
Scientific Research and Essays Vol. 6(16), pp. 3504-3513, 19 August, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.813
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

Modeling and non-functional analysis of service-
oriented architectures using AADL

Raziyeh Aminpour, Vahid Rafe* and Mohsen Rahmanei

Department of Computer Engineering, Malayer Branch, Islamic Azad University, Malayer, Iran.

Accepted July 7, 2011

Nowadays, service-oriented architectures (SoA) are increasingly used to develop dynamic enterprise
systems. Due to the increasing need for high quality services, it is desirable to consider different
qualitative aspects in this architecture (for example security, availability, reliability, fault tolerance, etc.).
As architecture analysis and design language (AADL) can be used in the analysis of partially defined
architectural patterns with limited architectural details, it is suitable for specifying large-scale complex
systems. In this paper, we present a formal approach to model functional and non-functional aspects in
service oriented applications through AADL language. We will explain how different parts of SoA can be
specified through AADL and how different non-functional aspects can be analyzed using the proper
existing tools for AADL.

Key words: service-oriented architectures, architecture analysis and design language, analysis, non-functional
aspects.

INTRODUCTION

Service-oriented architectures (SoA) provide a flexible
platform to develop dynamic enterprise systems. SoA
provide a standard in which automated service publication
and discovery at runtime is possible. It means that
whenever a service provider cannot provide a service with
the required quality any longer, the service requester can
search for and switch to a new service provider (Baresi et
al., 2006). Designing such highly dynamic architectures is
a complex task since designers have to consider both
functional and non-functional requirements. The functional
requirements deal with component structures, interaction
and reconfiguration mechanisms among components
while non-functional requirements are dealing with quality
aspects of the systems such as security, availability,
reliability, fault tolerance, etc. Even though there are
different works to alleviate these complexities by
proposing different modeling frameworks and architectural
styles, there is still room for improvement. Most of the
existing work is concerning the modeling functional
aspects while a few of them considering non-functional
requirements in their proposals. Modeling and analysis

*Corresponding author. E-mail: v-rafe@araku.ac.ir.

non-functional properties are more complex for
developing distributed systems (Baier and Katoen, 2008).
In this paper we present an approach to formally model
service oriented applications using AADL. We describe
how different parts involved in a service-oriented
application can be specified through AADL. Similar to an
architectural style, we propose a vocabulary of design
elements in AADL (for example component and connector
types, data elements, etc.), a set of configuration
(reconfiguration) policies and finally the analysis approach
to assess non-functional properties using the existing
tools to analyze AADL descriptions [for example OSATE
(Hansson et al., 2010)].

We can assess different non-functional aspects for the
designed models like: security, safety, reliability. It is also
possible to perform the following analysis: checking model
sanity, checking connections binding consistency and
checking for consistency of port properties on
connections.

MATERIALS AND METHODS

The AADL language

AADL (Feiler et al., 2006; SAE International and SAE Standards,

2009) is an internationally standardized architecture description
language. It is configured by the set of non-functional properties
applied to each model element. It is developed for modeling software
system architecture and conducting analysis and verification of its
non-functional behavior. The behavior of a system is defined by
means of dispatching invariants and communication patterns. The
language is useful across domains where real-time, embedded, fault
tolerant, secure, safety critical, software-intensive systems are
developed. System components are composites that can consist of
other systems as well as of software or hardware components.
Furthermore, AADL supports automated system integration via tools
from fully specified AADL models when source code is provided for
the software components. This standard provides formal modeling
concepts for the description and analysis of application systems
architecture in terms of distinct components and their interactions.
The AADL is component-centric and allows to:

i) Specify and analyze real-time embedded systems, complex
systems and specialized performance capability systems.
ii) Map software onto computational hardware elements (Feiler et
al., 2006).

The AADL standard includes runtime semantics for mechanisms of
exchange and control of data including:

i) Message passing.
ii) Event passing.
iii) Synchronized access to shared components.
iv) Thread scheduling protocols.
v) Timing requirements.
vi) Remote procedure calls.

