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In this work, a generalized controller design method for the systems with all pole transfer function has 
been given. The method basically uses the standard forms, which have been introduced firstly in 50’s 
and improved recent years. In the proposed method, a PI controller, which is in the feed forward and a 
polynomial controller, which is in the feedback path, are used. Degree of the polynomial controller can 
be determined according to the degree of the all pole system. Parameters of the controllers can be 
easily found using the standard forms and the proposed simple mathematical operations. The method 
directly targets the step response. In the paper, the advantages of the proposed method with the results 
of some well known controller design methods have been given for comparison. 
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INTRODUCTION 
 
Today, despite many proposed modern controller design 
methods, the use of classical controller design methods 
is still popular. Amongst the reasons for this, superiority 
of the classically controlled system’s performances and 
the easiness of the classical controller design methods 
can be cited. Nevertheless, obtaining the optimum values 
of the classical fix formed controller parameters is known 
for a long time. In these methods, the controller para-
meters are minimized using a known error criteria with 
respect to the system transfer function. Thus, the optimal 
values of the controller parameters are obtained. Early 
works of this field are concentrated on the integral 
squared error (ISE) criterion since these allowed solu-
tions to be obtained in the s-domain by using Parseval’s 
theorem (Chen, 1994). Again, results of the other criteria, 
which are given in many textbooks, such as integral 
absolute error (IAE) and integral time absolute error 
(ITAE) can be obtained by using extensive computations 
or by simulations. Therefore, applications of these me-
thods requires expert designer and the process of the 
method takes long time and needs complex operations. 
Thus,   these  methods  are  not  practical.  On  the  other 
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hand, the use of the closed loop transfer function’s stan-
dard forms, which is another method for optimal controller 
design introduced by Graham and Lathrop (1953) in the 
early 50’s, takes an important role for eliminating these 
disadvantages. This method is based on obtaining sys-
tem’s parameters, which are optimized for the compen-
sated system’s closed loop transfer function. For this 
purpose, coefficients of closed loop transfer functions are 
obtained for optimal responses. Then the general struc-
ture of the standard forms, which is given in Eq.1, can be 
formed by using these coefficients 
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In this way, controller parameters to compensate the 

uncompensated system can be directly obtained from the 
standard forms without using complex and time con-
suming optimization procedures. 

Graham and Lathrop (1953) have used the IAE and 
ITAE criteria for obtaining these standard forms and they 
have only considered all pole Standard forms. On the 
other hand, Dorf and Bishop (1996) have suggested the 
integral squared error (ISE) criterion, but they did not give 
the standard form coefficients. Instead, they have 
obtained the standard form  coefficients  for  the  systems 
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with one zero using the ITAE criteria for a ramp input.  In 
some textbooks, devoting a separate section for the 
subject, in the procedure of obtaining the closed loop 
transfer functions of m poles standard forms with one 
zero, it is assumed that c0=d0 and c1=d1 to have a zero 
steady-state error for a ramp input (Dorf and Bishop, 
1995, 1996). But, this case restricts the independently 
chosen controller parameters in the standard form based 
controller design procedures. Again, these restrictions 
cause very oscillatory step responses for the same sys-
tems. Also overshoot of the responses increases. On the 
other hand, performances of the standard forms, pro-
posed by Atherton and Boz (1998), have almost cured 
these prob-lems. Basically, in the proposed method, stan-
dard forms are obtained for c1�d1. In the same work, 
coefficients of the standard forms with all pole and one 
zero have also been obtained for Integral Squared Time 
Error (ISTE) and Integral of the Squared Time Error 
(IST2E) criteria. 

As for the use of standard forms in the controller de-
sign, many new design methods based on standard 
forms are cited in the literature (Atherton and Boz, 1998; 
Atherton and Majhi, 1998; Atherton, 2006; Kaya and 
Atherton, 2008). Boz and Sari (2008) also proposed a 
new PI-PD controller design method for third order all 
pole systems using standard forms. In addition to this, in 
this work, a generalized version of the controller design 
method for all pole systems has been studied. The de-
sign method uses the standard forms with c1�d1 opti-
mized for ISTE and IST2E criteria. The proposed con-
troller structure consists of a PI controller in the feed 
forward path and also a polynomial controller in the feed-
back path. Degree of the polynomial controller is depen-
dent on the uncompensated system degree (Sari, 2005). 
The controller parameters can be easily and directly cal-
culated using the obtained basic mathematical expres-
sions. The proposed mathematical expressions, which 
are generalized for mth degree of all pole systems, will 
also provide easiness in the applications. The method 
directly targets the step responses and uses the ISE and 
IST2E criteria for minimizing the error signal (e(t)). The 
paper is organized as follows; in the materials and me-
thods section a short description is given for integral per-
formance criteria and Standard forms. The proposed 
method is explained in the results and discussions sec-
tion. Advantages and validity of the proposed method 
over some well known design methods are given with two 
different examples for comparison in the same section as 
well. The conclusions of the work are summarized in the 
conclusions section. 
 
