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Linear programming (LP) is one of the best known optimization problems solved generally with Simplex 
Method. Most of the real life problems have been modeled as LP. The solutions of some special LP 
problems exhibiting cycling have not been studied except for the classical methods. This study, aimed 
to solve some special LP problems, exhibit cycling with Particle Swarm Optimization (PSO) and to show 
PSO performance for these problems. So, some special problems taken from literature have been 
solved with PSO. Results taken from Genetic Algorithm (GA) and PSO have been compared with the 
reference. The results have shown that PSO performance is generally better than GA in view of 
optimality and solution time. And it is also proposed that cycling problems are used for testing the 
performance of new developed algorithms like Numerical Benchmark Functions.  
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INTRODUCTION 
 
Optimization problems arise in a wide variety of scientific 
and engineering applications including signal processing, 
system identification, filter design, function approximation, 
regression analysis, and so on. In many engineering and 
scientific applications, the real-time solution of optimi-
zation problems is widely required. However, traditional 
algorithms for digital computers may not be efficient since 
the computing time required for a solution is greatly 
dependent on the dimension and structure of the 
problems (Effati and Nazemi, 2006). 

Linear programming (LP) is perhaps the most widely 
applicable technique in Operational Research (Troutt et 
al., 2005). Most of the real-life problem such as hydro-
power reservoir optimal operation (Cheng at al., 2008) 
water distribution system design problems (Milan, 2010), 
the calculation of chemical equilibrium in complex thermo-
dynamic systems (Belov, 2010), Power Allocation for 
Coded orthogonal frequency-division multiplexing 
(OFDM) (Kenarsari and Lampe, 2009) have been 
modeled and solved using LP approximation. LP model 
aims to optimize a linear object function, subject to linear 
equality or inequality constraints. Different solution 
methods have been proposed for LP.  

Simplex Method is the best-known method developed 
by Dantzig. Revised Simplex methods have been 
developed by G.B. Dantzig for computer based solutions 
(Dantzig, 1998). There are a lot of different approaches 
for solving linear programming problems except for the 
classical methods. Simplified neural net-work (Oskoei and 
Mahdavi-Amiri, 2006), recurrent neural network (Malek 
and Alipour, 2007) and PSO (Kuo, 2009) have been used 
for solving linear programming problems.  

Particle swarm optimization (PSO) is a population 
based optimization technique developed by Kennedy and 
Eberhart (1995), inspired by social behavior of bird 
flocking or fish schooling (Lazinca, 2009). Since PSO is 
also population based method, convergence to optimal 
solution is quite rapid.  

The solution of LP problems exhibit cycling is difficult 
with classical Simplex Method. So some extra methods 
like Perturbation method are applied to problem, even if a 
cycling is a rare situation for LP models. Comparing with 
iterative methods, metaheuristics are thought to be 
successful for the cycling LP problems solutions due to 
their algorithms. In this study, some special LP problems 
exhibit cycling are selected for solving with PSO. 



 
 
 
 
LINEAR PROGRAMMING MODELS  
 
A general LP model can be formulated as a mathematical 
optimization problem as Equation (1): 
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Solution in a General LP problem is found with movement from the 
basic solution point to the more optimum basic solution point, until it 
reaches the best optimum point. LP problems converge to an 
optimal solution, according to non-degeneracy assumption (NDA) 
(Gass and Vinjamuri, 2004).   

Finding the leaving variable, the presence of more than one 
candidate for leaving the basis causes degeneration. These 
candidates, namely basic solutions with one or more basic 
variables at zero are called degenerate. Simplex iterations that do 
not change the basic solution are also called degenerate. In some 
cases, after some degenerate iterations, simplex method reaches 
non-degenerate solution.  

But sometimes Simplex method goes through an endless 
sequence of iterations without ever finding an optimal solution. 
Simplex Method repeats some iterations in a loop. The first 
example that was shown to cycle have been constructed by 
Hoffman in 1953 (Chvatal, 1983; Garc´ia and Palomo, 2003).  And 
some techniques preventing cycling have been developed by 
Dantzig. Even if cycling is a rare situation in practical applications, 
cycling is overcome in most computer implementations of simplex 
method (Gass and Vinjamuri, 2004).   
 
