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This paper examines the combined effects of screening and variable inflow of infective immigrants on 
the spread of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) in a 
population of varying size. A nonlinear deterministic mathematical model for the problem is proposed 
and analysed qualitatively using the stability theory of differential equations. The results show that the 
reproductive number R0 >1 as the rate of inflow of infective immigrants increases leading to persistence 
of the disease in the population. However, the presence of screening greatly reduces the spread of 
HIV/AIDS. Numerical simulation of the model is implemented to investigate the sensitivity of certain key 
parameters on the spread of the disease. 
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INTRODUCTION 
 
The acquired immunodeficiency syndrome (AIDS) 
emerged in 1981 and has become an important sexuality 
transmitted disease throughout the world. Moreover, the 
link between infectious diseases and population mobility 
must be understood in relation to the different forms, 
conditions and patterns of migration, which have very 
different influences on the distribution and spread of 
infectious diseases. For example in low-income 
countries, economic migration has played a crucial 
involvement in the evolution of the HIV/AIDS (human 
immunodeficiency virus/acquired immune deficiency 
syndrome) epidemic. However, research shows that 
internal and cross-border migrants, particularly male 
migrant workers are at greater risk of HIV infection and 
are more likely to spread the disease when they return 
home (Bozzette, 2005). Mathematical models have been 
used extensively in research into the epidemiology of 
HIV/AIDS to help improve our understanding of the major  
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contributing factors to the pandemic. From the initial 
models of Anderson et al. (1986), May and Anderson 
(1987) and Anderson (1988), various refinements have 
been added into modelling frameworks and specific 
issues have been addressed by researchers (Hethcote 
and Van Ark, 1992; Perelson and Nelson, 1999; 
McCluskey, 2003; Hsieh and Chen, 2004). Tripathi et al. 
(2007) presented a theoretical framework for 
transmission of HIV/AIDS with screening of unaware 
infectives. In all the aforementioned studies, the direct 
recruitment of infectives due to immigration has not been 
taken into account though it affects the dynamics of the 
disease to a significant level. It is well known that the 
immigrants can either be susceptible or infective and the 
infective immigrants play a crucial role on the spread of 
the disease. It is therefore essential to consider the direct 
inflow of infective immigrants to understand the dynamics 
of the spread of the disease. A very little attention has 
been paid to study the combined effects of screening and 
direct inflow of infective immigrants on the spread of 
HIV/AIDS in a community. Naresh et al. (2009) 
developed a model for the spread of HIV/AIDS in a 
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Figure 1. Flow diagram of the model. 

 
 
 

community taking into account the constant inflow of 
infective immigrants. The objective of this present study 
is to investigate the combined effects of screening and 
direct inflow of infective immigrants on the spread of 
HIV/AIDS disease. 

The model assumed that the rates of inflow of aware 
and unaware infective immigrants into the population 
vary.  This essentially extends the earlier work of Tripathi 
et al. (2007) and Naresh et al. (2009) to include the 
combined impact of screening, variable inflow of aware 
and unaware infective immigrants on the HIV 
transmission dynamics. In the following study, the model 
is formulated, analysed and solved. Pertinent results are 
presented graphically and discussed qualitatively. 
 
 
MATHEMATICAL MODEL 
 
In modelling the disease dynamics, the population size 
N(t) is divided into four subclasses of susceptibles (S), 
unaware infectives (I1), aware infectives (I2) and that of 

AIDS patients (A) with natural mortality rate µ in all the 
classes. The recruitment rate into the susceptible class is 
represented by Q0 and the susceptibles become infected 
via sexual contacts with infectives class. The probabilities 
of disease transmission per contact by unaware and 
aware infectives are given as β1 and β2, respectively. It is 
reasonable to assume that β2 < β1 because on becoming 
aware of the infection after screening, the infectives may 
choose to use preventive measures and change 

behaviour while θ  is the detection rate for the unaware 
infectives. Let 0 ≤ P1≤ 1 and 0≤ P2 ≤ 1 represent the 
inflow rate of unaware and aware infective immigrants, 

respectively. Here δ is the rate of movement from 
infectious class to AIDS class and the AIDS related death 
rate is α. The total population at any given time t is given 
by: 
 

                      (1) 

 
Taking into account of the aforementioned consideration, 
the transfer diagram of the model is shown in Figure 1. 
From the flow diagram, the dynamics of the disease is 
governed by the following system of nonlinear ordinary 
differential equations: 
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With nonnegative initial conditions. Replacing S = N - I1-I2 
–A in the model of Equation 2, we obtain: 
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Continuity of right-hand side of the Equation 3 and its 
derivative imply that the model is well posed for N > 0. It 
is assumed that all dependent variables and parameters 
of the model are non-negative. 
 