AADL provides an extensible core language which is composed of
well-defined semantics and both graphical and textual syntaxes
representations (Thöne, 2005). In addition, dynamic reconfiguration
of runtime architectures can be specified using operational modes
and mode transitions. An AADL model such as thread dispatching
condition, interface specifications and how components are
interconnected can be used to describe non-functional aspects of
components as performance, schedulability and reliability (Gilles and
Hugues, 2009). Functional aspects (algorithmic/behavioral
specifications) are attached separately as source code by means of
AADL properties. For example, thread components for specifying
and analyzing schedulability include the predeclared execution
property of periodic, aperiodic (event-driven), background
(dispatched once and executed to completion) and sporadic (paced
by an upper rate bound) events (Feiler et al., 2006). AADL provides
components to describe computer system architectures and these
components have precise semantics. Components have a type and
one or more implementations. Software components include data,
subprogram, thread, thread group and process. The hardware
components include processor, memory, bus and device.

The system abstraction represents a composite of software,
execution platform or system components. System abstractions can
be organized into a hierarchy that can represent complex systems of
systems. AADL components interact exclusively through defined
interfaces. A component interface consists of directional flow
through:

i) Data ports for unqueued state data.
ii) Event data ports for queued message data.
iii) Event ports for asynchronous events.
iv) Synchronous subprogram calls.
v) Explicit access to data components.

Interactions among components are specified explicitly. For
example, data communication among components is specified
through connection declarations. Application components have

Aminpour et al. 3505

properties that specify timing requirements such as period, worst-
case execution time, compute deadlines, initialize deadlines, space
requirements, arrival rates, and characteristics of data and event
streams. The original language concepts and key specification
elements of AADL are summarized in Figure 1. In AADL,
components are defined through type and implementation
declarations. A ‘component type’ declaration defines a component’s
interface elements and externally observable attributes (that is,
features that are interaction points with other components, flow
specifications and internal property values). A ‘component
implementation’ declaration defines a component’s internal structure
in terms of subcomponents, connections, subprogram call
sequences, modes, flow implementations and properties.
Components are grouped into application software, execution
platform and composite categories. Packages enable the
organization of AADL elements into named groups.

The SoA style

Service-oriented architecture (SoA) is a method underlying systems
development and integration where system functions are grouped
around business processes and are packaged as interoperable
services (Jonnaganti, 2009). In a service-oriented architecture,
business components expose their functionality as services over a
network to other components. A service is equipped with a
description of the provided functionality including information about
the interface and how to access it. Recently, the service-oriented
paradigm has become very popular under the label of ‘web services’
(Champion et al., 2002; Chen, 1976). As shown in Figure 2, SoA
involves three different roles: service providers, service requesters
and discovery agencies. The service provider runs the service and
publishes the service description to ‘discover agency’. The
‘discovery agency’ enables dynamic service discovery and allows
requesters to access the service (Thöne, 2005). Since service
providers and requesters usually do not know each other in
advance, the service descriptions are published via third-party
‘discovery agencies’. They categorize the descriptions and deliver
them in response to queries issued by service requesters. As soon
as the ‘service requester’ retrieves a service description that meets
its requirements, it can use it to interact with the service (Pilioura and
Tsalgatidou, 2001). Service-oriented architectures are very dynamic
and flexible: components and services are loosely coupled and use
standardized communication protocols. As the service descriptions
are exchanged at runtime, ‘service requesters’ can dynamically
switch from unsatisfactory services to those providing better
functionality or quality. To consider SoA-specific features like service
discovery in our architecture models, in this paper we define an
architectural framework which formally describes the concepts of
service oriented computing.

Following the idea of a platform hierarchy, the SoA-specific style
extends the more generic, component-based style. This means that
SoA contain components and connectors, too, and they support the
same message-based communication mechanisms. The framework
can be continuously used along with the following platform
mechanisms:

1) A ‘service provider’ can publish service descriptions to ‘discover
agency’.
2) A ‘discovery agency’ receives publication requests and stores the
attached service descriptions.
3) The ‘service requester’ sends a service query to the ‘discovery
agency’.
4) The ‘discovery agency’ can receive such queries, search for an
appropriate service description and send the query result back to the
requester.
5) The service requester receives and safes the description and is
directly connected to the relevant service.

3506 SCI. RES. ESSAYS

Figure 1. Summary of AADL elements: Feiler et al. (2006).