 
PARTICLE SWARM OPTIMIZATION 
 
Particle Swarm Optimization (PSO) is introduced by James 
Kennedy and Russell Eberhart in 1995. PSO is an evolutionary 
computation technique like genetic algori-thms. Since PSO have 
many advantages such as compa-rative simplicity, rapid con-
vergence and little parameters to be adjusted, it has been used in 
many fields such as function optimization, neural network training, 
fuzzy system  control  and  pattern  identification ( Li  and  Xiao, 
2008).  

The particle swarm algorithm is an optimization technique 
inspired by the metaphor of social interaction observed among 
insects or animals. The kind of social interaction modeled within a 
PSO is used to guide a population of individuals (particles) moving 
toward the most promising area of the search space. In a PSO 
algorithm, each particle is a candidate solution and each particle 
“flies” through the search space, depending on two important fac-
tors; the best position the current particle have found so far and the 
global best position identified from the entire population. The rate of 
position change of particle is given by its velocity (Clerc, 1999). k is 
the iterations number. Particles velocity and positions are updated 
according to (2), (3) and (4) equations related to the pbest and 
gbest values: 
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The velocity and position formulas with constriction factor(K) have 
been introduced by Maurice Clerc (Clerc, 1999) given (2),(3),(4). 
The constriction factor(K) pro-duces a damping effect on the 
amplitude of an individual particle’s oscillations, and as a result, the 
particle will converge over time. ϕ1 and  ϕ2  represent the cognitive 
and social parameters, respectively, rand is the random number 
uniformly distributed (Parrot and Li, 2006).  

The PSO algorithm shares many similarities with evolu-tionary 
computation techniques such as GAs. The system is initialized with 
a population of random solutions and searches for optima by 
updating generations. However, unlike GA, the PSO algorithm have 
no evolutionary operators, such as crossover and mutation. In the 
PSO algorithm, the potential solutions, called particles, move 
through the problems space by following the current optimal 
particles (Kuo and Huang, 2009). 

 PSO has been used for solving discrete and continuous 
problems. It has been applied to a wide range of applications such 
as function optimization (Seo at al., 2006), Electrical Power System 
applications (Valle at al., 2008), neural network training (Zhang at 
al., 2007), task assignment and scheduling problems in Operation 
Research (Yoshida at al., 1999; Sevkli and Guner, 2006). 
PSO is started with initial solutions belonging to each particle.  

The global best solutions are selected to fitness function among 
initial solutions. Local best solutions for each particle is saved. 
Velocity and positions are updated according to the formulas. Until 
the stopping criteria, global best solutions and local best solutions 
are updated for the iterations. 
The pseudo code of PSO is given as: 
 
Generated initial P particle swarm  
 
Do 
     For i=1:P 
          If fitness(Pi) <fitness(Gbest) then Gbest=Pi 

          If  fitness(Pi) <fitness(Pbest(i)) then Pbest(i)=Pi 
           Compute velocity with Formula (4) 
Update  particle P with Formula (5) 
     end 
Until stopping criteria is not true 
 
 
SPECIAL LINEAR PROGRAMMING PROBLEM 
SOLUTION WITH PSO 
 
Most of the real life optimization problems like LP model 
have constraints. The main difficulty for the optimization 
problems is to find a solutions in a feasible region speci-
fied by constraints. Since variables are continuous, the 
increment of the number of constraints and variables 
cause feasible solutions’ space to be more complex. 
Meta-heuristics methods has been considered to be 
acceptably good solvers of unconstrained continuous 
problems (Hedar and Fukushima, 2001). 



1508           Sci. Res. Essays 
 
 
 

PSO also runs according to unconstrained optimization 
procedure. So, the constrained continuous optimization 
problems has been transformed into unconstrained con-
tinuous optimization problem by penalizing the objective 
function value with the quadratic penalty function. In case 
of any violation of a constraint boundary, the fitness of 
corresponding solutions is penalized, and thus kept within 
feasible regions of the solution space by increasing the 
value of the objective function, when constraint violations 
are encountered.  