 
Theorem 
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solution of {S, I1, I2, A} of the system (3) are positive for 
all t ≥ 0. 
 
 
Proof 
 
From the system (3), we obtain the inequality expression: 
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As t → ∞, we obtain 0 ≤ N(t) ≤ Q0/µ. Hence all feasible 
solution of system (3) enter region: 
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MODEL ANALYSIS 
 
The nonlinear system in Equation 2 will be qualitatively 
analyzed so as to find the conditions for existence and 
stability of a disease free equilibrium point (Gomes et al., 
2004). Analysis of the model allows us to determine the 
impact of screening and inflow of infective immigrants on 
the spread of the diseases. Also on finding the 
reproductive number R0, one can determine if the disease 
become endemic in a population or not. 
 
 
Disease free equilibrium (DFE) 
 
The disease free equilibrium of the model in Equation 2 is 
obtained by setting: 
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At disease free equilibrium, we have I1 = I2 = A = 0 and 
Equation 2 becomes: 
 

0
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Therefore, the disease free equilibrium (DFE) denoted by 

0
ϑ  of the model in Equation 2 is given by: 
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Local stability of DFE 
 
The disease free equilibrium of the model (3) was given 
by: 
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The local stability of 
0

ϑ  was established by using the 

next generation operator method on the system (3). The 

basic reproduction number
0

R is defined as the effective 

number of secondary infections caused by typical 
infected individual during his entire period of 
infectiousness (Diekmann et al., 1990). This definition is 
given for the models that represent the spreading of 
infection in a population. It is obtained by taking the 
largest (dominant) eigenvalue (spectral radius) of: 
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Where: 
 

i
F  is the rate of appearance of new infection in 

compartment i , 
+

i
V  is the transfer of individuals into compartment i , 

−
i

V  is the transfer of individuals out of the compartment 

i  by all other means, 

0
ϑ  is the disease-free equilibrium. 

 
Consequently, 
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By linearization approach, the associated matrix at 
disease-free equilibrium is given by: 
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Again by linearization we get: 
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And, 
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The eigenvalues of 
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basic reproduction number for the model problem in 
Equation (3) denoted by R0 is given as: 
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The disease free equilibrium is locally asymptotically 
stable if R0 < 1 and unstable if R0 >1. In order to assess 

the contribution of I1 and I2 in terms of
1

β , 
1

p  and
2

β , 
2
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from Equation 15, we let: 
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Lemma 
 
The disease free equilibrium of the model (3) in the 
absence of infective immigrants is locally asymptotically 
stable if R0  < 1 and unstable if R0 > 1. 
 
 
REMARK 
 
It is clear from Equation 17 that R0a > R0b which implies 

that unaware infectives 
1

I have a significant contribution 

on the transmission of the infection and keeping the 

disease endemic in the population via 
1

β  and 
1

p  

compared to the aware infectives 
2

I  via 
2

β  and 
2

p . In 

the absence of infection and infective immigrants, the 

population size approaches a steady state Q0/µ. 
However, as long as the infective immigrants are entering 
into the population, the disease free equilibrium will 
become unattainable making R0>1. This is in agreement 
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Table 1. Numerical values of sensitivity indices of R0. 
 

Parameter symbol Sensitivity Index 

1
β  +1.6499 

2
β  +0.6499 

δ  -1.9333 

θ  -0.4215 

µ  -0.6905 

1
p  +2.400 

2
p  +0.100 

 
 
 

with the results of Naresh (2009) for constant inflow of 
infective immigrants. However, the present of screening 
may reduce the spread of the infection if it is given 
enough attention. Moreover, in the absence of infective 
immigrants (that is P1 = 0, P2 = 0), the results in 
Equations 15 to 16 reduces to that of Tripathi et al. 
(2007). 
 
 
Global stability of DFE 
 
The small influx of infective immigrants in the presence of 
screening may not generate large outbreaks if R0 < 1. In 
order to establish global stability of DFE when R0 < 1, we 
employed the comparison approach (Diekmann et al., 
1990). The rate of change of the variables representing 
the infected components of the system (3) can be written 
as: 
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It follows that: 
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Given that all the eigenvalues of the matrix (F-V) have 
negative real parts, it follows that the inequality (19) is 

globally stable for R0 < 1 and (I1, I2)→(0, 0)  as t → ∞. 
 
