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Pervious concrete (PC) pavement is a sustainable type of concrete pavement that can protect and 
restore natural ecosystem. The permeability coefficient is the most important characteristic of PC. The 
purpose of this experimental study was to investigate the effect of mixture design parameters, 
particularly water-to-cement ratio (W/C) and size of aggregate on the permeability coefficient of PC. The 
thirty six mixtures were made with W/C in range of 0.28 to 0.34, 350 kg/m

3 
cement content and 9.5 to 

19.5 mm maximum size of aggregate. In this study the feasibility of using the artificial neural networks 
(ANN) in predicting the effect of aggregate size and W/C on amount of permeability coefficient of PC 
was investigated. For modeling, 65% of data was used for model training and remaining 35% was used 
for model testing. Based on the lowest root mean squared error (RMSE), the best ANN model was 
chosen. The results showed that the W/C and aggregate size are key parameter, which significantly 
affect the performance of PC. The ANN modeling was developed in this study can facilitate prediction 
permeability coefficient of PC. This approach can reduce the number of trial batches for target 
performance of samples. 
 
Key words: Pervious concrete, artificial neural network, permeability coefficient. 

 
 
INTRODUCTION 
 
Pervious concrete (PC) is a special type of concrete 
characterized by an interconnected pore structure and 
high void content, thus allowing infiltration of water 
through its structure. While its constituent materials are 
similar to that of normal concrete, PC contains little or no 
fine aggregate. It is also known as permeable concrete, 
porous concrete and no-fine concrete. PC has been used 
in low-traffic pavements such as parking lots and 
sidewalks (Schaefer et al., 2006). Permeability coefficient 
or hydraulic conductivity is the most important 
performance characteristic of  PCs,  and  with  any  some 

material, transportation  property are dependent on the 
pore structure features (Montes and Haselbach, 2006). 
The PC allows water to pass through its structure due to 
an increased air voids network. This open structure gives 
this concrete the added possibility to be applied in 
pavement engineering as a water drainage layer 
(Vassilikou et at., 2011). The costs of such asphalt 
pavements will grow the coming years due to the 
foreseeable increase in oil prices. PC is therefore a 
suitable material to be considered for increased usage in 
the developing sustainable  pavement  (Lian  and  Zhuge,
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Table 1. Engineering properties of aggregates. 
 

Flakiness Index (%) 

(BS-812) 

Water absorption (%) 

(AASHTO T-85) 

Los Angeles abrasion (%) 
(AASHTO T-96) 

Sand equivalent (%) 

(AASHTO T-176) 

10 3 13 70 

 
 
 

Table 2. The Chemical properties of cement Type 2, according to ASTM C150 (Tehran Cement Co. Specification). 
 

Constituent compounds CaO, % SiO2, % Al2O3, % Fe2O3, % MgO, % SO3, % L.O.I, % I.R, % 

Measured value 63.35 21.45 4.61 3.3 2.26 2.05 2.00 0.57 

 
 
 
2010; Vancura, 2011; Sumanasooriya and Neithalath, 
2011). Natural resources are increasingly consumed due 
to rapid urbanization and there after human construction 
activities, so that various strategies are being 
investigated by engineers to protect and restore natural 
ecosystems in the world. PC pavement is termed as 
comprising material that facilitate storm water infiltrate 
and transfer to the underlying subsoil (Suozzo and 
Dewoolkar, 2012; Shu et al., 2011). 

The porosity is the ratio of the volume of voids to the 
total volume of the specimen. Some of the voids in PC 
are not effective in carrying water through the material. 
The voids, which are frequently called the ‘effective voids’ 
are important. Some methods for finding the porosity of 
PC only calculate the effective voids (Boyer et al., 2012; 
Shen et al., 2012; Tho-in et al., 2012). Some researchers 
recommends to finding the total porosity of PC using a 
water displacement method. The water displacement 
method is based on Archimedes principle of buoyancy, 
which states that the buoyancy force is equal to the 
weight of fluids displaced. In this method, the dry mass, 
submerged mass and the total volume must be known to 
calculate the porosity (Montes et al., 2005). 