OUR PROPOSED APPROACH

Service provider, ‘discovery agency’ and ‘service requester’ can be
modeled as special components using appropriate subtypes of
component and component type. A ‘service provider’ publishes
service descriptions to a ‘discovery agency’. The service description
describes a specific service because, in SoA, descriptions refer to
deployed, addressable service rather than to service type. We can
summarize our approach to model service oriented applications
through AADL in the following steps:

Steps 1

Specify the SoA system through three processes that is ‘service
provider’, ‘discovery agency’ and ‘service requeste’r (Figure 3). As it
is shown, the connection between these three processes along with
the proper ports and interfaces is defined in section ‘connection’
based on the architecture presented in Figure 2. Communication
between processes is defined in Part SoA system. Overall the
system has three operational modes. Initialize mode is the initial

mode which is used to activate the system. Discovery agency and
‘service provider’ are active in both modes.

Step 2

Specify service provider and ‘discovery agency’ as a periodic
processes as shown in Figures 4 and 5 respectively. All services
that can provide a service are declared in Part
Service_Provider.imp. So to define a particular system, it needs the
service providers to be declared again.

Step 3

Determine the two aperiodic threads for searching and adding
services in ‘discovery agency’ as shown in Figure 5.

Step 4

Communication between the ‘service provider’ and the ‘discovery

Aminpour et al. 3507

Figure 2. Roles in a service-oriented architecture, cf.: Champion et al. (2002).

system SOA

 features

 Init_Done: in event port;

end SOA;

system implementation SOA.imp

 subcomponents

 SR: process Service_Requester.imp ;

 DA: process Discovery_Agency.imp in modes (Query, Int);

 SP: process Service_Provider.imp in modes (Query, Int);

 connections

 event data port SP.new_Service -> DA.new_Service in

modes (Query, Int);

 event data port DA.query_Result -> SR.query_Result in

modes (Query);

 event data port SR.new_query -> DA.new_query in

modes (Query);

 port group SR.interact_out -> SP.interact_in in modes (Int);

 port group SP.interact_out -> SR.interact_in in modes (Int);

 event port SP.Act_Service -> DA.Act_Service in modes (Query, Int);

 modes

 Initialize: initial mode ;

 Query: mode ;

 Int: mode ;

 Initialize -[Init_Done]-> Query;

end SOA.imp;

Figure 3. SoA system.

3508 Sci. Res. Essays

process Service_Provider

 features

 new_Service: in out event data port Service_record;

 Act_Service: out event port;

 interact_in: port group basic::input_PT;

 interact_out: port group basic::output_PT;

 --properties

 --Dispatch_Protocol => Aperiodic;

 end Service_Provider;

 process implementation Service_Provider.imp

 --here we declare services that are required

 --subcomponents

 --Connections

 --modes

 end Service_Provider.imp;

Figure 4. Service provider.

process Discovery_Agency

 features

 new_Service: in out event data port Service_record;

 Act_Service: in out event port;

 new_query: in out event data port ServiceQuery_record;

 query_Result: in out event data port Service_record;

end Discovery_Agency;

process implementation Discovery_Agency.imp

 subcomponents

 Service_addition: thread SEI_Service_addition;

 Service_search: thread SEI_Service_search;

 connections

 event data port new_Service -> Service_addition.new_Servise;

 event data port new_query -> Service_search.new_query;

 event data port Service_search.query_Result -> query_Result;

 event port Act_Service -> Service_addition.Act_Service;

 event port Act_Service -> Service_search.Act_Service;

 end Discovery_Agency.imp;

Figure 5. Discovery agency.

agency’ is modeled via the event data port as shown in Figures 4
and 5.

Step 5
Specify service requester as periodic processes as shown in Figure
6.

Step 6

Determine an aperiodic thread in ‘service requester’ to receive

services from ‘service provider’ as shown in Figure 6.

Step 7

Determine a periodic thread in ‘service requester’ to send out
request to ‘discovery agency’ as shown in Figure 6.

s
The ‘requester’ thread and the ‘interaction’ thread in the process of
‘service requester’ are active in ‘query’ mode and ‘int ‘mode
respectively.

