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This paper focuses on post-buckling analysis of a simply supported beam subjected to a uniform 
thermal loading. The material of the beam was assumed as isotropic and hyper elastic. Both ends of the 
beam were supported by pins (pinned-pinned beam). In this study, finite element model of the beam 
was constructed by using total Lagrangian finite element model of two dimensional continuums for an 
eight-node quadratic element. The considered highly non-linear problem was solved by using 
incremental displacement-based finite element method in conjunction with Newton-Raphson iteration 
method. Based on the above mentioned solution procedure, analysis of large thermal bending and 
buckling/post buckling responses of the beam subjected transversally uniform temperature rise and 
with immovably pinned-pinned ends were presented. Characteristic curves showing the relationships 
between the beam displacements and temperature rise were illustrated. The results are compared with 
the published results obtained by using Timoshenko beam theory. Numerical results showed that the 
results of two dimensional continuum model and those of Timoshenko beam theory differ from each 
other with decrease of the slenderness of the beam. Therefore it is necessary to use a finite element 
model of two dimensional continuums in modelling the beam in the case of small slenderness. 
 
Key words: Post-buckling analysis, total Lagrangian finite element model, two dimensional solid continuum, 
uniform temperature rise. 

 
 
INTRODUCTION 

 
In recent years, with the development of technology in 
aerospace engineering, robotics and manufacturing make 
it inevitable to excessively use non-linear models that 
must be solved numerically. Because, closed-form solu-
tions of large-deflection problems of beams with general 
loading and boundary conditions using elliptic integrals 
are limited. Also, it is known that buckling problems are 
geometrically nonlinear problems. In the case of beams 
with immovable ends, temperature rise causes 
compressive forces end therefore buckling phenomena 
occurs. In recent years, much more attention has been 
given to the thermal buckling of beam structures. But 
most of the studies focused on the analysis of thermal 
buckling and post buckling of Euler-Bernoulli and 
Timoshenko  beams.  Rao and  Raju (1984)  investigated 
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thermal post-buckling of columns. Global descriptions of 
the properties of buckled states of nonlinearly thermo-
elastic beams and plates when heated at their ends and 
edges were investigated by Gauss and Antman (1984). 
Jekot (1996) investigated the thermal post-buckling of a 
beam made of physically nonlinear thermoelastic material 
by using the geometric equations in the von-Karman 
strain-displacement approximation.  

Li (2000) examined thermal post-buckling of rods with 
pinned-fixed ends using the shooting method. Coffin and 
Bloom (1999) gave an elliptic integral solution for the 
symmetric post-buckling response of a linear elastic and 
hygrothermal beam with the two ends pinned. On the 
basis of exact nonlinear geometric theory of extensible 
beam and by using a shooting method, computational 
analysis for thermal post-buckling behaviour of beams 
with pinned-pinned, fixed-fixed and pinned-fixed ends 
were presented by Li and Cheng (2000), Li et al. (2002) 
and Li and Zhou (2001). Thermal post-buckling 
responses  of  an  elastic  beam,  with  immovably  simply  
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supported ends and subjected to a transversely non-
uniformly distributed temperature rising, were investi-
gated by Li et al. (2003). Thermal post-buckling response 
of an immovably pinned-fixed Timoshenko beam 
subjected to a static transversely non uniform tempera-
ture rise is numerically analyzed by using a shooting 
method by Li and Zhou (2003). 

Based on the finite element method, the analysis of 
heat conduction and structural stress and buckling were 
considered at the same time in the design optimization 
procedure by Chen et al. (2003). Vaz and Solano (2003, 
2004) investigated thermal post-buckling of rods and 
came up with a closed form solution via uncoupled 
elliptical integrals. Large thermal deflections for 
Timoshenko beams subjected transversely non-uniform 
temperature rise and with pinned-pinned as well as fixed-
fixed ends were numerically analyzed by Li and Song 
(2006). Aristizabal-Ochao (2007) developed a new set of 
slope deflection equations for Timoshenko beam-
columns which includes the combined effects of shear 
and bending deformations, and second-order axial load 
effects in a classical manner and emphasized the great 
importance of shear effects on static, tension and 
compression stability and dynamic behaviour of elasto-
meric bearings used for seismic isolation. Both thermal 
buckling and post-buckling of pinned–fixed beams resting 
on an elastic foundation were investigated by Song and 
Li (2007). Vaz and Nascimento (2007) examined a 
perturbation solution for the initial post-buckling of beams 
that were supported on an elastic foundation under 
uniform thermal load.  