Since the permeability coefficient of PC is the most 
important characteristic of PC, in this experimental study, 
the characteristic of PC has been evaluated. It's believed 
that PC can effectively assist solving drainage problems 
and reducing the risk of flash flooding, resulting from 
continuous urban development. The most important 
mixture design parameters for PC that affect the 
performance and workability are aggregate size and 
water-to-cement ratio (W/C). PC made with different W/C 
has different permeability coefficient. In this study an 
ANN modeling approach was used to determine the 
effect of aggregate size and W/C on permeability 
coefficient of PC.  
 
 
EXPERIMENTAL PROGRAM 

 
Materials and mixtures 

 
A total of thirty-six  PC   samples   were   prepared   and   tested   to 

determine the porosity content and permeability coefficient. The 
compositions used to prepare PC samples in this study consisted 
aggregates, ordinary Portland cement, and water. 

All mixtures were designed with single size of crushed silica 
aggregates. The single size of aggregate defined as the size of 
sieve on which, 100% of aggregate was passed but all retained the 
sieve under that. Crushed silica aggregates with a size of 4.75-9.5, 
9.5-12.5 and 12.5-19.5 mm were used in this study. Aggregates 
with a size of 4.75-9.5 mm were named fine and aggregates with a 
size of 9.5-12.5 mm were named medium and aggregates with a 
size of 12.5-19.5 mm were named coarse. Using single size 
aggregates for making samples, leads to gain higher porosity 
content. However, this approach reduces the workability of 
samples. The used aggregates were from the eastern area of 
Tehran. Three groups of samples for this study were developed. 
The first group was produced with only coarse aggregates with one 
grading (12.5-19.5 mm). The second group was produced with 
medium aggregates with one grading (9.5-12.5 mm). The third 
group was produced with fine aggregates with one grading (4.75-
9.5 mm). The engineering properties of used aggregates are shown 
in Table 1. 

For preparing all the PC mixtures, type 2 Portland cement was 
used. The chemical properties of used cement are shown in Table 
2. The physical properties of used cement are shown in Table 3. All 
mixtures were produced by using single size aggregate and 
Portland cement with W/C of 0.28, 0.3, 0.32, and 0.34. 1400 kg of 
aggregates was used for making one cubic meter of PC mixes. The 
cement content of all the mixtures was around 350 kg/m3. The W/C 
was incrementally changed from 0.28 to 0.34. In this way, samples 
of different porosity were obtained. PC mixes were made from fine 
aggregates was named Fine PC (FPC), PC mixes were made from 
medium aggregates was named Medium PC (MPC), and PC mixes 
were made from coarse aggregates was named Coarse PC (CPC).  
This division was used to compare the performance of PC mixes 
made from different aggregates size.  

For making samples, materials were mixed in a rotating-drum 
mixer. For each mixture, triplicates of 100 × 200 mm cylinders were 
prepared. The fresh concrete was compacted in molds in three 
layers same to the one described in ASTM C 192; Practice for 
making and curing concrete test specimens in the laboratory. 
Instead of mechanical vibration because of the risk of blockage of 
the PC open pore structure, each layer tamped 15 times using a 
standard compacting bar. Excess concrete above the upper edge of 
the mold, was removed and a steel trowel was used to press on the 
surface for levelling. All specimens were de-molded after 24 h and 
stored in the curing room at 95% relative humidity.  

Density test was performed for hardened concrete samples by 
simple dimensional checks, followed by weighting and calculation. 
The average density was 1800 kg/m3

 with a porosity of 37%. Picture 
of sample for permeability coefficient test is shown in Figure 1.   
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Table 3. The physical properties of cement type 2, according to ASTM C150 (Tehran Cement Co. Specification). 
 

 

Chemical properties Blaine 
specific 
surface, 

cm
2
/g 

Autoclave 
expansion,

% 

Physical properties Setting time Compressive strength MPa
 

Mg
O% 

L.O.
I% 

I.R     % Initial minutes Final hours 3-day 
At least 
7 days 

At last 
28 days 

Value <6 <3 <0.75 >2800 <0.8 >45 <6 >10 >17 >21 

 
 
 

 
 

Figure 1. PC Sample for permeability coefficient test. 

