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Digital watermarking techniques have been been largely applied into copyright protection and 
authentication of multimedia data. This paper proposes a novel digital watermarking algorithm for 
digital images by combining the hyperanalytic wavelet packet transform (HWPT) decomposition and 
Learning Vector Quantization (LVQ) neural network. For inserting watermark, the non-overlapping 
blocked original images are decomposed according to two-dimensional hyperanalytic quadrantal 
wavelet packet and the preprocessed watermark image is embedded into the selected coefficients 
windows with different angles. Subsequently, in order to accomplish watermark strength maximum and 
to decrease the visual distortion, a competitive learning procedure is applied to train with the set of 
LVQ training patterns and the trained LVQ is attributed automatically to classify a set of testing patterns 
while encoding corrected errors. Thus, it maintains the visual quality and and meanwhile reduces the 
error rate by providing maximum possible required information.  The simulation results demonstrate 
the proposed watermarking procedure has remarkable performances in the imperceptibility and 
robustness to general signal processing operations and some geometric attacks. 
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INTRODUCTION 

 
Today’s information driven economy is featured by the 
tremendous growth of telecommunication networks 
techniques and the explosion of day-to-day data 
processing of the immense amount of multimedia data. 
And protecting proprietary rights becomes much more 
problematic when digital content can easily be 
disseminated through communication channels such as 
the Internet. Consequently, there is an urgent demand for 
techniques to ensure tamper-resistance and protect the 
copyright of digital contents as which could easily be 
disseminated through communication channels such as 
the Internet. Amongst them, digital watermarking 
techniques have been applied by embedding some 
watermark that contains information of a copyright sign or 
indicates the ownership of the content,  is  embedded  into  
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the host multimedia product, because that embedded 
watermark remains imperceptible and indiscernible and 
and it is hard to remove by unauthorized persons even 
under certain manipulations such as addition of noise, 
compression, tampering and scaling operations. And then 
only the authorized recipient of the digital content can 
extract or detect the watermark from the watermarked 
products (Cox and Miller, 2002). 
   Throughout recent years, many approaches have been 
used to operate watermarking in wavelet domain, 
primarily because of its proven efficiency and its straight 
forward implementation for image watermarking (Zhang 
et al., 2004; Wang and Lin 2004).  
Additionally, Zhang et al. (2004) presented an adaptive 
block-based blind watermarking algorithm. In this 
algorithm, the coefficients of the detail subbands are 
modified by using the statistical characteristic of the 
detailed subbands to embed and blind detect the 
watermark adaptively.  
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The quantizing super trees are proposed for a wavelet-
based watermarking technique in (Wang and Lin, 2004). 
Each watermark bit is embedded in various frequency 
bands and the information of the watermark bit is spread 
throughout large spatial regions. Allowing for better 
representation of image features, complex wavelet 
transform (CWT) (Thompson et al., 2007; Bulow and 
Sommer 2001; Mabtoul et al., 2006) is introduced into 
digital watemarking methods. For handeling the cases of 
grey scale, color image and video watermarking, 
(Thompson et al., 2007) applied spread transform 
embedding into the complex wavelet domain. The 
combination of the watermark insertion and the human 
visual system satisfies the imperceptibility requirement of 
watermarking systems in this mothed. In addition, spread 
transform watermarking has emerged as a method of 
taking the advantages of spread spectrum and 
quantization based data hiding algorithms, offering 
improved levels of capacity and robustness. Since the 
Hyperanalytic Wavelet Transform (HWT) by Sofia and 
Georgios (2006) is a special case of the Gabor filters with 
complex coefficients it has the directional advantages of 
the Gabor filters but requiring less computation the dual-
tree complex wavelet transform (DT-CWT). Furthermore, 
it is better than DWT as it is approximately shift 
invariance and has good directional selectivities in two 
dimensions. In Nafornita et al. (2007), it is proposed a 
watermarking scheme using pixel-wise masking in the 
HWT domain.   
   Artificial intelligence approaches for watermark insertion 
and extraction remain effective watermarking techniques 
applied to the frequency domain and spatial domain (Fu 
et al., 2004; Hou and Yen, 2010; Wen et al., 2009). In Fu 
et al. (2004), a novel watermarking scheme based on the 
support vector machine has been proposed. For 
improving the scheme’s robustness, the SVM can be 
fused with traditional watermarking systems and 
memorize the relationship between the watermarked bit 
and the host. The detector’s robustness can be reached 
by the good generalization ability of the SVM. In Hou and 
Yen (2010), the special structure and property of image in 
multiwavelet domain are applied to design the 
watermarking algorithm, and a mean value modulation 
technique is employed to modulate a set of multiwavelet 
coefficients in approximation sub-bands. The mean value 
modulation technique can efficiently reduce effects of 
image distortion when suffering from different attacks. In 
order to robustly extract watermark, SVMs is used to 
learn mean value relationship between watermark and 
coefficients in multiwavelet sub-bands. However, it is 
important to mention that the previously cited 
watermarking schemes based on SVM cause overfit 
because of too much training patterns. In Wen et al.  
(2009), it presents a blind digital watermarking algorithm 
based on probabilistic neural network.The host image is 
decomposed into wavelet domain, then watermark bits 
embedded in the selected coefficients blocks. 