The large-deflection analysis and post-buckling 
behaviour of laterally braced or unbraced slender beam-
columns of symmetrical cross section subjected to end 
loads (forces and moments) with both ends partially 
restrained against rotation, including the effects of out-of-
plumbness and a new set of slope-deflection equations 
for Timoshenko beam–columns of symmetrical cross 
section with semi-rigid connections that include the 
combined effects of shear and bending deformations, and 
second-order axial load effects were developed in a 
classical manner by Aristizabal-Ochao (2008). Evandro 
and Joao (2008) investigated a simple and efficient 
methodology for sensitivity analysis of geometrically non-
linear structures subjected to thermo-mechanical loading 
in regular and critical states.  

Thermal post-buckling analysis of uniform, isotropic, 
slender and shear flexible columns were presented using 
a rigorous finite element formulation and a much simpler 
intuitive formulation by Gupta et al. (2009). Geometrically 
non-linear static analysis of a simply supported beam 
made of hyper elastic material subjected to a non-
follower transversal uniformly distributed load was 
analyzed by Kocatürk and Akbaş (2010) using finite 
element   model   of   the  beam  constructed  by  using  total 

 
 
 
 
Lagrangian finite element model of two dimensional 
continuum for a twelve-node quadratic element. 

Gupta et al. (2010a) investigated simple, elegant, and 
accurate closed-form expressions for predicting the post-
buckling behaviour of composite beams with axially 
immovable ends using the Rayleigh-Ritz method. 
Thermal post-buckling analysis of columns with axially 
immovable ends were studied using the Rayleigh-Ritz 
method by Gupta et al. (2010b). Vaz et al. (2010) 
examined a perturbation solution for the initial post-
buckling behaviour of slender beams that were supported 
assumed to be double-hinged with fixed ends, preventing 
thermal expansion. 

The aim of this paper was to investigate the buckling 
and post-buckling responses of the considered beam 
made of hyper elastic material under uniform temperature 
rise. 

As it is known, when two dimensions of a structural 
element is very small compared to the other dimension, 
then, for reducing the number of unknowns, one of the 
beam theories was used. When the dimensions of the 
considered element become close to each other, the 
beam theories lose accuracy and therefore they are not 
valid any more. According to assumptions made in these 
theories, some of the free boundary conditions can not be 
satisfied. However, in two dimensional solid continuum 
assumptions, only one dimension of the considered 
element is small compared to other dimensions. In the 
present study, every finite element of the beam was 
assumed as a two dimensional solid continuum which is 
a more realistic approach to the considered problem 
compared to beam theories.  

The development of the formulations of general 
solution procedure of non-linear problems follows the 
general outline of the derivation given by Zienkiewichz 
and Taylor (2000). The geometrically non-linear res-
ponses of considered simply supported beam subjected 
to uniform thermal loading were obtained by using total 
Lagrangian finite element model of two-dimensional solid 
continuum. The TL finite element equations of two 
dimensional continuums for an eight-node quadratic 
element were used. These TL eight-node quadratic 
element formulations were given by Reddy (1993). 
 
 
THEORY AND FORMULATIONS 

 
A simply supported beam made of isotropic, hyper elastic material, 

with material or Lagrangian coordinate system ( )0 0 0

1 2 3, ,x x x  

and with spatial or Euler coordinate system ( )2 2 2

1 2 3, ,x x x  

having the origin O was shown in Figure 1. The supports of the 
beam were assumed to be pinned. The beam was subjected to a 
uniform temperature rise as seen in Figure 1.  
While the derivation of the governing equations  for  most  problems
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Figure 1. Pinned-pinned beam subjected to a uniform temperature rise.  

 
 
 

was not unduly difficult, their solution by exact methods of analysis 
is a formidable task.  

In such cases, numerical methods of analysis provide an 
alternative means of finding solutions. Numerical methods typically 
transform differential equations to algebraic equations that are to be 
solved using computers. The considered problem was a non linear 
one. Even linear problems may not admit exact solutions due to 
geometric and material complexities, but it was relatively easy to 
obtain approximate solutions using numerical methods (Reddy 
(2004). 