 
MATERIALS AND METHODS 
 
Integral performance criteria 
 
Performances of dynamical systems are usually defined with their 
transient responses. On the other hand,  the  transient  response  is 
determined by measuring the system’s output in terms of rising 
time, settling time, overshoot and steady-state error,  where  a  step  

 
 
 
 
or a ramp signal is applied to the system input.  Ideally, all of these 
measurements must be zero, that is, system output must exactly 
follow the input signal. In practice, however, this is not the case; 
therefore the output must follow the input as close as possible. If 
the system does not give desired performance values, then a 
controller is usually added to the system to achieve the desired 
responses. There are many controller design methods, which are 
currently used in practice. Optimization methods can be counted 
amongst them.  

Description of a function, which is called performance index, is 
usually possible for controller design procedure using parametric 
optimization. A performance index consists of some performance 
characteristics, which the system tries to achieve. This function 
depends on the controller parameters and is optimized numerically. 
This procedure gives optimal controller parameters which are 
appropriate for desired response. If the performance index is 
adjusted to the minimum value according to the system parameters, 
then the system is called optimum controller system. Performance 
index is always a positive number or zero. That is to say, ideal 
system is described as a system which minimizes this index.  

The controller is normally required to minimize the error signal, 
which is the difference between reference input(r(t)), and controlled 
output signal(c(t)) as given in equation 2 
 

                   0)( →te   0≥t .                        (2) 
 
Thus, a criterion suitable to characterize the time response of a 
system is usually given as an integral function of the error, or its 
weighted products. A general form of an integral error criterion may 
be represented as follows 
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Therefore, an optimum dynamic performance may be taken as the 
time response which gives a minimum value of J. The integral 
performance criterion can be expressed in different forms, thus a 
control system is considered optimal if the selected performance 
index is minimized by varying the controller parameters. Since the 
optimal parameters depend directly on the selected criterion, it is 
important to reexamine some of the well known integral perfor-
mance criteria. For over forty years many approaches have been 
used for developing design criteria for optimum transient behavior 
of a system. Two of the most frequently used criteria, which are the 
integral squared error, ISE, and the integral absolute error criterion, 
IAE, were suggested by Graham and Lathrop (1953). The perfor-
mance indices of the two criteria are given by;  
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Time weighted versions of these two criteria have also been 
introduced in (Zhuang, 1992) for ISE and (Graham and Lathrop, 
1953) for IAE. More general representations of these criteria are 
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which is the general time weighted integral squared error criterion, 
and 



 
 
 
 

Table 1.  The minimum ISTE standard forms for a ramp 
input. 
 

Denominator 
s3+1.016s2+4.535s+1 
s4+1.848s3+3.235s2+2.877s+1 
s5+1.289s4+5.091s3+4.013s2+4.595s+1 
s6+1.813s5+5.278s4+6.317s3+6.473s2+3.899s+1 
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which is the general time weighted integral absolute error criterion 
where θ denotes variable parameters which are chosen to minimize 
Jn(θ). According to the formula (6), the J0, J1 and J2 are called ISE, 
ISTE and IST2E respectively. 
 
 
Standard forms 
 
Another method for the controller design is to use closed loop 
transfer function’s standard forms, which were first introduced by 
Graham and Lathrop (1953) in early 50’s. They obtained these 
optimum transfer functions using experimental methods, which 
gave relatively high error rate, in the time domain. In 1995, Dorf and 
Bishop (1995) introduced optimum step responses of the standard 
forms for the ISE and IAE criteria.  Again in the 1996, Dorf and 
Bishop (1996) introduced optimum values of closed loop transfer 
functions for the ITAE criterion in the control handbook, but 
unfortunately they did not give any explanation of how to obtain 
these values. In the 1998, Atherton and Boz (1998) have introduced 
all pole standard forms and Standard forms with a variable zero for 
the ISTE and  IST2E  criteria.   Generally,  the  closed  loop  transfer 
function of a plant can be represented by 
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The steady-state error for this system can be shown to be 
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The form of the input r(t) determines the size of the steady-state 
error. In order to have zero steady-state error with a step function 
input, the requirement is that c0=d0. This also means that in a unity 
feedback control system, the forward transfer function is Type 1 or 
higher. Since the order of the numerator of C(s)/R(s) can be equal 
to or less than the order of the denominator, there are many 
possible forms of C(s)/R(s) for which the steady-state error is zero 
with a step input.  