Aminpour et al. 3509

process Service_Requester

 features

 new_query: in out event data port ServiceQuery_record;

 query_Result: in out event data port Service_record;

 interact_in: port group basic::input_PT {

Required_Connection => false; };

 interact_out: port group basic::output_PT {

Required_Connection => false; };

 properties

 Dispatch_Protocol => Periodic;

 Period => 30 Ms;

end Service_Requester;

process implementation Service_Requester.imp

 subcomponents

 Requester: thread Requester in modes (Query);

 Interaction: thread Intraction in modes (Int);

 connections

 event data port Requester.new_query -> new_query in modes

(Query);

 event data port query_Result -> Requester.query_Result in

modes (Query);

 event port Requester.Activation -> Interaction.Activation in

modes (Int);

 port group Interaction.interact_out -> interact_in {

Required_Connection => true in modes (Int); };

 port group interact_out -> Interaction.interact_in {

Required_Connection => true in modes (Int); };

 modes

 Query: initial mode ;

 Int: mode ;

Figure 6. Service requester.

data ServiceDescription

end ServiceDescription;

data ServiceRequirements

end ServiceRequirements;

Figure 7. Data type.

Step 8

Communication between the ‘service requester’ and the ‘discovery
agency’ is modeled via the event data port as shown in Figures 5
and 6.

Step 9

Communication between the ‘service requester’ and the ‘service
provider’ is modeled via the port group as shown in Figures 4 and 6.

Step 10

Enable aperiodic threads through the event port as shown in Figures
3, 4 and 5.

Step 11

Specify service description and service requirements as data type as
shown in Figure 7.

Service description is defined by the type of data which can be as a
new service to be sent in the form of a service record to ‘discovery
agency’. Also, service requirement is defined by the type of data
which can be sent in the form of a query to the ‘discovery agency’.

Case study

To show how our modeling framework can be used to model
different systems, we have considered an ATM machine. Figure 8
shows an ATM machine which has been described using our
proposed modeling approach. It consists of three particular services
to an ATM machine in the form of a thread. As previously mentioned,
the Service_Provider.imp is the main part that should be changed.
Services available include: ‘balance’, ‘withdrawal’ and if the user

3510 Sci. Res. Essays

process implementation Service_Provider.imp

 subcomponents

 Balance: thread returnBalance in modes (Blnc);

 Withdrawal: thread group Withdrawal.imp in modes

(WithDrwl);

 ExitSP: thread ChooseExit in modes (Exit);

 Connections

 C1: event data port Balance.new_Service ->

new_Service in modes (Query,Int);

 C2: event data port Withdrawal.new_Service ->

new_Service in modes (Query,Int);

 C3: event data port ExitSP.new_Service ->

new_Service in modes (Query,Int);

 C4: event port interact_out.event_out ->

ActiveThread in modes(Int);

 C5: event port ActiveThread -> Balance.BalanceSrv

 in modes (Int,Blnc);

 C6: event port ActiveThread ->

Withdrawal.WithDrwSrv in modes (Int,WithDrwl);

 C7: event port ActiveThread -> ExitSP.Choose_Exit

 in modes (Int,Exit);

 C8: data port Balance.ShowBalance ->

interact_out.data_out in modes (Int);

 C9: data port Withdrawal.GrantMoney ->

interact_out.data_out in modes (Int);

 C10: event port ExitSP.InsertCard ->

interact_out.event_out in modes (Int);

 modes

 Query: initial mode;

 Blnc: mode;

 WithDrwl: mode;

 Exit: mode;

 Int: mode;

 Int -[interact_in.event_in]-> Blnc;

 Int -[interact_in.event_in]-> WithDrwl;

 Int -[interact_in.event_in]-> Exit;

 end Service_Provider.imp;

Figure 8. ATM machine specified through AADL.

thread returnBalance

 features

 BalanceSrv: in event port;

 ShowBalance: out data port Basic::int;

 Exit: out event port;

 new_Service: out event data port Service_record;

 properties

 SEI::SecurityLevel => 8;

 SEI::safetyCriticality => 8;

end returnBalance;

Figure 9. Return balance thread.