 
 
 
 
In watermark extraction, the original watermark is 
retrieved by neural network. At the phase of extracting 
watermark data, the trained probabilistic neural network 
recovers the watermark from the watermarked images. 
However, only the standard deviation is selected for 
deciding the threshold, which may cause poor robustness 
to compression and less satisfactory transparency. 
   In this paper, a robust blind watermarking scheme 
based on LVQ neural network in HWPT domain is 
introduced with low computational complexity, good visual 
quality and reasonable resistance toward various image 
processing operations. In order to eliminate the 
correlation of watermark image pixels and to enhance 
system robustness and security, a watermark image as 
copyright sign is preprocessed with an affine scrambling. 
And then the watermark insertion is implemented in eight 
hyperanalytic wavelet subbands coefficients ±arctan(1/3), 
±arctan(1/2), ±arctan(2) and ±arctan(3) angles selectively. 
Moreover, LVQ neural network is applied to memorizing 
the relation between the watermark and the matching 
watermarked image successfully. Thus the watermark 
can be recovered exactly from the distorted image 
without the original images. The watermark is extracted 
blindly from the distorted image directly in HWPT domain. 
Through several experiments, the derived results 
demonstrate that the proposed scheme is not only robust 
against operations such as lowpass filtering, noise 
adding, and JPEG compression etc, but also robust 
against scaling and cropping attacks and advantageous 
performances compared to other schemes. 
 
 

CONSRTUCTION OF HYPERANALYTIC WAVELET 

PACKET TRANSFORM  
 

Hilbert transform 
 

In Mathematics and signal processing, the Hilbert 

transform is a linear operator which takes a function u(t)  

and produces a function (u)(t)H , in order to resolve a 

particular example of the Riemann–Hilbert problem for 
holomorphic functions with the same domain. It is a 
fundamental mothed in Fourier analysis, and supplies a 
concrete means for determining the conjugate of a given 
function or Fourier series. Furthermore, the Hilbert 
transform is the most important in signal processing 

where it is employed to derive a signal u(t)  in the 

analytic representation. 
   In many signal processing and communication 
applications, a fundamental problem appearing is that of 

extracting the amplitude a(t) , and instantaneous phase 

(ρ(t)  of a real, modulated signal u(t)   a(t)cos(ρ(t)) . 

The Hilbert transform can be conserdiered as the 

convolution of u(t)  with the function h (t) 1  / (π t)H . 

Because   retrieval   of  h (t)H   is  ill-posed  which  is  not 
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Figure 1. The dual-tree complex wavelet transforms filtering. 

 
 
 

 
 
Figure 2. HWT implementation architecture. 

 
 
 
integrable the integrals which is not convergent for the 
defining convolution. Therefore, the Hilbert transform of a 

signal u(t)   is defined by   
1 u(τ)

u t   dτ
π t τ










H . If 

the underlying amplitude functiona(t)  is assumed to be 

relatively narrowband compared with u(t) , then the 

analytic signal can be represented by: 
 

      au t u t j u t  H

           jρ t
a t cos ρ t ja(t)sin(cos ρ t a t e      (1) 

 

Where    aa t u t . 

 
 
Hyperanalytic wavelet transform 

 
For In the DWT domain, a small shift in the input signal 
can produce a very different series of wavelet coefficients 
at the output one, due to the exploited decimation 

operation in the transform and poor directional selectivity. 
For overcoming disadvantages, the DTCWT provides a 
powerful tool allowing for better representation of image 
features in signal and image analysis, which is better 
than DWT as it is approximately shifting invariant and has 
good directional selectivities in two dimensions. This 
means that with a given complex wavelet coefficient, the 
squared magnitude provides an accurate measure of 
spectral energy at a particular location in the space, 
scale, and orientation. It also means that CWT-based 
algorithms will automatically be almost shifting invariant, 
thus reducing many of the artifacts of the critically 
sampled DWT. Here, it illustrates basic configuration of 
the dual-tree filtering approach used to obtain in Figure 1. 
The DTCWT coefficients may be interpreted as arising 
from the DWT associated with a quasi-analytic wavelet, 
however the design of these quadrature wavelet pairs is 
quite complex and it can be done only through 
approximations. In the new implementation of the HWT, a 
Hilbert transform of the data is applied. The real wavelet 
transform is then applied to the analytical signal 
associated to the input data, and complex coefficients are 
obtained. The imaginary part of an analytic signal is 
represeted by the Hilbert Transform (HT) of its real part. 
The filtering unit of HWT is designed as Figure 2.   

   The wavelet functions ( f (x, y) (x)ψ(y) ) are 

constructed such that the HWT coefficients are 
hyperanalytic signals in their spatial indexing, and refer to 
such mother wavelets as hyperanalyticizing. The Hilbert 

transform of complex wavelet (ψ(x)  ψh(x)   jψg(x)  ) 

is applied representation of HWT implementing. Then, the 
real wavelet transform is applied to the analytical 2-D 
signal associated to the input data for obtaining complex 
coefficients.                    
  The mother wavelet function that constructs monogenic 
coefficients    is    a    2-D   monogenic   signal,   and   any  
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Figure 3. Frequency-domain partition resulted from a 

two-level  2-D HWT decomposition, where R and I are 
the real axis and the imaginary axis of the complex 
frequency domain, respectively. 

 
 
 

 
 
Figure 4. The diagram of HWPT.  