Steady-state error with a ramp function input become zero when 
c0=d0 and c1=d1. This also means that the system is Type 2 or 
higher. A study has also been made based on this system by Boz 
and the results are given in (Boz, 1999). 
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Standard forms with a zero 
 
With a single zero the transfer function of a standard form may be 
denoted by T1j(s) with the denominator given as in the all pole form 
and the numerator by c1s+1, which is 
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If the closed loop system is required to follow a ramp input with zero 
steady state error, then c1 must be equal to d1, and the optimal 
values of the coefficients for the ITAE criterion can be found in 
(Graham and Lathrop, 1953). As for the ISTE criterion, the standard 
form coefficients for a ramp input can be expressed as in Table 1 
(Atherton and Boz, 1998). 

In many cases, contrary to the classical textbooks devoting a 
chapter for this subject, it is not appropriate to take c1 = d1 for con-
troller design and minimizing the error index procedures (Atherton 
and Boz, 1998). In the case of c1�d1, the optimum values of d 
coefficients vary with the choice of c1. The optimum values of these 
coefficients for the J1 and J2 criteria for T14(s) as a function of c1, are 
given here in Figure 1 (Atherton and Boz, 1998).  Step responses of 
the same system for IST2E criterion are given in Figure 2. As seen 
in Figure 2, the response is getting faster and the error is reduced 
while c1 is increased. 
 
 
RESULTS AND DISCUSSION 
 
OPTIMAL CONTROLLER DESIGN METHOD FOR NTH DEGREE ALL 
POLE SYSTEMS  
 
In this section, a new optimal controller application me-
thod for nth degree all pole systems has been introduced. 
In the suggested controller scheme, as shown in Figure 
3, a PI controller in the feed forward path and a polyno-
mial controller, which its degree changes according to 
system degree in the inner feedback path, have been 
used. In the suggested method, generalized formulae for 
designing optimal controller parameters have been ob-
tained using the standard forms with a zero. Two compa-
rative examples are given to show the validity of the 
method. 
 
 
Generalized optimal controller design method for nth 
degree all pole systems 
 
nth degree all pole system’s transfer function can be 
represented by 
 

01
2

2
1

1

0

...
)(

bsbsbsbsb

a
sG

n
n

n
n +++++

= −
−

      (11) 

 
 
This system can be controlled using a PI controller in the 
feed forward path and a polynomial controller in the inner 
feedback path as shown in Figure 3. Closed  loop  trans-
fer  function  of  the  inner  feedback controller and the 
system can be represented as, 
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Figure 1. Optimum values of d1, d2 and d3 for T14(s). 

 
 
 

 
 
Figure 2. Step responses for different values of c1 for T14(s). 
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and the resulting closed loop transfer function of )(' sG , 
the PI controller and the unity feedback is given by,  
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which can be normalized to the form 
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Figure 3. The use of PI controller in the feed forward path for nth degree all 
pole systems. 
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which means that the response of the system will be fas-
ter than the normalized response by a factory of α.  To 
simplify the analysis, numerator and denominator coeffi-
cients of the normalized system’s closed loop transfer 
function can be arranged as,  
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Substituting these values into the equations 14 gives the 
new transfer function of the system, to be 
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n + 1 degree standard form with a variable zero can be 
represented as in equation 20.  Using  equations  15,  16,  

18 and 19 with the transfer function given in equation 20 
results in the controller parameters as,  
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or generalizing the formula for  k=0, 1, 2, 3, 4, …. n-2 , and 
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Figure 4. Step responses for example 1. 
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equations can be obtained. An interesting aspect of this 
method is the use of polynomial feedback controller. The 
polynomial design method uses feedback from the 
derivatives of the output, which are simply the system 
states when the system is represented in controllable 
canonical form. Since any controllable system can be put 
in this form by a state transformation, the design 
approach can be applied to state feedback design for any 
controllable system, as it is only necessary, in addition, to 
find the transformation which puts it in controllable cano-
nical form (Atherton, 2006).       
 