The penalty coefficients(Ri) for each constraint have to 
be judiciously selected. So the rea-sonable solutions 
importantly depend on these values of penalty coefficients 
(Saruhan, 2006): 
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In minimization problem, penalty function is added to 
fitness function. k is the number of constraints, gi is the 
constraints’ result for the current variables.  Tol is the 
tolerance value, for the equality constraints. Namely if the 
sum is approached to ei with an accepted tolerance, 
equality constraints are thought to be satisfied.  If the 
problem variables satisfy the constraints, gi will be 
negative and P will be zero. Namely, if constraints are in 
feasible region, then P is equal to zero and if not the 
fitness function is penalized by P.  

In this study, LP problems solved with PSO are the best 
known LP problems exhibiting cycling presented, respect-
tively (Hoffman1953; Beale 1955; Yudin and Gol’shtein, 
1965; Marshall and Suurballe, 1969; Chvatal, 1983). The 
paper by Gass and Vinjamuri (2004) gives explicit state-
ments of 11 problems that are known to exhibit cycling 
(Gass and Vinjumari, 2004). Problems used in this study 
are given in Table 1.  

In LP models the aim is to find best solutions satisfying 
the linear constraints.  As observed in the Table 1 the 
objects of the LP models may be minimization or maximi-
zation. PSO aims to find global minimum without getting 
trapped by local minimums. So if the object function is a 
maximization problem, object function is converted to 
minimization problem multiplying by minus 1. Fitness 
function is the sum of object function and penalty func-
tion. Parameters used for solving these problems have 
been given in Table 2.  

According to the literature, the problems given in Table 
1 have optimal results except for 9 and 11. Tables 9 and 
11 have unbounded solutions.  

PSO  algorithms  for  the  solutions  of  these  problems  

 
 
 
 
have been written in Matlab©. And for the comparison, 
problems have also been solved with GA. After specifying 
the proper parameter values, for each problem, 30 runs 
were simulated.  

All simulations have been implemented on a personal 
computer with Intel Pentium Duo CPU 2.8 GHz and 1.87 
GB RAM using MATLAB. The average solutions time for 
each problem has been calculated tic/toc commands in 
MATLAB. The mean and standard deviation of these 
simulations and best solutions for each problem have 
been given respectively in Table 3 - 22 comparing GA 
and PSO results with Reference Article.  Relative errors 
have been calculated for the optimal values for GA and 
PSO with the following equation: 
 

min*

minmin*

f
ff −

=ε                          (8) 

 
Fmin*: Optimal solutions value given by Reference 
Fmin: Average optimum solutions value found GA or PSO 
method 
 
 
Conclusions 
 
This study aimed to show PSO performance on LP pro-
blems exhibiting cycling. So some special LP problems 
exhibiting cycling have been solved in both PSO and GA 
for the constant parameters set. As observed in Table 3 - 
23, PSO is successfully applied to such problems. The 
performance of PSO is generally better than GA in view of 
optimality.  
As observed in the tables, PSO showed better results for 
the problems, both in view of average optimal solution 
and standard deviation. PSO has shown quite better 
results in view of relative errors for the problems having 
optimal values different from zero. Comparing average 
optimal values, the results show that PSO solutions are 
more stable, since the standard deviation of PSO 
solutions for the solved problems is generally smaller than 
GA.  
Although both PSO and GA are population based 
optimization methods, the solution time for the problems 
solved with PSO is better than GA, because of the fact 
that PSO uses less parameter (Table 23). This is quite 
important for real time implementations. 

It is observed that the two of the problems’ results are 
different given in the reference (Gass and Vinjumari, 
2004) (Table 19 - 21). These results have also been 
found with Matlab Linprog for controlling.  

As it is seen from the results that the solutions for these 
kind of problems are strictly dependent to the parameters. 
So it is suggested to use such cycling problems for testing 
new developed algorithms’ performances as benchmark 
problems. Also, sensitivity of the parameters for these 
problems are out of scope. It is suggested to study 
parameter sensitivity of such special problems solutions. 



Erdogmus         1509 
 
 
 

Table 1. Special LP problems by Gass and Vinjamuri (2004). 
 