 
 
 
quaternionic analysis filter produces hypercomplex 
wavelet coefficients as a hypercomplex wavelet. The 
separable 2D-HWT implementation produces the oriented 
wavelets of four trees, and each one implementing a 2D-
DWT. The first tree is employed to the input image. 1D 
discrete Hilbert transforms are utilized to compute the 
second and the third trees with the rows (Hx) or columns 
(Hy) of the input image. The fourth tree is implemented to 
the outcome obtained after the computation of the two 1D 
discrete Hilbert transforms of the input image. The 
hypercomplex   signal   of  a  real-valued  image  f(x,y)  is  

 
 
 
 
defined as: 

 

         θ θx θyf x, y f x, y i f x, y j f x, y   H H

  θy θxk f x, y H H  

             

           1 2 (3)

θ H;θ H;θ H;θf x, y if x, y jf x, y kf x, y         (2) 

 

Where
2 2 2 j 1i  k    , k ij ji    and θ  is an 

arbitrary direction. 
   The enhancement of the directional selectivities of the 
2D-HWT is implemented by linear combinations of 
subband coefficients belonging to each quadrant 2-D 
DWTs. This process is repeated several times until the 
desired final scale is reached.  
   Comparing to the 2D-DWT, which has only three 
preferential orientations: π / 2 (vertical details) and π / 4 
(diagonal details). There are two parts in diagonal details 
and one represents higher-frequency detailed information 
which covers the high-frequency component. However, 
for a two-dimensional hyperanalytic quadrantal wavelet, 
multi-resolution decomposition of HWT of an input image 
has the more directional selectivities, presented in Figure 

3. According to the directions of θ , the 2D-HWT has six 

advantageous orientations: ±arctan(1/2), ±π/ 4 and 
±arctan(2).  
 
 
Hyperanalytic wavelet packet transform 
 
In this section, it introduces a quad-tree wavelet 
transform called Hyperanalytic Wavelet Packet Transform 
(HWPT), by noting that the approximate shifting 
invariance is achieved by a real biorthogonal transform 
with the double-sampling rate at each scale. HWPT is 
obtained by computing parallel quadruple wavelet trees, 
which are subsampled differently. In HWPT, it analyzes 
an image simultaneously at different resolution levels and 
orientations and allocates the further iterative 
decomposition of the high-pass subbands as well as the 
low-pass ones, which provides more directional 
selectivities and better frequency localizations. For 
example, in 2-level HWPT decomposition, there are 32 
frequency localization and 26 different orientations such 
as  ±arctan(1/4), ±arctan(1/3), ±arctan(1/2), ±arctan(2/3), 
±arctan(3/4), ±arctan(1), ±arctan(5/4), ±arctan(4/3), 
±arctan(3/2), ±arctan(5/3),  ±arctan(2), ±arctan(3) and 
±arctan(4). Taking advantages of shifting invariances and 
directionality selectivities, the decomposition structure 
and subband selection are determined by considering the 
better performances of the watermark insertion and 
further the reduction of computational complexity. The 
block diagram of decomposition of HWPT is illustrated in 
Figure 4, where presents real and imaginary parts 
coefficients from a and b respectively.  



 
 
 
 

 
 
Figure 5. Impulse responses of the HWPT at level 2.  

 
 
 
And the corresponding the impulse responses of two-
level decomposition is shown in Figure 5. 
   Discrete HWPT can be described as follows, where an 

image W ( N M pixels) is decomposed into each 

approximation image and the difference components 
images represented in following notation: 

 
 1 q,p 1 q,p

4k(m,n) i j n;k 2m;l 2n

k l

W φ (l)φ (k)W


   

   2 q,p 1 q,p

4k 1(m,n) i j n;k 2m;l 2n

k l

W φ (l)ψ k W


    

   3 q,p 1 q,p

4k 2(m,n) j i n;k 2m;l 2n

k l

W φ (k)ψ l W


    

     4 q,p 1 q,p

4k 3(m,n) i j n;k 2m;l 2n

k l

W ψ l ψ k W


                     (3)          

 

Where iφ (l) and  jψ l are 1-D complex filters applied 

along the columns and rows respectively. Note that in the 
φ  andψ , i and j are the quaternionic imaginary numbers 

that satisfy ji k .
0

0,( , )m nW  is the pixel value of 

coordinates (m,n) of image W. At each step, the p-level 

subbands of coefficients   p

kW  is decomposed into four 

quarter-size images of (p+1)-level which coefficients are : 

 
 1 q,p 1

4k(m,n)W


,  
 2 q,p 1

4k 1(m,n)W


 , 
 3 q,p 1

4k 2(m,n)W


  and 
 4 q,p 1

4k 3(m,n)W


 . 

 
In the process of inverse HWPT, the original image can 
be reconstructed from these HWPT coefficients. At 
different resolution levels and orientations, the 
approximation images and their different detailed sub-
images can be used to redintegrate the reference images 
of higher resolution. It should be noted that HWPT has a 
variety of predominant applications because there are 
some following advantages. Firstly, it provids efficient 
baseband simulation techniques with the complex 
envelope of the analytic bandpass signal using reduced 
sampling rate and compacted data transmission.  
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Secondly, it offers better directional selectivities of three 
phases for the analysis using the phase concept with the 
same amount of computational resources and 
computation required time. Thirdly, it is the simplicity and 
the flexible structure with any orthogonal or biorthogonal 
mother wavelet. Furthermore, HWPT framework provides 
more detailed description of high frequency parts of 
signal and it is universal in adapting the transform to an 
image without training or assuming any statistical 
property because the same frequency bandwidths can 
provide good resolution regardless of quadrantal wavelet 
frequencies.  
 