wants to cancel is ‘exit’. As it is shown, Service_Provider.imp is
composed of five operational modes in which the ‘query’ and ‘int’
modes are related to the entire system. Initially, the system is in the
‘query’ mode and in this mode information about the services is sent
to ‘discovery agency’. After that, ‘service provider’ enters to the ‘int’
mode. Then, the ‘service requester’ will request a special service
and depending on the requested service and using the activated
ports, the system enters to the desired mode. returnBalance thread
defines the balance for the user. As it is shown in Figure 9, it has an
input event port that is used to activate the returnBalance. It also has
an output event data port that uses it to introduce new service to
‘discovery agency’. Also, ‘show_balance’ data port is used to display
the user account balance and ‘exit’, event port is used to prompt
completion and enables ChooseExit thread. Withdrawal thread

thread group Withdrawal

 features

 WithDrwSrv: in out event port;

 GrantMoney: in out data port Basic::Money;

 new_Service: out event data port Service_record;

 properties

 SEI::SecurityLevel => 8;

 SEI::safetyCriticality => 8;

 end Withdrawal;

thread group implementation Withdrawal.imp

 subcomponents

 StnOrOth: thread ChooseStnOrOth in modes

(WithDrwl);

 Stn: thread StandardP in modes (Standard);

 Oth: thread OthersP in modes (Other);

 Money: thread GrantMoney in modes

(Standard,Other);

 Exit: thread ChooseExit in modes

(Standard,Other);

 Connections

 C6: event port WithDrwSrv ->

StnOrOth.WithDrwSrv in modes (WithDrwl);

 C7: event port StnOrOth.StandardDrw ->

Stn.StandardDrw in modes (Standard);

 C8: event port StnOrOth.OtherDrw

 -> Oth.OthersDrw in modes (Other);

 C9: data port Stn.Select_StandardMoney ->

Money.GrantMoneySrv in modes (Standard,Other);

 C10: data port Oth.Select_OthersMoney ->

Money.GrantMoneySrv in modes (Standard,Other);

 C11: data port Money.GrantM

 -> GrantMoney in modes

(Standard,Other);

 C12: event port Money.Exit ->

Exit.Choose_Exit in modes (Standard,Other);

 C13: event port Exit.InsertCard

 -> WithDrwSrv in modes (Standard,Other);

 modes

 WithDrwl: initial mode;

 Standard: mode;

 Other: mode;

 WithDrwl -[StnOrOth.StandardDrw]-> Standard;

 WithDrwl -[StnOrOth.OtherDrw]-> Other;

end Withdrawal.imp;

Figure 10. Withdrawal thread.

thread ChooseExit

 features

 new_Service: out event data port Service_record;

 Choose_Exit: in event port;

 InsertCard: out event port;

 flows

 ExitFlow: flow path Choose_Exit -> InsertCard;

 properties

 SEI::SecurityLevel => 8;

 SEI::safetyCriticality => 8;

end ChooseExit;

Figure 11. Choose thread.

Aminpour et al. 3511

group is composed of five threads which pay requested amount of
money to the user as shown in Figure 10. According to the user
request to use standard amounts provided by the ATM machine or
to enter his/her desired amount, two threads are executed
respectively, that is the StandardP and ‘othersp’ threads.
GrantMoney thread pays money to the user and finally ChooseExit
thread terminates operations. The ChooseExit thread is also used
for the cases in which the user is not willing to continue operations or
operations terminated (Figure 11).

Defining the ‘security’ and ‘safety’ levels for this system is very
important. Using the features ‘security level’ and safety ‘criticality’ in
this language, we can define the security level in components and
subcomponents. As it is shown in this example, we have considered
the level of safety and security equal to 8.

RESULTS AND DISCUSSION

These existing analyses are made available through a
number of tools such as OSATE, SPICES, Stood, etc.
Additional analysis can be implemented (for example,
through OSATE since it supports plug-in development in
an eclipse environment) (Hansson et al., 2010). As we
mentioned earlier, these tools will automatically check the
non-functional behavior and help us in creating a system
with high security level. Architectural modeling can
efficiently be used to verify security of system
architectures and thus gain confidence in the system
design. Using AADL and OSATE, the SEI has developed
analytical techniques to represent standard security
protocols for enforcing confidentiality and integrity and
model and verify security using system architecture
according to flow-based approaches early and often in the
life cycle. Security as an architectural concern crosscuts
all levels of the system (application, middleware, operating
systems and hardware). Security requires intra- and inter-
level verification and has immediate effects on the runtime
behavior of the system, specifically on other dependability
attributes. The designer seeks to ensure that the software
applications do not compromise the confidentiality of the
secure information they are exchanging. The following
types of security verification and analysis are available as
OSATE plug-ins:

i) Basic confidentiality principle-access should only be
granted if given the appropriate security clearance.
Ii) Need-to-know principle access should be granted only
to a resource if there is a need. Controlled sanitization
lowering the security level of an object or subject should
only be authorized and performed by a privileged subject.
iii) Non-alteration of object’s security require a subject
using an object as input should not alter the security level
of the object, even if the object is updated as an output
from the subject.
iv) Hierarchical condition: (1) a component has a security
level that is the maximum of the security levels of its
subcomponents, and (2) all connections are checked to
determine whether the source component of a connection
declaration has a security level that is the same or lower
than that of the destination component (Hansson et al.,

3512 Sci. Res. Essays

2010). This tool from the Part in which system
implementation provides an instance which different
analysis can be done on it. In fact, the system will create
instances based on spatial-defined architecture.

When we are defining the security and safety levels, the
system checks if it can create spatial instances with this
level of security or not. If the security is defined at a
component level and have not defined for the associated
subcomponents, the system will report an error and
states the instance produced at 0 level, when we want to
check security. This means that the security level must
be considered in a component and all its associated
subcomponents. Of course this feature is more visible
when we want to bind software to hardware. By mapping
the entities of a software architecture (that is, processes,
threads and partitions) to a hardware architecture
(consisting of, for example, CPUs, communication
channels and memory), we can ensure that the hardware
architecture supports required security levels. In addition
security check and safety check, the analyst can perform
the following analysis:

i) Checking model sanity.
ii) Checking connections binding consistency.
iii) Checking for consistency of port properties on
connections.
iv) Checking property values for circular property
references.
v) Checking ports for required connections.

In this paper, we tried to check all items stated on the
code written for proposed approach and ATM machine
and to specify an approach that will satisfy all the
aforementioned cases.

Related work

Chaari et al. (2008) present a non-functional parameters-
based framework for web service discovery and selection.
The developed framework relies on an ontology-based
categorization of service non-functional property. The
selection process is achieved via peer-to-peer interactions
among a NFP-based matching engine (NME) and
community services. This framework can be used only for
web services. Gönczy et al. (2007) present a metamodel
to create a ‘service-oriented architecture’ with reliable
message delivery. The formal techniques and graph
transformation were used to achieve this goal. This
approach only considers reliable messaging without
considering the other kind of faults in an SoA -based
application. The authors briefly look at this system and
quality aspects in them. This approach also considers only
one aspect of the non-functional properties and other
aspects are ignored in this proposal. Rafe et al. (2009),
Rafe and Mahdian (2011) and Mahdian et al. (2009) uses

the style presented in (Gönczy et al., 2007) to consider
different type of non-functional properties. They extend
the formal style by adding new elements to the type graph
and new graph transformation rules to consider new
configurations. Even though using this approach, one can
model different types of non-functional properties (for
example fault tolerance and security); there is no proper
approach to analyze them. Using this approach, one can
analyze different functional properties through model
checking on graph transformation system (Rafe et al.,
2010; Baresi et al., 2008; Rafe and Rahmani, 2009).

Garcia and Toledo (2007) present architecture for fault
tolerant and service-based business processes. The
approach extends the basic web service architecture with
the inclusion of broker and monitor components and a
UDDI extension to create BPMS. Although the proposed
extensions cause a significant additional cost, it is
acceptable because of the offered benefits. To extend its
business process architecture, they use two extra
components. Also, they detect faults that occurred in the
system.

Conclusion

In this paper, we proposed a formal framework to specify
service-oriented applications. To do this, we have used
AADL language to express SoA-based applications. We
have proposed a framework which helps designers to
model and express different parts of the system through
AADL. Then, we explained our approach to analyze
different non-functional properties on the models. Using
the existing tools for AADL descriptions we can analyze
different non-functional properties such as real-timeness,
fault tolerance, security etc. As our future work, we have a
plan to complete the work by presenting the approach
through a style. To ease the using of the approach by
different designers we have a plan to define the style by
UML through proposing proper stereo types. Hence, it is
possible to use the UML in the front while a formal and
precise basis (that is ADDL) as the background.