Problem no Problem object function and constrained 

1 

Minimize 
−2.2361x4 + 2x5 + 4x7 + 3.6180x8 + 3.236x9 + 3.6180x10 + 0.764x11 
subject to 
x1 = 1 
x2 + 0.3090x4 − 0.6180x5 − 0.8090x6 − 0.3820x7 + 0.8090x8 + 0.3820x9 + 0.3090x10 
+0.6180x11 = 0 
x3 + 1.4635x4 + 0.3090x5 + 1.4635x6 − 0.8090x7 − 0.9045x8 − 0.8090x9 + 0.4635x10 
+0.3090x11 = 0 

2 

 
Minimize − 3/4x1 + 150x2 − 1/50x3 + 6x4 
subject to 
(1/4)x1 − 60x2 − (1/25)x3 + 9x4 + x5 = 0 
(1/2)x1 − 90x2 −( 1/50)x3 + 3x4 + x6 = 0 
x3 + x7 = 1 

3 

 
Maximize x3 − x4 + x5 − x6 
subject to 
x1 + 2x3 − 3x4 − 5x5 + 6x6 = 0 
x2 + 6x3 − 5x4 − 3x5 + 2x6 = 0 
3x3 + x4 + 2x5 + 4x6 + x7 = 1 

4 

 
Maximize  x3 − x4 + x5 − x6 
subject to 
x1 + x3 − 2x4 − 3x5 + 4x6 = 0 
x2 + 4x3 − 3x4 − 2x5 + x6 = 0 
x3 + x4 + x5 + x6 + x7 = 1 

5 

 
Minimize − 2x4 − 3x5 + x6 + 12x7 
subject to 
x1 − 2x4 − 9x5 + x6 + 9x7 = 0 
x2 + (1/3)x4 + x5 −(1/3x6 )− 2x7 = 0 
x3 + 2x4 + 3x5 − x6 − 12x7 = 2 

6 

 
Minimize 2x1 + 4x4 + 4x6 
subject to 
x1 − 3x2 − x3 − x4 − x5 + 6x6 = 0 
2x2 + x3 − 3x4 − x5 + 2x6 = 0 

7 

 
Minimize − 0.4x5 − 0.4x6 + 1.8x7 
subject to 
x1 + 0.6x5 − 6.4x6 + 4.8x7 = 0 
x2 + 0.2x5 − 1.8x6 + 0.6x7 = 0 
x3 + 0.4x5 − 1.6x6 + 0.2x7 = 0 
x4 + x6 = 1 

8 

 
Minimize − 2x3 − 2x4 + 8x5 + 2x6 
subject to 
x1 − 7x3 − 3x4 + 7x5 + 2x6 = 0 
x2 + 2x3 + x4 − 3x5 − x6 = 0 
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Table 1. Contd. 
 

9 

Maximize 3x1 − 80x2 + 2x3 − 24x4 
subject to 
x1 − 32x2 − 4x3 + 36x4 + x5 = 0 
x1 − 24x2 − x3 + 6x4 + x6 = 0 

10 

 
Minimize 10x1 − 57x2 − 9x3 − 24x4 
subject to 
0.5x1 − 5.5x2 − 2.5x3 + 9x4 + x5 = 0 
0.5x1 − 1.5x2 − 0.5x3 + x4 + x6 = 0 
x1 + x7 = 1 

11 

 
Maximize − 3x2 + x3 − 6x4 − 4x6 
subject to 
x1 + x2 + (1/3)x5 +(1/3)x6 = 2 
9x2 + x3 − 9x4 − 2x5 − (1/3)x6 + x7 = 0 
x2 + (1/3)X3 − 2x4 − (1/3)x5 − (1/3)x6 + x8 = 2 

 
 
 

Table 2. GA and PSO parameters used for the solution of test problems. 
 

Optimization method Parameter Value 

GA 

Population 80 
Generations 800 
Crossover 0.8 
Mutation 0.1 

PSO 

 
Particles  

80 

Iteration number 800 

1ϕ   2 

2ϕ  2.1 

K 0.7298 
 
 
 

Table 3. Results for the Hofman problem.  
 