Example 1. 
Consider the third order transfer function, 
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Comparing the transfer function of this system with that of 
Equation 11, gives the following values, n = 3, a0 = 2, b3 = 
1, b2 = 4, b1 = 6 and b0 = 3. Then choosing  c1 = 2 for ISTE 
and IST2E criteria and using them in the generalized 
formulae, which are given in Equations 29 and 30, result 
in the controller parameters and these data are summa-
rized in Table 2. For the same system, results of some 
well known PID controller design methods are also 
obtained.   These   are  Refined  Ziegler-Nichols  (R.Z-N) 

(Hang et al, 1991), Astrom Hagglund(A-H)(Astrom and 
Hagglund, 1984) and Gain-Phase(Zhuang and Atherton, 
1993) controller design methods. Summary of the results 
obtained from these methods are given in Table 3. Fi-
nally, step responses of all design methods together with 
that of the suggested design method are plotted in the 
same Figure for comparison (Figure 4).  

It is seen from the Figure 4 that, A-H method gives most 
oscillatory response and longest settling time. On the 
other hand, result of the suggested design method for 
IST2E gives minimum overshoot, settling time and little 
oscillation. ISTE design also gives relatively less over-
shoot and short settling time but its response is faster 
than the IST2E design. 
 
 
Example 2. 
 
In this case, consider the fourth order transfer function, 
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Coefficients of the transfer function are n = 4, a0 = 6, b4 = 
1, b3 = 4, b2 = 12, b1 = 18 and b0 = 9. Again choosing c1 = 
2 for ISTE and IST2E criteria from the Figure 1 gives the 
d coefficients as seen in Table 4. Using these coefficients 
and equations 13, 14, 15, 16 and 17 result the suggested 
controller parameters, which are summarized in Table 4. 
For the same  system,  the  R.Z-N,  A-H  and Gain-Phase 
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Table 2. Results of suggested controller design method for Example 1. 
 
 c1 d1 d2 d3 J l1 l0 k1 k0 
PI  ISTE 2 3.49 4.21 2.1 0.976 6.92 6.6 4.65 3.64 
PI  IST2E 2 3.66 4.53 2.65 2.964 3.45 2.6 2.17 1.36 

 
 
 

Table 3. Controller parameters, which are obtained using the R.Z-N, A-H and Gain-Phase methods for 
example 1. 
 
 Kc �c Tc α  

mφ  β  Kp Ti Td 

R. Z-N 10.5 2.45 2.57   0.1765 6.3 1.28 0.32 
A-H 10.5 2.45 2.57 4 45  7.43 1.97 0.5 
Gain-Phase 10.5 2.45 2.57    5.34 4.53 0.31 

 
 
 

Table 4. Results of suggested controller design method for example 2. 
 

 c1 d1 d2 d3 d4 J l1 l0 k2 k1 k0 
PI  ISTE 2 4.06 5.74 5.3 2.02 2.35 5.07 5 1.45 4.37 3.72 
PI  IST2E 2 4.2 6.51 5.76 2.66 10.47 1.7 1.28 0.17 0.69 0.37 

 
 
 

Table 5. Controller parameters, which are obtained using the R.Z-N, A-H and Gain-Phase methods for 
example 2. 
 

 Kc �c Tc α  
mφ  β  Kp Ti Td 

R. Z-N 4.13 2.12 2.96   0.569 2.48 1.48 0.37 
Å-H 4.13 2.12 2.96 4 45  2.92 2.28 0.57 
Gain-Phase 4.13 2.12 2.96    2.1 2.18 0.36 

 
 

 
 
Figure 5. Step responses for Example 2. 

methods yield the controller parameters, which are given 
in Table 5. Step responses of all design methods are also 
given in Figure 5.   

As in the Example 1, A-H method gives biggest over-
shoot. On the other hand, IST2E and R.Z-N methods pro-
vide minimum overshoot. But the settling time of the 
IST2E method is better than that of the R.Z-N method. 
Again ISTE method gives relatively fast response with 
little oscillation.    
 
 
Conclusion 
 

In this work, a new approach to obtain the optimum 
controller parameters for nth degree all pole systems has 
been introduced. The suggested method basically uses 
the optimized standard forms with a variable zero and 
directly targets the step response shaping in the time 
domain. As it is pointed out in the work, choosing c1�d1 in 
the standard forms yields relatively better system perfor-
mances to the step input. By suggesting the generalized 
formulae for the optimal controller design, the design 
procedure is simplified. Thus, the need for expert  person 
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person in controller design is eliminated. Again the sug-
gested method contains simple mathematical operations, 
thus there is no need to optimize the system every time 
and the time, which is needed for controller design, is 
shortened. Because of the use of simple mathematical 
formula, the method can be easily used with a micro-
controller. As it is seen from the examples, the method 
gives superior responses over some well known design 
methods, thus it can be preferable in designing the opti-
mum controller. The results of the work can also be used 
in the state feedback design as indicated in the text. 
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