REFERENCES

Baier C, Katoen JP (2008). Principles of Model Checking. Library of

Congress Cataloging-in-Publication Data.
Baresi L, Heckel R, Thöne S, Varró D (2006). Style-Based Modeling

and Refinement of Service-Oriented Architectures: A Graph
Transformation-Based Approach. J. Software Syst. Modeling., 5: 187-
207.

Baresi L, Rafe V, Rahmani AT, Spoletini P (2008). An Efficient Solution
for Model Checking Graph Transformation Systems. Electronic Notes
in Theoretical Computer Science (ENTCS). Elsevier Science B.V.
213: 3-21. ISSN: 1571-0661.

Chaari S, Badr Y, Biennier F, Favrel J, Ben AC (2008). Framework for
Web Service Selection Based on Non-Functional Properties. In Proc.
of Int. J. Web Serv. Pract., 3(1-2): 94-109.

Champion M, Ferris C, Newcomer E, Orchard D (2002). Web Service
Architecture. W3C Working Draft, World Wide Web Consortium.
Available: http://www.w3.org/TR/2002/WD-ws-arch-20021114/.

Chen V (1976). The entity-relationship model - toward a unified view of

data. In Proc. of ACM Transactions on Database Systems, 1(9-36).
Feiler PH, Gluch DP, Hudak JJ (2006). The Architecture Analysis and

Design Language (AADL): An Introduction. Technical Note. Carnegie
Mellon University.

Garcia DZG, Toledo MBF (2007). An Architecture for Fault Tolerant and
Service-based Business Processes. In Proc. of Brz. W. Business
Process Management. Gramado. RSLiving experience through web.
in conjunction with IEEE 11th Int. Conf. on Computational Science
and Engineering.

Gilles O, Hugues J (2009). Towards Model-based optimizations of Real-
Time systems, an application with the AADL. 15th IEEE Int. Conf. on
Embedded and Real-Time Computing Systems and Applications.

Gönczy L, Kovács M, Varró D (2007). Modeling and Verification of
Reliable Messaging by Graph Transformation Systems. Elect. Notes
Theor. Comput. Sci., 175(4): 37-50.

Hansson J, Lewis B, Hugues J, Wrage L, Feiler P, Morley J (2010).
Model-Based Verification of Security and Non-Functional Behavior
using AADL. In Proc. of IEEE Secur. Priv., 8: 43-49.

Jonnaganti V (2009). An Integrated Security Model for the Management
of SoA: Improving the attractiveness of SoA Environments through a
strong Architectural Integrity. University of Gothenburg. Department
of Applied Information Technology Gothenburg. Sweden. Report No.
2009-055. ISSN: 1651-4769.

Mahdian F, Rafe V, Rahmani AT, Rafeh R (2009). Modeling Fault
Tolerant Services in Service-Oriented Architecture. in Proc. of Third
IEEE International Symposium on Theoretical Aspects of Software
Engineering (TASE09). China. pp. 319-320.

Pilioura T, Tsalgatidou A (2001). E-services: Current technology and
open issues. In Proc. of the 1st W. Technologies for e-Services. TES
2001. 2193(LNCS): pp. 1-15.

Rafe V, Mahdian F (2011). Style-based modeling and verification of
fault tolerance service oriented architectures. Procedia-Computer
Science. Elsevier Science B.V, 3(1): 972-976.

Aminpour et al. 3513

Rafe V, Rahmani AT (2009). Towards Automated Software Model

Checking Using Graph Transformation Systems and Bogor. J.
Zhejiang University- Science A (JZUS)., (8): 1093-1105.

Rafe V, Rahmani AT, Baresi L, Spoletini P (2009). Towards Automated
Verification of Layered Graph Transformation Specifications. J. IET
Software., 3(4): 276-291.

Rafe V, Rahmani AT, Rafeh R (2010). Formal Analysis of UML 2.0
Activities Using Graph Transformation Systems. Int. J. Software Eng.
Knowl. Eng., 20(5): 679-694.

SAE International, SAE Standards (2009). Architecture Analysis and
Design Language (AADL). AS5506. November 2004. Available:
http://www.sae.org/technical/standards/AS5506/1. May 25.

Thöne S (2005). Dynamic Software Architectures: A Style-Based
Modeling and Refinement Technique with Graph Transformations.
Ph.D. Thesis. University of Paderborn.