 
LEARNING VECTOR QUANTIZATION 

 
Learning vector quantization (LVQ) by Aras et al. (1999) 
is a subtype of artificial neural networks developed by 
Kohonen and colleagues. LVQ is a nearest an associative 
automatically nearest-neighbor classifier that arbitrarily 
classifies patterns into classes with an error correction 
encoding procedure related to competitive learning, 
which contains input layer, competitive layer and output 
layer.  

The input layer contains one node for each input 
feature and the output layer contains one node for each 
class. The competitive layer will automatically learn to 
classify input vectors in a supervised manner. However, 
the classes that the competitive layer finds are dependent 
only on the distance between input vectors. The basic 
idea is to overcast the input space of samples with 
codebook vectors, each one representing a region 
marked with one class. A codebook vector can be 
considered as a prototype of one class member, localized 
in the center of a class or decision region in the input 
space. A class can be exemplified by an arbitrary number 
of codebook vectors however one codebook vector 
represents one class only.  
   During the training process of the LVQ, the Euclidean 
distance from a training vector x, to each node’s code-

book vector iw , in the competitive layer (Kohonen layer) 

is calculated according to the equation: 
 

1

2 2
2

1

[ ( ) ]
N

i i ij j

i

d w x w x


                                   (4) 

 
The nearest node is declared to be the winner, and its 
code-book vector is iterated according to whether the 
winning node is in the class of the training vector: 
If the winner is the correct class, 

then 1 α(x )i i iw w w    . 

If the winner is the error class, 

then 1 α(x )j j jw w w    .  

Where  1iw    is  the  updated  code-book  vector   after  
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iteration, 
iw  the input vector, α  and β are learning 

parameters. The orientation of the code-book adaptation 
while using Equation 4 depends upon whether the class 
of training pattern and the class allocated to the reference 
vector are same. If they are same, the reference vector is 
moved near to the reference vector training template, 
otherwise, it is moved away. This movement of the 
reference vector is controlled by the learning parameters. 
In this paper, the advanced version of Kohonen’s LVQ 
algorithm, LVQ3, has been adopted. A brief description of 
the algorithm is given below: 

   In LVQ3, two code-book vectors iw and jw , which are 

the two nearest neighbors to  x, are found by using the 
Euclidean distance criterion simultaneously, where x and 

iw  belong to the same class, one of them is correct, say, 

and x and iw  belong to different classes. Moreover, x 

must fall into a zone of values called the window, which is 

defined in terms of relative distances id  and jd from 

iw and jw  to x, respectively. Then x is defined to fall in a 

window of relative width    if  

 

,

1
min( , )

1

ji

i j
j i

dd

d d









                                                    (5) 

 
Furthermore, ensuring that the code-book vectors 
continue to approximate the respective class 
distributions, the input sample x is located inside the 
window between the two closest code-book vectors 

iw and jw , then: 

 

          1i i iw t w t t x w t     

        1j i jw t w t t x w t                               (6) 

 

Additionally, even when x,  iw and jw , belong to the 

same class, the code-book vectors are adjusted to 

enhance the improvement as follows for k i,  j :  

 

          1k k kw t w t t t x w t                       (7) 

 

In (6) and (7), t is the discredited time index, and  t  

and  t  are called the learning rate and relative 

learning rate, respectively. 
   During testing, LVQ classifies an input vector by 
assigning it to the same class as the output unit has its 
code-book vector closest to the input vector. LVQ shows 
good performance for complicated classification problems 
because   of   its   fast   learning   nature,   reliability,  and  

 
 
 
 
convenience of use. It performs particularly well with 
small training sets. This property is significantly important 
for image processing applications, where training data is 
very limited; it reduces the computational complexity 
incurred in the testing of traditional non-parametric 
methods. 
 

 

THE PROPOSED SCHEME 
 

The basic ideas of embedding and extracting watermark 
are as following: Firstly, the original host image is 
partitioned into non-overlapping small blocks, and then 
each block is decomposed by hyperanalytic wavelet 
packet transform. Secondly, considering the better 
performances of accomplishing maximum the watermark 
strength while decrease the visual distortion, the 
watermark insertion is implemented in eight hyperanalytic 
wavelet subbands coefficients ±arctan(1/3), ±arctan(1/2), 
±arctan(2) and ±arctan(3) angles selectively in every 
block. For further computational complexity reduction, the 
selective blocks are embedded watermark according to 
calculation of the expectations and the standard 
deviations in these windows. The embedded watermark 
consists of two parts, a binary signature which is 
pretreated in order to eliminate the correlation of 
watermark image pixels and enhance the system security, 
and reference position sequence is to preserve the same 
trained LVQ neural networks in the insertion and 
extraction procedure. LVQ neural network is applied to 
memorize standard deviation value modulation between 
the embedded watermark and the coefficients of 
matching watermarked image with a set of training 
patterns. Finally, the classifier of trained LVQ is employed 
to classify a set of testing patterns for the watermark 
extraction. Following the results produced by the 
classifier, the watermark is embedded and extracted. 
 