Prob No Values 
Best solution 

Ref (Gass and Vinjamuri, 2004) 
Best solution 

with  GA 
Best solution 

with PSO 

1 

Fmin 0 -3E-06 1.88E-04 
X1 1 1 1 
X2 0 0 0.000484 
X3 0 0 3.81E-05 
X4 0 1.34E-06 0.001406 
X5 0 0 2.94E-05 
X6 0 0 0.001009 
X7 0 0 2.79E-05 
X8 0 0 1.26E-05 
X9 0 0 9.4E-05 

X10 0 0 7.7E-05 
X11 0 0 1.48E-05 

Iteration 10 - - 
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Table 4. Mean and standard deviation for the Hofman problem. 
 

Prob 
No 

Values Best solution given Ref Mean of GA Mean of PSO Std. Dev. Of GA Std. Dev. Of PSO 

1 

Fmin 0 -0.00075 0.010944 0.00038 0.040025 
X1 1 1.000036 1 0.00034 0 
X2 0 1.04E-05 0.002476 1.4E-05 0.008003 
X3 0 3.22E-05 0.00019 0 0.000337 
X4 0 0.000335 0.004196 0.00017 0.006937 

X5 0 0 9.52E-05 0 0.000215 

X6 0 1.24E-05 0.000208 1.34E-05 0.000805 
X7 0 0 0.002843 0 0.012208 
X8 0 0 0.000243 0 0.000534 
X9 0 0 0.001572 0 0.005884 
X10 0 0 8.93E-05 0 0.000183 
X11 0 0 0.000169 0 0.00036 
ε - - - - - 
Iteration 10     

 
 
 

Table 5. Results for the Beale problem. 
 

Prob No Values 
Best solution 

Ref (Gass and Vinjamuri, 2004) 
Best Solution 

with  GA 
Best Solution 

with PSO 

2 

Fmin -0.05 0.0046 -0.05246 
X1 0.04 0.0026 0.044171 
X2 0 0.0000 -1.9E-06* 
X3 1 1.0006 1 

X4 0 0.0044 -1.3E-06* 
X5 0.03 0.0000 0.02969 
X6 0 0.0063 -1.9E-07* 
X7 0 0.0000 0 

Iteration 6 - - 
 
 
 
Table 6. Mean and standard deviation for the Beale problem. 
 

Prob No Values Best solution given Ref Mean of GA Mean of PSO Std. Dev. Of GA Std. Dev. Of PSO 

2 

Fmin -0.05 0.001808 -0.04529 0.002829 0.109015 
X1 0.04 0.004206 0.126893 0.001338 1.304608 
X2 0 1.32E-08 0.000459 3.36E-08 0.007248 

X3 1 0.99251 1 0.037313 0 

X4 0 0.004135 1.6E-06 0.000455 6.17E-05 
X5 0.03 0.001469 0.035843 0.002386 0.108656 

X6 0 0.005828 2.24E-05 0.000585 0.000195 

X7 0 0.008037 0 0.037386 0 
ε - >1 0.094138 - - 

Iteration 6     
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Table 7. Results for the Yudin and Gol’shtein. 
 

Prob 
No 

Values 
Best solution 

Ref (Gass and Vinjamuri,2004) 
Best solution 

with  GA 
Best solution 

with PSO 

3 

Fmax 0.5 0.40283 0.48213 

X1 2.5 1.411504 2.076877 

X2 1.5 0.380302 1.032365 
X3 0 0.113277 0.046606 
X4 0 0.023864 6.34E-06 

X5 0.5 0.313417 0.436278 

X6 0 0 6.9E-06 

X7 0 0.010291 5.13E-07 

iteration 6 - - 

 
 
 

Table 8. Mean and Standart Deviation for the Yudin and Gol’shtein. 
 