There were some solutions for the special cases of boundary and 
loading conditions for large displacements of beams in the frame-
work of Euler-Bernoulli beam theory. However, as far as the authors 
knew exact solution of a non-linear problem in the framework of two 
or three-dimensional, continuum approach was not possible. For 
the analysis of the pinned-pinned beam, the beam problem was 
considered as a two-dimensional continua problem: The total 
Lagrangian Finite element model of two dimensional continuums 
based on the total Lagrangian formulation for an eight-node 
quadratic element was used in the study. 

For the solution of the total Lagrangian formulations of TL two di-
mensional continuum problems, small-step incremental approaches 
from known solutions were used. As it is known, it is possible to 
obtain solutions in a single increment of the external force only in 
the case of mild non-linearity (and no path dependence). 

To obtain realistic solutions, physical insight into the nature of the 
problem and, usually, small-step incremental approaches from 
known solutions were essential. Such increments were always 
required if the constitutive law relating stress and strain changes 
was path dependent. Also, such incremental procedures were 
useful to reduce excessive numbers of iterations and in following 
the physically correct path. 

In this study, small-step incremental approaches from known 
solutions with Newton-Raphson iteration method were used in 

which the solution for 1n + th load increment and i th iteration 

was obtained in the following form: 
 

( ) 1

i i i

n T n
d u K R +=

-1

                                              (1) 

 

Where 
i
TK  is the stiffness matrix corresponding to a tangent 

direction at the i th iteration, 
i
ndu  is the solution increment vector at the 

i th iteration and 1n + th load increment, 1
i
nR +  is the residual vector  

at the i th iteration and 1n + th load increment.  

 
This iteration procedure was continued until the difference between 
two successive solution vectors were less than a selected tolerance 
criterion in Euclidean norm given by: 
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A series of successive approximations gave: 
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Where   
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Total displacement fields and incremental displacement fields were 
expressed in terms of nodal displacements as follows: 
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Where ( )j xψ  are interpolation functions for a twelve-node 

quadratic element and can be found in Reddy (1993), ju  and  jv   
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are the components of vectors of nodal displacements in the 
0

1x  

and 
0

2x  directions respectively. The tangent stiffness matrix 

i
TK  and the residual vector 

1
i
n

R
+

 which are to be used in 

Equation 1 at the i th iteration for the total Lagrangian finite 

element model of a two dimensional continuum for an eight-node 
quadratic element were given below: 
 

1nT n
i i iK d u R +=                                                                (7a)   

 

ii i
F FuK K K

vK K K F F

−+
=

+ −

    
    
    

2 1
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11L 11NL 12L
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  (7b)  

 

The explicit expressions of K 11L
, K11NL

, K12L
, K 21L

, 

K
22L

, K 22NL
, F1 1

0
 and F1 2

0
 were given in Reddy (2004) 

and Kocatürk and Akbaş (2010). 
 

 
2 2 0 0 2 0

0 0 1 1 0 10 0

1

1 1
e i e ie ei x x

F h f d x d x h t d xψ ψ
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Where 0 0
1 1

2 2

0 0
,

x x
f f  are the body forces; 0 0

1 2

2 2

0 0
,

x x
t t  are the 

surface forces in the 
0

1
x  and 

0

2x  directions, respectively. 

It is assumed that the temperature rise was uniform. 
Temperature rise from the undeformed state of beam was denoted 

by T∆ . The considered material was hyper elastic. In this case, 
the constitutive relation between the second Piola-Kirchhoff stress 
tensor and the Green-Lagrange strain tensor with a temperature 
rise can be assumed as follows: 
 

1 1

0 11 0 11 10 11 0 12

1 1

0 22 0 12 0 22 0 22 2

1 1
0 660 12 0 12

0

0

0 0 2

S E TC C
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1
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where 
1

0 11S , 
1

0 22
S , 

1

0 12S  are the components of the second 

Piola-Kirchhoff stress tensor components in the 1C  configuration 

of the body, 0 ijC  are the components of the reduced constitutive 

tensor in the 0C  configuration of the body, 1α  and 2
α  are 

coefficients of thermal expansion in the 
0

1
x  and  

0

2x   directions  

 
 
 
 
respectively. The components of the reduced constitutive tensor 

can be written in terms of Young modulus E  and Poisson’s ratio 

ν  as follows:  
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0 22 0 662
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          (10) 

 
The Green-Lagrange strain tensor’s expression in terms of 
displacements in the case of two-dimensional solid continuum was 
given by Reddy (2004). Numerical calculations of the integrals in 
the rigidity matrices will be calculated by using five-point Gauss 
rule. The strains were assumed as small. It should be noted that the 
formulations given by Equations 5 to 10 are adopted from Reddy 
(2004). 

