZq ' 2 clcos(ém)‘rc sm( J‘lm]_r)

(66)

u)=a

Now, we can simplify Equation (66) to get the following
periodic wave solution:

kqau(krt\/kz(r2—4pq)+2y) Y (67)

2k *pq - u

u34(§):a0—

— 2 -
{é+“4p2qq r tan((;—%«Mpq—rQ)}

41 C
Where & =tan™| -2,
Cl



kqay [k +k?(r? ~4pg)+2 [e—y B
q%( szZp(r:—ypq)Jr ﬂ)JL+ e cot(§z+§\/m)} o

1 2 2

Ugs(§) =0~

C;

C
Where &, =cot™ (—2] :

If r? —4pq =0, we have the rational wave solutions

kqao(kri 2’“>{L+l( c, j}l (69)
2k*pg—u |29 glc,+c¢

Where c,, ¢, are arbitrary constants.

u36(§) =~

Substituting Equation (11) into Equation (59) and using
Equations (12) to (14) we have the exact solutions of
Equation (1) as follows:

If r? —4pq >0, we have the hyperbolic wave solutions

) e
lkqau(kri,kz(rz—4pq)+2,u)[)ﬁ[lJ 1 Pt clsinh(:;‘ r2-4pq)+czcosh(§1 rz—qu) | (70)

e x'p-p Vq 'q{ 2 2 clcosh(;\}rz—zlpq)+czsinh(§}r2—4pq)

Substituting the formulas (8), (10), (12) and (14) obtained
by Peng (2009) into Equation (70), we have respectively
the following exact solutions for Equation (1):

(i) If || > [c, |, then

ikqaq(krt‘,k2(r2—4pq)+2y”;rrJJ L
gl 2

Uy(6) =04+ Zkzpq—y 1 zq qL ?

(71)

1
tanh(§ r'-4pg +59”(01Cz)%]} l ,

.|

Where y, =tanh™ el )
1

(ii) If [c,| >c,| # 0, then

nE
. K tak pyk'(F =4pq) 20 || A-1 ) P-4 . . (72)
uas(é)—aﬁ[ 2ol o 2400 “N :”{ 4 2pq coth(imwgn(clcz)w)H

®'m-g il [ﬂ 2

Where , =coth™ MJ
¢

(il |c,] > [c.|=0, then
e
uw(g):aﬁ[k:pmvtqkp\]k’(rz-wq)w] HJJ /1+ r2;4pq coth(g [_rz_4pq)1 (73)

xp-u & Q[ 2
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() [c,|=[c.|, then

qu(g):ao_*_[kzpraﬁrank p«’kz(r2—4pq)+2u]{ﬂ—r+IL{_1+ ,f24pq}l} , (74)

%'pg - 2 qf 2 2

If r2—4pq <0, we have the trigonometric wave
solutions

. (75)

1
o kqav(kri«kz(rZ—qu)+2y”A7r J 7 l4pq—rz wlsin(;\4pq—rz)+czcos(§\4qurz)
u(§)=a,+ : |

v kpg - p 12(1 (ﬂ 2 2 clcos(é 4pq—r2)+czsin(§4'4pq—rz)

Now, we can simplify Equation (75) to get the following
periodic wave solution:

(76)

Ug(@)=ap+

kqau(krer%r”pqwz/x){a-r A4 - |

2pg - n q 2 2

Where & — tan™ [C_Zj ,

¢,

pa-r’
el 2%pg - |W+E R (RIS

T e R ”V rvers )H (77)

Where & = cot—l(C_Z) .

G

If r? —4pq =0, we have the rational wave solutions

Ug() =y +

kqao(kfi«/ﬂ){z—r+y[—i+ c, jl}l (78)

kpg-u | 29 gl 2 cHce

Where ¢, ¢, are arbitrary constants.

Physical explanations of our obtained solutions

Solitary, periodic and rational waves can be obtained
from the exact solutions by setting particular values in its
unknown parameters. Here, we have presented some
graphs of solitary and periodic waves constructed by
taking suitable values of involved unknown parameters to
visualize the underlying mechanism of the original
Equation (1). By using the mathematical software Maple,
the plots of some obtained solutions have been shown in
Figures 1 to 4. The obtained solutions of Equation (1)
incorporate three types of explicit solutions, namely the
hyperbolic, trigonometric and rational solutions.

Some conclusions

We have used the Riccati equation method combined
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Figure 1. The plot of solutions U;,U, with &, =P =(Q = K=u=1r=3.

Figure 3. The plot of solutions Uyq,U,; with &g =P =0 =K = u=1r =3.
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Figure 4. The plot of solutions U,,,U,, with &y =P =q =K =r =1, u=3.

with the (G'/G) - expansion method to construct many

new exact solutions of the nonlinear KPP Equation (1)
involving parameters, which is expressed by the
hyperbolic functions, the trigonometric functions and the
rational functions. When the parameters are taken as
special values the proposed method provides not only
solitary wave solutions but also periodic wave solutions
and rational wave solutions. These solutions will be of
great importance for analyzing the nonlinear phenomena
arising in applied physical sciences. This work shows that
the proposed method is sufficient, effective and suitable
for solving other nonlinear evolution equations in
mathematical physics. Finally on comparing our results in
this article with the results obtained in Feng et al. (2011)
and Zayed and Hoda Ibrahim (2014), we conclude that
our results are new and not reported elsewhere.
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