 
 
 
Testing procedure 
 
Permeability test 
 
The permeability coefficient test was measured using the falling 
head method. Permeability coefficient was calculated using the 
Darcy's law as gives: 
 

                                                   (1) 

 
Where A1 and A2 are the cross-sectional areas of the sample and 
the tube respectively, and L is the length of the specimen for typical 
specimen geometry, h1 or h2 are the initial and final heads of water 
and t is the time between transition water from h1 to h2. Picture of 
permeability coefficient test kit is shown in Figure 2. 

The specimens were enclosed in a mold that was lined with a 
thin rubber sheet, and tightened with house clamps to minimize any 
flow along the sides of the mold that would affect the measurement 
of permeability coefficient. The sample was then connected to a 
vertical PVC pipe on both the upstream and downstream sides. 

The apparatus was filled with water from the downstream end, to 
expel any air voids that may have been present in the PC sample. 
Once water head reached the top of the specimen, the apparatus 
was then filled from the upstream side. The system was allowed to 
reach equilibrium, at which time the water level was recorded, 
representing the head level on the downstream side. Maintaining 
the constant downstream head at a higher elevation than top of the 
PC sample provided full saturation throughout the test. The 
upstream water level was then increased to a height of 30 cm and 
the valve closed. The valve was then opened and water allowed to 
fall to a height of 10 cm, during which the time it look for the water 
level to fall was recorded. This head difference was expected to 
maintain   laminar  flow  for  the  range  of  anticipated   permeability 

coefficient. 
 
 
Porosity test 
 
The total porosity was measured by finding the difference of the PC 
sample cylinder weight submerged in the water and the weight after 
air drying for 24 h. The difference in the measured weights was 
then divided by the sample volume (mm3) as follow (Park and Tia, 
2004): 
 

                                        (2) 

 
Where p is the total porosity of the PC (%), w1 is the PC sample 
weight air-dried for 24 h (kg), w2 is the PC sample weight 
submerged under water (kg), v is the PC sample volume (mm3), 
and ρw is density of water (kg/mm3). 
 
 
Artificial neural networks 
 
ANNs are data processing systems consisting of a large number of 
simple, highly interconnected processing elements (artificial 
neurons) in an architecture inspired by structure of the central 
cortex of the brain (Hola and Schabowicz, 2005; Mansour et al., 
2004). Much of success of neural network is due to such 
characteristic as nonlinear processing and parallel processing. 
Neural networks model techniques have been rapidly applied in 
engineering, business, psychology, science, and medicine in recent 
years. In civil engineering the methodology of neural networks has 
been successfully applied to a number of areas such as structural 
analysis and design (Hajela and Berke, 1991; Consolazio, 2000). 

In this study for ANN modeling, the multilayer perception (MLP) is
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Figure 2. Falling head method kit for 
permeability coefficient measurement. 

 
 
 

 
 

Figure 3. General framework of three-layered neural networks. 

 
 
 
used. MLP is a feed forward artificial neural network model. MLP 
consists of multiple layers of nodes in a directed graph, with each 
layer fully connected to the next one. Three-layered ANN shown in 
Figure 3 was used in this study. 

Three-layered feed forward neural networks (FFNN) are based 
on a linear combination of the input variables, which are 
transformed by a nonlinear activation function. The explicit 
expression for an output value of ANN is given by following 
equation: 

 

  (3) 

 
Where wji is the weight in the hidden layer connecting the ith neuron 
in the input layer and jth neuron in the hidden layer; w jo is the bias 
for jth hidden neuron; fh is the activation function of the hidden 
neuron; wkj is the weight in the output layer connecting the jth 
neuron in the hidden layer and the kth neuron  in  the  output  layer; 

wko is the bias for the kth output neuron; fo is the activation function 
for the output neuron. The weights are different in the hidden and 
output layer, and their values can be changed during the process of 
network. 