 
 
RESULTS AND DISCUSSION 
 
By use of the usual assembly process, the system 
tangent stiffness matrix given in Equation 1 was obtained 
by using the element stiffness matrixes given above for 
the total Lagrangian Finite element model of two 
dimensional continuum based on the total Lagrangian 
formulation for eight-node quadratic element. In the 
numerical integrations, five-point Gauss integration rule 
was used. The material of the beam was hyper elastic 
material and isotropic. Convergence analysis was 
performed for uniform thermal load for various numbers 

of finite elements in 0
1

x  and 0
2

x  directions. When the 

number of finite elements in 0
1

x  direction is 40m =  and 

when the number of elements in 0
2

x  direction is 8n =  

for the total Lagrangian finite element model of two 
dimensional continuums for an eight-node quadratic 
element, the considered stresses and displacements 
converge perfectly. 

In order to establish the accuracy of the present 
formulation and the computer program developed by the 
authors, results obtained from the present study were 
compared with the available results in the literature. For 
this purpose, thermal buckled configurations of pinned-
pinned beam with different values of dimensionless 

uniform thermal load τ  (Uniform temperature is non-

dimensionalized by 
2

( )Tτ λ α= ∆ , where λ  is 

slenderness of beam, for a beam with constant 

rectangular cross-section, the slenderness is 2 3λ δ= , 

/L hδ =  and α  is the coefficient of thermal 

expansion.), are compared with data presented in  Li  and  



 

 

     

 

 
 
 
 

 
 
Figure 2. Eight-node quadratic plane element. 

 

 

 
 
Figure 3. Thermal buckling configurations for some values of 

dimensionless uniform temperature rise τ  for finite element 

model of two dimensional solid continuum for 120λ = . 

 
 
 

Cheng (2000). For 120λ = , Figure 3 shows that the 

present results were in good agreement with Figure 2a of 

Li and Cheng (2000). In Figure 3, w  is dimensionless of 

displacement and ξ  is dimensionless of the beam 

length. 
In Figure 4, the thermal buckled configurations of the 

axis of the beam for different values of τ  and λ  were 

given. 
In Tables  1  and  2,  dimensionless  central  deflections  
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(0.5)f W=  and the left-end rotation angle (0)φ ϕ=  

(degree) were calculated respectively for various dimen-

sionless uniform temperature rise τ  and geometric 

parameter /L h  for pinned-pinned beam. It was seen 

from Table 1 and 2 that, with increase in the geometric 

parameter /L h , central deflections and rotation angles 

decrease gradually. 
In Table 3, dimensionless end constrained forces p in 

the horizontal direction 
2 P

p
EI

L 
= 

 
 was calculated res-

pectively for various dimensionless uniform temperature 

rise τ  and geometric parameter /L h  for pinned-pinned 

beam. It is known that the thermal buckling occurs when 
the temperature is greater than the critical temperature 

value, namely when crτ τ> . From Table 3, it can be 

seen that increase in the dimensionless uniform 

temperature riseτ , the magnitude of dimensionless end 

constrained forces p in the horizontal direction decreases 

gradually in lower percentage for crτ τ> .  

Figure 5 showed the normal stress (Cauchy stress) 
distributions at the midpoint of the beam, for the thermal 
post-buckling case, and for some given ratios of L/h for 

uniform temperature
o∆T=300 , for Young’s modulus 

2
E=21000000 N/cm  and Poisson’s ratio ν=0.2875 . 

The normal stresses at the midpoint of the beam were 
obtained on the cross section. Also, Figure 5 showed 

that, with decrease in the ratio of /L h , the Cauchy 

normal stresses increase. 
For comparison of the dimensionless central 

deflections (0.5)f W=  and left-end rotational angle 

(0)φ ϕ=  (degree) versus uniform temperature rise τ  for 

some values of /L h  ratios at pinned-pinned beam, the 

obtained results were compared with those of Li and 
Song (2006) by inserting the material properties used in 
this reference under uniform temperature rise. In this 
study of Li and Song (2006), was used Timoshenko 