 

The watermark insertion 
 

Step 1: The host image ( M N ) is partitioned into non-

overlapping small blocks with each size of 48 × 48, where 
two-level HWPT is preformed. After the decomposing 
coefficients, 32 frequency localizations are obtained and 
eight hyperanalytic wavelet subbands coefficients are 
selected such as, ±arctan(1/3), ±arctan(1/2), ±arctan(2) 
and ±arctan(3) angles selectively in every block for 
maintaining transparency and robustness of the 
presented watermarking scheme. Splitting each sunband 
into 4 windows and calculating the standard deviation and 
expectation of each small window (3 × 3) for 
decomposition structures selection can well consider to 
the performances of the watermarking algorithm and 
computational complexities according to: 
 

 
1/2

1 1
2

average

n 1m 1

(I i m, j n D ) / 8standardD
 

 
    
 
         (8) 



 
 
 
 

1 1

n 1m 1

.      I(i m, j n) / 9averages t D
 

                            (9) 

 

Where I (i,  j )  is the central coefficients of selected 

window and I(i m, j n)   are the coefficient of each 

small window, variable m,n represent the coefficients 
coordinates.  
   The watermark distribution is adaptive to the standard 
deviation of each window in the spatial domain. 
Moreover, the small spatial windows with larger deviation 
would be modified significantly. On the other hand, the 
small structural windows of smaller deviation wouldn’t be 
modified. However, the watermark distribution scheme 
would result in a worse robustness to compression and a 
less satisfying transparency in HWPT domain because 
the small structural windows of smaller deviation could be 
significant to allow the watermark information embedding 
in HWPT domain. Thus, according to the potential 
drawback, the sorting ascending strategy is employed to 
choose and control the threshold T for modifying 
adaptively coefficients in both the expectation and the 

deviation of each 3 3  window within the selected 

hyperanalytic wavelet subbands coefficients. Calculate 

the value of thresholdD  in each 3 3  window for obtaining 

threshold T according to the equation 
 

threshold 1 average 2 standardD τ D τ D                               (10) 

 
Threshold T is selected by the amount of t windows, 

which is assigned by a secret key 1K .    

 
Step 2: The watermark W segment in two subsequences 

S and L,  and digital signature S with s sm n  bits and 

reference position information L with l bits. Both of S and 
L are embedded to selective small coefficients windows 
with better performance of robustness and transparency.  

 The signature information S ( s sm n ) need to be 

pretreated in order to eliminate the correlation of 
watermark image pixels and enhance system robustness 
and security. For the advantages of reducting computed 
complexities and obtaining easily inverse transform 
comparing with Arnold transform, the watermark image is 
pretreated through an affine scrambling. The affine 
scrambling is showed as equation, 

'

'

   

   

a b u eu

c d v fv

      
       
     

, where 
   

0
   

a b

c d

 
 

 
           (11) 

For enhancing the statistical imperceptible through 

embedding watermark, series of  11 ，values substitute 

for   01，  which is the value of watermark image by 

scrambling,    respectively.    The    new    watermark     is  
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generated 
'( )i i iw w p , according to a sequence of the 

binary pseudo-random 
ip modulating the watermark, 

where  11ip   ，  and 0 s si m n   .The reference 

position sequence L is not modified in the embedding 
process, which is in the character of preservation of the 
same learned LVQ in the insertion and extraction of 
watermark information. Finally, the watermark 

  s sw t ,1 t M,M m n lW        is a binary 

sequence, which is selected randomly position sequence 

 ( , )MP p i j  according to secret key 2K  assigned by 

the image owner. 

 
Step 3: In the procedure of training the LVQ neural 
networks, each pixel can be forecasted by its neighbors 
because it has high relevance to its neighbors. The 
relationship is employed to be learnt by the training 
process of LVQ neural networks so that it maintains 
unchanged or changes a little when the watermarked 
image robust to some image operations. The training 

data in every 3 3   window is extracted from the each 

reference position in a subset of P ,  
1 1

{I  i ,  j }t tQ  . The 

training dataset is obtained by the neighbors of the 
central pixel which are (12) 

Tan-sigmoid function tanf  is adopted by denoting a 

transmission function in the competitive layer for training 

LVQ and it is given by tan

1

f ( )
N

ij j

i

w x


 .   

Step 4: In each embedding position, the forecasting 

dataset is obtained in a 3 3  window and it is given by 

(13). 
By the training with a nearest associative automatically 
nearest-neighbor classifier, the forecasting value is 
obtained in each window. From a training vector X to 

each node’s code-book vector iw  in the competitive 

layer, the Euclidean distance 
LVQ

td  is obtained. Log-

sigmoid function logf  is employed by denoting a 

transmission function in the output layer with 

2log

1

f p
N

LVQ

ij t t

i

w d


 
  

 
 . 

 Compared the forecasted pixel values and the original 
ones, the strategy of watermark information insertion are 
as follow (14) 

Where 
2 2

σTt t   denotes the strength of watermark and  

σ  is an embedding constant for adjusting the 

compromise between visual quality and robustness of the 

watermarked image, and 
2

Tt  is thresholdD  in block 2t , and 
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Figure 6. the original images of (a) Lena; (b) Baboon; (c) Barbara and (d) watermark. 

 
 
 

 
2 2

 I i ,  jt t
 is the central coefficient of selected window. 

 
Step 5: Signature bits are embedded into the selective 
windows and 2-level inverse HWPT of the sub-images is 
performed. Then, the watermarked image can be 
obtained. 
 