Prob No Values 
Best Solution 
given Ref 

Mean of 
GA Mean of PSO Std. Dev. Of 

GA 
Std. Dev. Of 
PSO 

3 

Fmax 0.5 0.34545 0.4488 0.069596 0.013882 

X1 2.5 1.191161 1.452802 0.279237 0.254993 

X2 1.5 0.292941 0.330382 0.1087 0.282348 

X3 0 0.11502 0.112457 0.019995 0.026786 

X4 0 0.035043 1.99E-05 0.023188 5.72E-05 

X5 0.5 0.276161 0.336828 0.035617 0.040601 

X6 0 0.010687 4.52E-05 0.026594 0.000126 

X7 0 0.025672 0.000565 0.021501 0.001996 

ε - 0.65455 0.1024   
Iteration 6     

 
 
 
 

Table 9. Results for the Yudin and Gol’shtein(2). 
 

Prob 
No 

Values 
Best Solution 

Ref (Gass and Vinjamuri, 2004) 
Best Solution 

with  GA 
Best Solution 

with PSO 

4 

Fmax 1 0.9959 1.0125 

X1 3 1.698622 2.425748 

X2 2 0.062865 1.12498 

X3 0 0.321778 0.152485 

X4 0 1.82E-06 -2.5E-07 

X5 1 0.675247 0.862516 

X6 0 0.00112 -2.5E-07 

X7 0 0.00259 -1.2E-07 

iteration 6 - - 



Erdogmus         1513 
 
 
 

Table 10. Mean and standard deviation for the Yudin and Gol’shtein (2). 
 

Prob No Values Best Solution given Ref Mean of GA Mean of PSO Std. Dev. Of GA Std. Dev. Of PSO 

4 

Fmax 1 0.95329 1.01244 0.105593 0.000275 

X1 3 1.72661 1.824238 0.143779 0.201671 

X2 2 0.175376 0.210569 0.284471 0.305418 

X3 0 0.304624 0.303967 0.05029 0,050873 

X4 0 0,018184 1,66E-05 0,031774 8,94E-05 

X5 1 0,671951 0,710903 0,01708 0,050874 

X6 0 0,005105 -2,8E-07 0,027028 5,24E-07 

X7 0 0,000828 2,74E-06 0,001827 1,33E-05 

ε  0.046715 0.01244 - - 

Iteration 6     
 
 
 

Table 11. Results for the Balinski and Tucker. 
 

Prob 
No 

Values 
Best Solution 

Ref (Gass and Vinjamuri, 2004) 
Best Solution 

with  GA 
Best Solution 

with PSO 

5 

Fmin -2 -2.001 -2.00872 
X1 2 0.5001 2.006841 
X2 0 0.0002 0.002876 
X3 0 1.5001 0.000622 

X4 2 0.5001 1.975657 

X5 0 0.0001 6.15E-05 

X6 2 0.4997 1.938235 

X7 0 0.0000 -5.1E-06 
iteration 6 - - 

 
 
 

Table 12. Mean and standard deviation for the Balinski and Tucker. 
 

Prob 
No 

Values 
Best Solution 
given Ref 

Mean of GA Mean of PSO Std. Dev. Of GA Std. Dev. Of PSO 

5 Fmin       -2 -0.71389 -1.96514 0.459497 0.110148 

 

X1 2 1.298878 2.249378 1.854423 0.472153 

X2 0 0.033816 0.012419 0.113663 0.036487 

X3 0 1.286864 0.042577 0.459391 0.102879 

X4 2 1.136697 2.04438 1.2516 0.311655 

X5 0 0.070701 0.040981 0.208571 0.06966 

X6 2 1.125361 2.102472 1.46674 0.366267 

X7 0 0.053854 0.011585 0.119924 0.041531 
ε  0.643055 0.017428 - - 
Iteration 6     
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Table 13. Results for the Marshall and Suurballe. 
 

Prob No Values 
Best Solution 

Ref (Gass and Vinjamuri,2004) 
Best Solution with GA Best Solution 

with PSO 

6 Fmin 0.0000 0.0000 -2.2E-06 

 X1 0.0000 0.0000 -2.5E-07 

 

X2 0.0000 0.0000 0.00012 

X3 0.0000 0.0000 0.001185 
X4 0.0000 0.0000 -5E-07 

X5 0.0000 0.0000 0.004208 

X6 0.0000 0.0000 -5.1E-07 

X7 0.0000 0.0000 -2.5E-07 

iteration 6 - - 
 
 
 

Table 14. Mean and standard deviation for the Marshall and Suurballe. 
 