 
Sensitivity analysis 
 
We perform sensitivity analysis in order to determine the  

relative importance of model parameters to disease 
transmission. In determining how best to reduce human 
mortality and morbidity due to HIV, it is necessary to 
know the relative importance of the different factors 
responsible for its transmission. We compute numerical 
sensitivity indices to enable us to single out parameters 
that have a high impact on R0 and which should be 
targeted by intervention strategies. The normalized 
forward sensitivity index of a variable to a parameter is a 
ratio of the relative change in the variable to the relative 
change in the parameter. When a variable is a 
differentiable function of the parameter, the sensitivity 
index may be alternatively defined using partial 
derivatives. 
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For example, using the parameter values highlighted in 
the following study, the sensitivity index of R0 with respect 
to β1 is given as: 
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Table 1 shows the sensitivity indices of other parameters 
with respect to R0. From Table 1, the most sensitive 
parameter augmenting the spread of HIV infection is the 
rate of inflow of unaware infective immigrants’ P1 into the 
population. This is followed by contact rate of unaware 
HIV infected individuals β1 with susceptibles and contact 
rate of susceptibles with aware HIV infected individuals β2 
and the inflow rate of aware infective immigrants P2. 
Moreover, it is noteworthy that screen rate of unaware 

HIV infectives θ, natural mortality rate µ and transfer rate 

of aware and unaware HIV infectives δ to AIDS class 
contribute to a decline in the spread of HIV infection. 
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Table 2. Parameter values used in simulations. 
 

Parameter symbol Parameter value (yr
-1

) Source 

1
β  +1.3440 Trimpathi et al. (2007) 

2
β  +0.6000 Estimated 

δ  +0.5600 Estimated 

θ  +0.6000 Estimated 

µ  +0.2000 Estimated 

α , +0.1000 Trimpathi et al. (2007) 

1
p  +0.8000 Estimated 

2
p  +0.0800 Trimpathi et al. (2007) 

 
 
 

Endemic equilibrium 
 

To obtain an endemic equilibrium
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NUMERICAL SIMULATION 
 
To study the dynamical behaviour of the model 
numerically, the system in Equation 3 is integrated by 
fourth order Runge-Kutta method using the parameter 

values given in Table 2. The parameter values of
2

β , δ , 

θ , µ  and 
1

p  are estimated for simulation purposes 

only. In Figure 2, the distribution of population with time is 
shown for all classes. It is found that susceptible 
population decreases with time due to inflow of infective 
immigrants leading to an increase in the rate on infection. 
Initially, unaware infective class increases with time and 
then reaches its equilibrium position. Similar trend is 
observed with the population of aware infectives due to 
screening. Moreover, it is interesting to note that the 
AIDS population decreases due to screening of unaware 
infected population. This can be attributed to a change in 
risk behaviour and prevention. Figure 3 shows the 
variation in the population unaware infectives with an 
increase in the inflow rate of infective immigrants. As the 
rate of inflow of infective immigrants increase, unaware 
HIV infectives population increases as well. However, the 
infection is at its lowest level when infective immigrants 
are not allowed to enter into the population. This shows 
clearly that the inflow of infective immigrants contributes 
largely to the spread of the disease. Figure 4 shows that 
the AIDS population increases with an increase in the 
inflow rate of infective immigrants. In Figure 5 we observe 
that as the rate of screening increases, the population of 
unaware infectives decreases leading to an increase in 
the population of aware infectives as expected. 

Consequently, a reduction in the spread of the disease 
will occur. Thus, to keep the spread of the HIV/AIDS 
epidemic under control, the screening of unaware 
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Figure 2. Variation of population in different classes for the given parameter values. 

 
 
 

 
 
Figure 3. Effect of inflow of infective immigrants on unaware HIV infected class. 

 
 
 

infectives both within the population and as well as 
immigrants must be intensified, coupled behaviour 
changes so that they can either abstain from sexual 
interaction or use preventive measures. 

Conclusions 
 
In this paper, a non-linear model for the combined effects 
of screening and variable inflow of infective immigrants 

Time (year) 

Time (year) 
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Figure 4. Effect of inflow of infective immigrants on AIDS population. 

 
 
 

 
 
Figure 5. Effect of screening on unaware and aware infectives. 
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on the spread of HIV/AIDS is investigated. It was shown 
that there exists a feasible region where the model is well 
posed and for which a unique disease free equilibrium 
point exists in the absence of infective immigrants. The 
sensitivity of the key parameters on the spread of 
HIV/AIDS revealed that an increase in the screening rate 
coupled with the rate of progression from infectives to 
AIDS class may lead to a decline in the spread of 
HIV/AIDS. 
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