To examine how close the predicted data to the experimental 
ones, some different criteria are used. There are two types of 
graphical and statistical criteria goodness of fit where each has its 
own unique features, and is used for a specific purpose. Since the 
graphical method is not accurate and varies depending on opinion 
of individual person, the statistical criteria were used in this study. 
Root mean square error (RMSE) is the most widely used statistical 
criteria. Finally, the best model, based on the lowest root mean 
square error coefficient, is chosen; 

 

                                         (4) 

 

Where n is the number of data, xe is  experimental  data,  and  xs  is
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Table 4. All PC mixes measured properties. 
 

PC mixtures Size of aggregates (mm) W/C Porosity Permeability coefficient (mm/s) 

FPC1 9.5 0.28 0.390 11.3 

FPC2 9.5 0.30 0.386 10.5 

FPC3 9.5 0.32 0.375 9.5 

FPC4 9.5 0.34 0.350 8.0 

MPC1 12.5 0.28 0.400 12.9 

MPC2 12.5 0.30 0.395 12.0 

MPC3 12.5 0.32 0.390 11.1 

MPC4 12.5 0.34 0.380 9.7 

CPC1 19.5 0.28 0.410 15.1 

CPC2 19.5 0.30 0.405 14.5 

CPC3 19.5 0.32 0.400 14.0 

CPC4 19.5 0.34 0.390 12.5 

 
 
 
simulated data. 

 
 
RESULTS AND DISCUSSION 
 
Effect of W/C and aggregate size 
 
Table 4 shows the average measured properties of all PC 
mixes, including permeability coefficient and porosity. It 
can be seen from Table 4 that the highest permeability 
coefficient achieved in this study is 15.1 mm/s for mixture 
CPC1, which was produced from coarse aggregate. 
Mixture FPC4 has the lowest permeability coefficient of 8 
mm/s, which was produced from fine aggregate.  

Results indicated that reduction in permeability 
coefficient caused by size of aggregate was more than 
that by W/C. The W/C and its effects on PC mixes were 
evaluated in lab mixes by W/C of 0.28, 0.3, 0.32 and 
0.34. Results show good relationship between permeability 
coefficient and W/C, supporting the conclusion that 
greater workability leads to a denser specimen with 
smaller permeability coefficient. Lab mixes had the 
highest permeability coefficient, had the lowest W/C. 

 
 
ANN modeling 
 
In this study 65% of data was used for model training and 
the remaining 35% are used for testing. Accordingly, the 
data are normalized according to the following formula 
and is then used in the neural networks. 
 

                                        (5) 

 
Where yi is the normalized data, xi is the input data, and 
xmax is the maximum of the input data. 

The process of network training  is  accomplished  by  a 

feedback propagation algorithm. This algorithm is based 
on the error-correction learning rule of Liebenberg-
Marquardt. The activation function is hyperbolic tangent 
sigmoid type. This neural networks model has one input 
layer, one output layer, and one hidden layer. 

Modeling of permeability coefficient by ANN; In order to 
predict the permeability coefficient values for aggregate 
size and W/C, the following relation was used; 

 

      (6) 

 
The Importance factor and goodness-of-fit test results of 
permeability coefficient modeling using ANN are 
presented in Tables 5 and 6. 

The relationship between the W/C and permeability 
coefficient was analyzed by performing ANN modeling. 
The results indicate a satisfactory trend as the W/C 
increased with decrease in permeability coefficient. In 
same W/C, Results shows that permeability coefficient of 
FPC are smaller than permeability coefficient of MPC and 
CPC. For a fixed W/C, sample making by coarse 
aggregate lead to an increase of permeability coefficient 
higher than 40%. This increase has seen in other W/C 
and has proved the important role of aggregate size. 

The experimental and ANN simulated data of 
permeability coefficient in terms of W/C content for 
different aggregate size are shown in Figures 4 to 6, 
respectively. In these figures, ANN simulated data are 
connected by using polynomial form. 