 
The watermark extraction 
 
In the proposed algorithm, watermark can be extracted 
without the original image and LVQ is employed to 
recognize the extracted watermark because it classifies 
an input vector by assigning it to the same class as the 
output unit has its code-book vector closest to the input 
vector. The procedure is summarized as follows:  
 

         

     
1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1

{   i 1,  j 1 ,   i 1,  j ,   i 1,  j 1 ,   i ,  j 1 ,   i ,  j 1

,   i 1,  j 1 ,   i 1,  j ,   i 1,  j 1 }, 1,2,

t t t t t t t t t t t

t

t t t t t t

x I I I I I
X x

I I I t l

         
  

      
 

  (12)  

 

         

     
1 2 2 2 2 2 2 2 2 2 2

1

2 2 2 2 2 2

t t t t t t t t t t t

c t

t t t t t t 2

x {   i 1,  j 1 ,   i 1,  j ,   i 1,  j 1 ,   i ,  j 1 ,   i ,  j 1
x

,   i 1,  j 1 ,   i 1,  j ,   i 1,  j 1 }, t 1, 2,

I I I I I

I I I l l m
X

l

         
  

         
 

      (13)  

 

  

  
2 2 2 2 2

2

2 2 2 2 2

t t t t t

t

t t t t t

max I  i ,  j , p α      s 1
δ  

min I  i ,  j , p α      s 0

if

if

  


 
 



              (14) 

 
 
Step 1: Two-level hyperanalytic wavelet packet transform 
is preformed on the watermarked image and eight 
hyperanalytic wavelet subbands coefficients are selected 
and each selected subband is split into 4 windows 

according to the secret key 1K . The selected randomly 

position sequence  ( , )MP p i j  is obtained according 

to secret key 2K . 

Step 2: The LVQ model can be constructed by a set of 
training patterns training. The training dataset component 
is extracted from the attacked watermarked image. In the 

training process, the training data in every 3 3   window 

is extracted from the each reference position in a subset 

of P ,  
1 1

{I  i ,  j }t tQ  . The training dataset 'X  is 

obtained by the neighbors of the central pixel which are 
(15) 
 
Step 3: The actual output dataset are forecasted to 
extract signature information by using the well-trained 
LVQ in each embedding position by (16) 
By the training with a nearest associative automatically 
nearest-neighbor classifier, the forecasting value is 

obtained in each window. From a training vector X  to 

each node’s code-book vector iw  in the competitive 

layer, the Euclidean distance 'td  is obtained. The 

watermark bits are extracted by comparing the relation 
between the actual pixel values and forecasted ones by 
the trained LVQ neural networks. The relations are 
described as follows (17)  
 

Step 4: A complete watermark sequence 
'w is obtained 

and inverse affine transform perform on the sequence, 
then binary watermark is extracted from the revised 
selective image window.  
 
 
EXPERIMENTAL RESULTS 
 
In this section, some numerical experiments and 
simulations are presented to evaluate the performance of 
the proposed watermarking scheme. In all experiments, 

the 8-bit grayscale images (512 512 ) including “Lena” 

“Baboon” and “Barbara” are tested (shown in Figure 6. 

(a)–(c)), and a 32 32  binary image is regarded as the 
owner’s signature which is used to verify image 
copyrights   as   shown   in  Figure  6(d)  and  in  order  to  



 
 
 
 
eliminate the correlation of watermark image pixels and 
enhance system robustness and security through affine 
scrambling. In order to implement the proposed 
watermarking scheme, the experimental parameters 
should be determined. In LVQ network, the w value is 
between 0.2 and 0.3. As LVQ is a fine-tuning method for 
the active neuron code-book vectors, one usually starts 

with a fairly small value, like α (0) = 0.01 and lets it 
decrease linearly to zero during the total number of 
iterations of the training set. The train pattern number is 
by 100 for the training LVQ well because the performance 
of training the LVQ isn’t well with a small number of train 
patterns, but too much training patterns may cause 

overfit. For controlling thresholdD
, it is set 1τ 0.1

 and 

2τ 0.5
. The embedding strength constant σ  is 

determined, which controls the compromise between the 
robustness and the transparency of watermark and it is 
set 0.8. The experimental results are compared with other 
schemes in (Nafornita C, et al., (2007); (Wen X, et al., 
(2009)).    
 

 

Imperceptibility 
 

         

     
1 1 1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1

'

' '

1

{ ' i 1,  j 1 , ' i 1,  j , ' i 1,  j 1 , ' i ,  j 1 , ' i ,  j 1

' i 1,  j 1 , ' i 1,  j , ' i 1,  j 1 }, 1,2,

t t t t t t t t t t t

t

t t t t t t

x I I I I I
X x

I I I t l

         
  

      
 

   (15)  
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     
1 2 2 2 2 2 2 2 2 2 2

1

2 2 2 2 2 2 2

' { ' i 1,  j 1 , ' i 1,  j , ' i 1,  j 1 , ' i ,  j 1 , ' i ,  j 1
' '

' i 1,  j 1 , ' i 1,  j , ' i 1,  j 1 }, 1, 2,

t t t t t t t t t t t

c t

t t t t t t

x I I I I I
X x

I I I t l l l m

         
  

         
 

  (16) 

 

 
 

2 2 2
1,      ' i ,  j      p

'
 0,              

t t t

k

I
w

otherwise

 
 


                                    (17) 