Prob 
No 

Values 
Best Solution 

given Ref 
Mean of GA Mean of PSO Std. Dev. Of 

GA 
Std. Dev. Of 

PSO 

 Fmin 0.0000 0.366 -2.2E-06 1.380533 3.49E-07 
 X1 0.0000 0.084538 -2.2E-07 0.356788 1.73E-07 

6 

X2 0.0000 0.046342 0.000789 0.176358 0.000719 

X3 0.0000 0.002212 0.002894 0.011891 0.002379 
X4 0.0000 0.022703 -4.9E-07 0.107176 4.07E-08 

X5 0.0000 0.079811 0.002813 0.429783 0.002346 

X6 0.0000 0.026528 -5E-07 0.103081 2.83E-08 

X7 0.0000 0.084538 -2.2E-07 0.356788 1.73E-07 

ε - - - - - 

Iteration 6     
 
 
 

Table 15. Results for the Marshall and Suurballe (2). 
 

Prob 
No 

Values 
Best Solution 

Ref (Gass and Vinjamuri, 2004) 
Best Solution 

with  GA 
Best Solution 

with PSO 

7 

Fmin -2.0000 -1.26253 -2.04151 
X1 4.0000 2.761524 4.040216 

X2 1.0000 0.892748 1.004056 

X3 0.0000 0.11161 0.000398 

X4 0.0000 0.012631 4.63E-07 

X5 4.0000 3.519165 4.107072 
X6 1.0000 0.986436 1.017612 

X7 0.0000 0.299839 8.84E-06 

iteration 6 - - 
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Table 16. Mean and standard deviation for the Marshall and Suurballe (2). 
 

Prob 
No 

Values 
Best Solution 

given Ref 
Mean of GA Mean of PSO Std. Dev. Of 

GA 
Std. Dev. Of 

PSO 

7 

Fmin -2.0000 -0.00072 -1.81723 0.2017 0.212396 

X1 4.0000 0.00031 3.594129 1.639638 0.761029 
X2 1.0000 0.000108 0.894073 0.37794 0.200981 

X3 0.0000 7.69E-05 0.001073 0.440847 0.221419 

X4 0.0000 1.00015 0.101782 0.221794 0.176971 

X5 4.0000 0.001546 3.65473 1.160903 0.662888 

X6 1.0000 0.000249 0.905404 0.221631 0.177301 

X7 0.0000 0 0.000755 0.236954 0.186508 

ε - 0.99964 0.091386 - - 
Iteration 6     

 
 
 

Table 17. Results for the Solow. 
 

Prob 
No 

Values 
Best Solution 

Ref (Gass and Vinjamuri,2004) 
Best Solution 

with GA 
Best Solution 

with PSO 

8 

Fmin 0.0000 -0.00033 -0.012 

X1 0.0000 0.000209 1.031692 

X2 0.0000 0.000244 -2.5E-07 

X3 0.0000 0.000126 -2.5E-07 

X4 0.0000 3.94E-05 1.009681 

X5 0.0000 0 -2.5E-07 

X6 0.0000 0 0.998681 

Iteration 6 - - 
 
 
 

Table 18. Mean and standard deviation for the Solow 
 

Prob 
No 

Values 
Best Solution 

given Ref 
Mean of 

GA Mean of PSO Std. Dev. Of 
GA 

Std. Dev. Of 
PSO 

8 

Fmin 0.0000 -0.00092 -0.012 0.000401 3.47E-12 

X1 0.0000 0.000769 0.787441 0.000763 0.321427 

X2 0.0000 4.34E-05 -2.5E-07 9.77E-05 2.21E-10 

X3 0.0000 7.37E-05 -2.5E-07 9.23E-05 8.65E-11 

X4 0.0000 0.000396 0.765464 0.000256 0.321547 

X5 0.0000 5.87E-10 -2.5E-07 3.16E-09 1.14E-10 

X6 0.0000 8.56E-06 0.754464 3.2E-05 0.321547 

ε - - - - - 

Iteration 6     
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Table 19. Results for the Chavatal. 
 