Figure 4 illustrates the effect of W/C on permeability 
coefficient for FPC. The permeability coefficient of FPC 
generally decreases when the W/C increases. The 
highest permeability coefficient of around 11.3 mm/s can 
be seen when the porosity is higher than 39%. Small 
changes in W/C content can lead to higher changes in 
permeability coefficient of samples. 

The effect of W/C on permeability coefficient for MPC is 
shown in Figure 5. The highest permeability coefficient  of
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Table 5. The importance of each factor for ANN modeling. 
 

Factor Importance Normalized importance (%) 

Aggregate size 0.599 100 

W/C 0.401 67 

 
 
 

Table 6. The goodness-of-fit results of modeling based on ANN. 
 

Mode Data used (%) Relative error 

Training 65 0.024 

Testing 35 0.017 

 
 
 

7

8

9

10

11

12

0.28 0.3 0.32 0.34

p
e

rm
e

ab
ili

ty
 (

m
m

/s
)

w/c

Experimental data Poly. (Simulated data)

 
 

Figure 4. Experimental and simulated values of permeability coefficient with ANN for FPC 
influence by W/C. 

 
 
 
12.9 mm/s can be seen when the porosity is higher than 
40% for MPC1. The smallest permeability coefficient of 
9.7 mm/s can be seen when the porosity is higher than 
38% for MPC4. 

The effect of porosity on permeability coefficient for 
CPC is shown in Figure 6. The highest permeability 
coefficient of 15.1 mm/s can be seen when the porosity is 
higher than 41% for CPC1. The smallest permeability 
coefficient of 12.5 mm/s can be seen when the porosity is 
higher than 39% for CPC4.  

The low  workability  of  PC  indicates  that  the  cement 

paste may have been stiff, and therefore may not have 
readily coated the pore in the mix. This lower density 
resulted in a greater amount of pore space available for 
water to pass through. This would also have contributed 
to the lower compressive strength. The higher W/C would 
have contributed to an increased workability as well as 
made more water available for hydration of the cement 
paste, resulting in a stronger concrete specimen.  

Figure 7 shows experimental value and simulated value 
for permeability. It can be concluded from Table 6 and 
Figure 7 that permeability can  be  efficiently modeled  by
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Figure 5. Experimental and simulated values of permeability coefficient 
ANN for MPC influence by W/C. 
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Figure 6. Experimental and simulated values of permeability coefficient with 
ANN for CPC influence by W/C. 

 
 
 
ANN. Furthermore, it was shown that the prediction 
permeability in fine aggregate was more accurate, it is 
because of decreasing of porosity. 
 
 
SUMMARY AND CONCLUSIONS 
 
In this study, the main properties of  PC  containing  three  

aggregate sizes were investigated. Thirty-six (36) 
different mixes of PC were tested. The W/C and 
aggregate size had an effect on the hydrological 
properties like permeability coefficient and porosity. ANN 
revealed good relationships between W/C and 
permeability coefficient for PC. ANN can be used to 
simulate the influence of aggregate size and W/C on 
permeability   coefficient   of   PC.  The   main  conclusion



Ghashghaei and Hassani           577 
 
 
 

 
 

Figure 7. Experimental values versus simulated values of permeability coefficient with 
ANN. 

 
 
 
remarks are summarized as follows: 
 
1. The average water permeability coefficient of PC 
produced from single size aggregate is approximately 10 
mm/s for FPC, 10.5 mm/s for MPC and 13 mm/s for CPC. 
If the size of aggregates increased then the porosity and 
permeability coefficient increase too. 
2. As expected, if the W/C of PC increased, the porosity 
and permeability coefficient decrease. 
3. ANN indicates that for permeability coefficient of PC 
samples, the W/C and size of aggregate are significant. 
4. The average density of PC was around 1800 kg/m

3
 

with a porosity of 37%. 
5. Since the RMSE of the modeling results is less than 
2%, it can be concluded that the ANN can be used as an 
accurate and fast tool for modeling the permeability 
coefficient test results. 
6. This study also showed that the permeability 
coefficient can be easily ANN-modeled by using W/C 
data. 
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