 
2 22 2

x y

4
UQI

σ σ [ ]

xy xy

yx




 
                                        (18) 

where 
N N N N

2 2 2 2

i i x i y i

i 1 i 1 i 1 i 1

1 1 1 1
x ,   y ,  σ   (x ) ,σ   (y )

N N N 1 N 1
y x yx

   

     
 

   
 

and 
N

xy i i

i 1

1
σ (x )(y )

N 1
x y



 

  

 
The imperceptibility determines to which extent the 
embedding process has altered the perceptual image 
quality. Image quality is usually measured using Universal 
Image Quality Index (UQI) (Wang Z and Bovik AC (2002)) 
value between the original image 

 ix x |i 1,2, ,480 480    and watermarked image  

 iy y |i 1,2, ,480 480    (18) 

   The UQI of a watermarked image is determined by two 
main factors. On the one hand, given  a  fixed  number  of  
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bits to be embedded, the UQI is determined by the 
embedded strength.  The larger embedded strength leads 
to a more robust watermark, but results in a lower UQI, 
and vice versa. On the other hand, given fixed the 
watermark strength, the number of bits to be embeded 
decides the UQI of the watermarked image. The more 
bits embedded the lower value of UQI, and vice versa.  
   In Simulation results, Table 1 shows that the results of 
watermark embedding on standard images Lena, Baboon 
and Barbara, and the results of UQI is limited over 0.9, 
which guarantees a good watermark transparency. From 
Table 1, in the novel technique, UQI is more than 0.95 
and better than schemes (Nafornita C, et al., (2007); Wen 
X, et al., (2009)) in the watermark invisibility. 

 
 
Robustness 
 
After extracting the watermark, the Bit Error Rate (BER) 
is employed to quantify the correlation between the 
original watermark and the extracted one is used. It is 
defined as follows: 

 

 s sm n '

1 1

s s

w i, j w (i, j) 
BER

m n






 
                           (19) 

 

Where sm  and sn  are the height and width of the 

watermark, respectively. w(i, j)  and 
'w (i, j) are the 

watermark bits located at coordinates (i, j)  of the original 

watermark and the extracted watermark. Here w(i, j)  is 

set to 1, if it is watermark bit 1; otherwise, it is set to 0. 
'w (i, j)

is set in the same way. So the value of 
'w(i, j) w (i, j)

 is either 0 or 1. Here both 
nongeometric and geometric attacks are considered. The 
software of Photoshop CS4 is used to simulate these 
attacks. Table 5 shows watermarks are extracted for the 
distorted host image “Lena”. It can be seen from Table 5 
that the extracted watermark images are all recognizable, 
which also demonstrates that the watermarks are 
successfully detected. 

 

 
Robustness to JPEG compression 

 
With the wide-spread use of image compression standard 
JPEG, lossy compression is a highly common form of 
image processing. It can be seen that the proposed 
scheme, schemes (Nafornita C, et al., (2007); Wen X, et 
al., (2009)) have the best robustness to compression 
when JPEG quality factor is more than 90, but the 
robustness to JPEG lossy compression is remarkable in 
our algorithm when JPEG quality factor is less than 40.  
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Table 1. The performance of attack free. 
 

Tested images Proposed scheme Scheme (Nafornita et al.) Scheme (Wen et al.) 

Lena 

   
PSNR 0.9831 0.9317 0.9142 

Baboon 

   
PSNR 0.9719 0.9328 0.9271 

Barbara 

   
PSNR 0.9839 0.9314 0.9023 

 
 
 
From Table 2, it is shown that our algorithm displays 
excellent watermark robustness to JPEG compression. 

 
 
Robustness to additive noise and filterings 

 
Lowpass filters are a family of filters that are commonly 
applied in image processing, including averaging filters 
and Gaussian filters etc., and therefore, lowpass filters 
are of interest to watermark designers, and additive noise 
is another attack a watermarked image often undergoes. 
Comparing to schemes by Nafornita et al. (2007); Wen et 
al. (2009), the proposed scheme is more robustness to 
lowpass filters and additive noise. Table 3 shows that the 
proposed algorithm has more outstanding performance 
on the attacks of lowpasss filtering and additive noise 
than schemes (Nafornita et al., 2007; Wen et al., 2009), 
but others’ schemes are sensitive to filterings and noisy 
attacks. 

Robustness to images scaling and cropping 
 
The proposed scheme also is particularly interested in the 
watermark performance under the attacks of image 
scaling and cropping. Four different scaling and cropping 
attacks were tried. Table 4 shows the simulation results 
about the proposed algorithm outperforms schemes 
(Nafornita et al., 2007; Wen et al., 2009). 
 
 

DISCUSSION 
 

This paper proposed a blind image watermarking 
algorithm based on the learning vector quantization 
neural networks and the hyperanalytic wavelet packet 
transform.  

HWPT offers better directional selectivity and more 
detailed description of high frequency for the analysis 
using the phase concept with the same amount of 
computational resources but the reduced computation 
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Table 2. The performance of JPEG compression. 
 

Attacks Scheme 

JPEG Proposed Nafornita et al. Wen X et al. 