beam theory, the ratio of the elasticity modulus ( E ) and 

shear modulus (G ) was taken as / 206/80E G =  and 

the uniform temperature rise are non-dimensionalized by 
2 ( )Tτ λ α= ∆ , where λ  is slenderness of beam. For a 

beam with constant rectangular cross-section, the slen-

derness is 2 3λ δ= , /L hδ = . α  is the coefficient of 

thermal expansion. Figures 6 and 7 showed the between 
results of finite element model of two dimensional solid 
continuum and Timoshenko beam theory that was 
obtained by  Figures  1a  and  Figure  2  of  Li  and  Song 
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Figure 4. Thermal buckling configuration for some values dimensionless uniform temperature riseτ .  a) 

70λ = , b) 50λ = ,c) 30λ =  and d) 20λ = . 

 
 
 

 
 
Figure 5. Cauchy normal stresses for the cross section at the the 

midpoint of the pinned-pinned beam for some given ratios of L/h for 

uniform temperature rise 300T∆ = o
. 
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Table 1. Variation of the dimensionless central deflections (0.5)f W=  with dimen-sionless uniform temperature 

rise τ  and geometric parameter /L h  for pinned-pinned beam. 

 

 /L h  

τ  8 12 16 20 

12 0.0306 0.0215 0.0163 0.0132 

15 0.0499 0.0340 0.0257 0.0207 

20 0.0713 0.0482 0.0362 0.0291 

25 0.0876 0.0590 0.0444 0.0356 

30 0.1013 0.0680 0.0512 0.0411 
 
 
 

Table 2. Variation of the left-end rotation angle (0)φ ϕ=  (degree) with dimensionless uniform temperature rise τ  and 

geometric parameter /L h  for pinned-pinned beam. 

 

 /L h  

τ  8 12 16 20 

12 5.2414 3.7877 2.8950 2.3635 

15 8.4777 5.9802 4.5570 3.6935 

20 11.9300 8.4043 6.4136 5.1916 

25 14.4458 10.2232 7.8209 6.3341 

30 16.4710 11.6937 8.9928 7.2902 

 
 
 

Table 3. Variation of the dimensionless end constraint force p in the horizontal direction with dimensionless uniform 

temperature rise τ  and geometric parameter /L h  for pinned-pinned beam. 

 

 /L h  

τ  8 12 16 20 

12 9.5170 9.7048 9.7811 9.8274 

15 9.4993 9.6988 9.7761 9.8242 

20 9.4830 9.6892 9.7488 9.7994 

25 9.4888 9.6787 9.7626 9.8156 

30 9.4252 9.6676 9.7519 9.8112 

 
 
 
(2006). It is clearly seen from Figure 6 and 7 that, with 
decrease in the /L hδ = , the difference between the 

results of finite element model of two dimensional solid 
continuum and Timoshenko beam theory differs 
considerably. 
 
 
Conclusion 
 
Post-buckling analysis of a simply supported beam 
subjected to a uniform thermal loading has been studied. 
In this study, the finite element model of the beam was 
constructed   by   using   total  Lagrangian  finite  element 

model of two dimensional continuum for an eight-node 
quadratic element. The considered highly non-linear 
problem was solved by using incremental displacement-
based finite element method in conjunction with Newton-
Raphson iteration method. There was no restriction on 
the displacements. The comparison was performed. It 
was seen from the investigations that the difference 
between the results of finite element model of two dimen-
sional solid continuum and Timoshenko beam theory 
increases considerably while the beam with small 
slenderness ratio decreases. Therefore, for small slen-
derness of beam, finite element model of two dimensional 
solid continuums must  be  used  instead  of  Timoshenko  
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Figure 6. Dimensionless central deflection (0.5)f W=  versus 

uniform temperature riseτ for some given ratios of /L h  for 

pinned-pinned beam. 
 

 

 
 

Figure 7. Left-end rotational angle (0)φ ϕ=  (degree) versus 

uniform temperature riseτ for some given ratios of /L h  for 

pinned-pinned beam. 
 
 
 

beam theory. 
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