Prob 
No 

Values 
Best Solution 

Ref (Gass and Vinjamuri, 2004) 
Best Solution with 
MATLAB Linprog 

Best Solution with 
MATLAB GA 

Best Solution 
with PSO 

10 

Fmin 1.0000 -245540913249* -458.116 -6821.39 

X1 1.0000 0.0000x1010 0.628162 0.535329 

X2 0.0000 3.0192 x1010 6.131148 95.07208 

X3 1.0000 0.5366 x1010 1.756172 3.236557 

X4 0.0000 1.9846 x1010 4.129844 58.58254 

X5 2.0000 0.0852 x1010 0.629458 3.666556 

X6 0.0000 2.8124 x1010 5.629954 85.34194 

X7 0.0000 0.0000 x1010 0.372307 0.966603 

Iteration 6 *Unbounded   
 
 
 

Table 20. Mean and standard deviation for the Chavatal. 
 

Prob 
No 

Values 
Best Solution 

given Ref 
Mean of 

GA Mean of PSO Std. Dev. Of 
GA 

Std. Dev. Of 
PSO 

10 

Fmin 1.0000 -223.897 -3664.96 96.22793 1078.986 

X1 1.0000 0.380679 0.520619 0.397145 0.269873 

X2 0.0000 2.905999 51.46951 1.279992 15.50198 

X3 1.0000 1.376416 2.944872 1.113509 3.796213 

X4 0.0000 2.069748 31.58738 0.901027 9.281742 

X5 2.0000 0.606591 5.940383 0.493378 8.711723 

X6 0.0000 2.786373 46.52708 1.191863 13.5573 
X7 0.0000 0.619903 0.517884 0.397234 0.307233 
ε  - - - - 

Iteration 6     
 

 
 

Table 21. Results for the Nering and Tucker. 
 

Prob 
No 

Values 
Best Solution 
Ref (Gass and 

Vinjamuri, 2004) 

Best Solution with 
MATLAB Linprog 

Best Solution 
with MATLAB 

GA 

Best Solution 
with PSO 

11 

Fmax Unbounded 12* 17.8232 10.3368 
X1  0 0.115641 0.277586 
X2  0 0.00521 0.000592 

X3  193.9551 5.924058 10.39124 

X4  30.3258 0.434357 0.002472 

X5  6 0.351101 5.194964 
X6  0 5.289198 -4,9E-05 
X7  90.9775 0,402528 0,000155 
X8  0 2,767951 0,298196 

Iteration 6 *Optimal *Optimal *Optimal 



Erdogmus         1517 
  
 
 
Table 22. Mean and Standart Deviation for the Nering and Tucker. 
 

Prob 
No 

Values 
Best Solution 
Ref (Gass and 

Vinjamuri, 2004) 

Best Solution with 
MATLAB Linprog 

Mean of 
GA 

Mean of 
PSO 

Std. Dev. Of 
GA 

Std. Dev. Of 
PSO 

11 

Fmax Unbounded 12* 5.46214 8.13893 6.073661 0.930759 
X1  0 1.159933 0.649337 0.812075 0.192641 
X2  0 0.234493 0.001054 0.429035 0.001421 
X3  193.9551 1.919658 8.655093 2.374153 1.341794 
X4  30.3258 0.419526 0.077417 0.661039 0.143141 
X5  6 0.427237 4.086683 0.58091 0.575386 
X6  0 1.392029 0.003354 1.66011 0.005795 
X7  90.9775 1.063227 0.208742 3.014762 0.57001 
X8  0 2.57027 0.647727 0.824895 0.212848 
ε  - - - - - 

Iteration 6      
 
 
  
 

Table 23. The solution time for each problem. 
 

Problem no Mean of the solution time for GA (seconds) Mean of the solution time for PSO (seconds) 
1 3.0885 0.0285 
2 3.7562 1.4011 
3 2.8744 0.0271 
4 3.1823 1.4357 
5 3.8144 1.4560 
6 2.6133 1.8302 
7 3.1675 1.2169 
8 2.9108 1.8240 

10 2.9956 1.8467 
11 3.7887 1.4968 
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