 Lena 

90 0.0927 0.1017 0.1021 

80 0.0964 0.1245 0.1167 

70 0.1139 0.1751 0.1827 

60 0.1614 0.2015 0.2564 

50 0.2125 0.2675 0.3364 

40 0.2546 0.4037 0.3513 

    

 Baboon 

90 0.0921 0.1025 0.0981 

80 0.0956 0.1185 0.1042 

70 0.1163 0.1621 0.1782 

60 0.1783 0.1974 0.2453 

50 0.2316 0.2249 0.3055 

40 0.2978 0.3817 0.3583 

    

 Barbara 

90 0.0925 0.0986 0.0965 

80 0.0967 0.1157 0.1085 

70 0.1149 0.1731 0.1787 

60 0.1704 0.2058 0.2275 

50 0.2257 0.2752 0.2528 

40 0.2825 0.4133 0.3259 

 
 
 

Table 3. The performance of lowpass filters and additive noise 

 

Attacks scheme 

 Proposed Nafornita et al. Wen et al. 

 Lena 

Median Filter3*3 0.1635 0.2053 0.1862 

5*5 0.2249 0.2942 0.1996 

Gaussian filter 3*3 0.1239 0.1783 0.1571 

5*5 0.2007 0.2478 0.2076 

Gaussian  Noise (0,0.01) 0.1059 0.1271 0.1092 

(0,0.02) 0.1738 0.2025 0.1954 

Salt and  Peppers Noise  (0,0.01)  0.0987 0.1183 0.1081 

(0,0.02) 0.1542 0.2004 0.1819 

   

 Baboon 

Median Filter3*3 0.1503 0.1978 0.1784 

5*5 0.1923 0.2732 0.2264 

Gaussian filter 3*3 0.1341 0.1943 0.1639 

5*5 0.1929 0.2307 0.2245 

Gaussian  Noise (0,0.01) 0.1011 0.1317 0.1275 

(0,0.02) 0.1687 0.1951 0.1853 

Salt and Peppers Noise  (0,0.01)  0.1029 0.1228 0.1164 
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Table 3. Contnd. 

 

(0,0.02) 0.1369 0.1973 0.1645 

  

 Barbara 

Median Filter3*3 0.1679 0.1957 0.1817 

5*5 0.2011 0.2617 0.2322 

Gaussian filter 3*3 0.1467 0.1873 0.1538 

5*5 0.1981 0.2591 0.2115 

Gaussian Noise (0,0.01) 0.1098 0.1254 0.1172 

(0,0.02) 0.1685 0.2018 0.1811 

Salt and Peppers Noise  (0,0.01)  0.0927 0.1183 0.1013 

(0,0.02) 0.1559 0.2173 0.1769 

 
 
 

Table 4. The performance of image sclaing and cropping. 

 

Attacks 

Lena Baboon Barbara 

scheme 

Proposed 

 
(Nafornita et al.) (Wen et al.) 

Proposed 

 
(Nafornita et al.) (Wen et al.) 

Proposed 

 
(Nafornita et al.) (Wen et al.) 

Scaling 

0.5 0.2024 0.2557 0.2257 0.1825 0.2118 0.2071 0.1923 0.2274 0.2082 

7 0.1253 0.1433 0.1345 0.1173 0.1572 0.1411 0.1171 0.1547 0.1352 

1.2 0.1541 0.1789 0.1522 0.1651 0.1981 0.1767 0.1573 0.1803 0.1644 

1.5 0.2186 0.2542 0.2351 0.1856 0.2236 0.1983 0.2076 0.2372 0.2158 

Cropping 

0.1 0.1232 0.1437 0.1373 0.1041 0.1283 0.1093 0.1058 0.1247 0.1192 

0.2 0.1586 0.1887 0.1625 0.1486 0.1689 0.1556 0.1518 0.1779 0.1653 

0.3 0.1771 0.1984 0.1886 0.1611 0.1916 0.1721 0.1648 0.1939 0.1741 

0.4 0.2192 0.2373 0.2251 0.1957 0.2275 0.2171 0.2085 0.2342 0.2173 

 
 
 

Table 5. Results of extracted watermarks in proposed scheme. 

 

     
JPEG 90 JPEG 80 JPEG 70 JPEG 60 JPEG 50 

     
JPEG 40 Median Filter 3*3 Median Filter 5*5 Gaussian filter 3*3 Gaussian filter 5*5 

     

Gaussian 

Noise (0,0.01) 

Gaussian 

Noise (0,0.02) 

Salt and Peppers 

Noise  (0,0.01) 

Salt and Peppers 

Noise  (0,0.02) 
Scaling 0.8 

     
Scaling 0.9 Scaling 1.1 Scaling 1.2 Cropping 0.1 Cropping 0.2 

  

   

Cropping 0.3 Cropping 0.4    



 
 
 
 
time required due to the flexible structure with any 
orthogonal or biorthogonal mother wavelets. To maintain 
transparency and robustness of the presented 
watermarking scheme, windows for watermark insertion 
are selected and a bit watermark is embedded to the 
central pixel in each window. Since the central image 
pixels have high correlation with its neighbors, these 
relations can be predicted by the LVQ neural networks 
training. Moreover, the distorted watermark information 
bits are effectively extracted without limitation of a 
specific set of attacked operations. Experiments 
demonstrate that the watermarked image is numerically 
indistinguishable from the original one, simultaneously 
showing that the proposed scheme is robust against 
general signal processing operations such as JPEG 
compression, median filters, Gaussian filters, additive 
noise and some geometric attacks and the performance 
of the proposed scheme is better than others’ schemes. 
The proposed algorithm is suitable for applications like 
copyright protection, where the embedded data is the 
information relevant to the owner of the digital images 
media. 
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