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This paper describes the meta-heuristic improved harmony search algorithm (IHSA) and analyzes the 
performance of IHSA in solving unconstrained function minimization problems. The most important 
challenge to this algorithm is setting the parameters for various optimization problems. Performance of 
IHSA is quite sensitive to initial settings. Using Taguchi’s experimental design to arrange IHSA 
parameters, the performance of IHSA was analyzed to find global optima of Rosenbrock and Wood-
Colville function. 
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INTRODUCTION 
 
Over the last four decades, optimization of design and 
manufacturing parameters has been a major issue for 
solving real world optimization problems. In order to 
design and manufacture higher-quality products, current 
optimization techniques must be improved. Different 
optimization techniques have been developed for solving 
various optimization problems (Chen, 2004; Cho and 
Ahn, 2003; Coello, 2000; Petrović et al., 2011). 

Recent advancements in optimization area have 
introduced new opportunities to achieve better solutions 
for design and manufacturing optimization problems. 
Therefore, there is a need to introduce new methods to 
overcome drawbacks and improve the existing 
optimization techniques to design and manufacture 
products economically (Yildiz, 2008).  

Real-world optimization problems are very complex in 
nature and quite difficult to solve using these algorithms.  
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If there is more than one local optimum in the problem, 
the result may depend on the selection of an initial point, 
and the obtained optimal solution may not necessarily be 
the global optimum. When solving problems with high 
dimensional search space and many local optima, meta-
heuristic algorithms are preferable, although they provide 
near optimal solutions. 

Meta-heuristic algorithms imitate natural phenomena, 
that is, physical annealing in simulated annealing, animal 
behavior in tabu search, evolution in evolutionary 
algorithms, etc. There are many meta-heuristic 
algorithms that are often applied, such as: simulated 
annealing (Koulamas et al., 1994), tabu search (Glover 
and Laguna, 1997), genetic algorithm (Konak et al., 2006; 
Goldberg, 1989, ant colony optimization (Dorigo and 
Stützle, 2004), shuffled frog leaping (Eusuff et al., 2006), 
harmony search algorithm (HSA) (Geem et al., 2001), 
scatter search (Martí et al., 2006), bees algorithm 
(Baykosoglu et al., 2007). In the paper of Teodorović 
(2008), a classification and analysis of the results 
achieved using swarm intelligence was presented. 

One of the newer techniques is the  HSA  developed  by  



 

 
 
 
 
Geem et al. (2001). This approach is based on the musical 
performance process that takes place when a musician 
searches for a better state of harmony. The HSA has been 
successfully applied to various benchmark and real world 
optimization problems (Geem et al., 2001; Geem et al., 
2002; Lee and Geem, 2004; Fesanghary et al., 2008; 
Abdolvahhab et al., 2011). However, like other meta-
heuristic algorithms, the HSA suffers from some 
drawbacks. One of these drawbacks is that its 
capabilities are quite sensitive to initial parameter 
settings. This problem is due to similar harmonies in the 
final generations. Over the course of repeated 
generations, the diversity of harmony gradually reduces, 
creating a similar harmony. As compared to other meta-
heuristics algorithms, this drawback can easily be solved 
by setting suitable parameters (Sarvari and Zamanifar, 
2011). As such, the most important challenge with 
respect to this algorithm is setting the parameters for 
various optimization problems (Orman and Mahdavi, 2008; 
Jaberipour and Khorram, 2010). Some previous studies 
addressed the issue of dealing with algorithm parameter 
settings; as such, they offer different settings for these 
parameters based on different benchmarks. Most of 
these studies involve problems with low dimensions and 
have achieved good results in this context.  

This paper attempts to analyze the performance of 
improved harmony search algorithm (IHSA) (Mahdavi et 
al., 2007) in solving unconstrained function minimization 
problems. Using Taguchi’s experimental design to 
arrange IHSA parameters, the performance of IHSA was 
analyzed to find global optima of Rosenbrock and Wood-
Colville function. 
 
 
MATERIALS AND METHODS 
 
Harmony search algorithm 
 
The HSA is a meta-heuristic optimization algorithm, simple in 
concept, few in parameters and easy in implementation. The steps 
in the procedure of harmony search are as follows (Geem et al., 
2001): 
 
Step 1: Initialize the problem and algorithm parameters. 
Step 2: Initialize the harmony memory (HM). 
Step 3: Improvise a new harmony. 
Step 4: Update the HM. 
Step 5: Check the stopping criterion. 
These steps are described in the next five subsections. 
 
 
Step 1: Parameters initialization  
 
In this step, the optimization problem is specified as shown in 
Equation 1: 
 

( )xfMinimize ,            (1) 

 

subject to: ii Xx ∈ , i = 1, 2, …, N, where f(x) is the objective 

function, xi is the set of each design variable,  Xi  is  the  set  of  the  
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possible range of values for each design variable, that is, Xi = {xi(1), 
xi(2),…, xi(K)}, N is the number of design variables and K is the 
number of candidate values for the discrete decision variables. The 
HSA parameters are also specified in this step: harmony memory 
size (HMS), harmony memory considering rate (HMCR), pitch 
adjusting rate (PAR), and the maximum number of improvisations – 
maximal number of searches (NI). These algorithm parameters are 
explained in the following steps. 
 
 
Step 2: Initialize the HM  
 
In this step, the HM matrix, as shown in Equation 2, is filled with 
randomly generated solution vectors and sorted by the values of 
the objective function f(x). 
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Step 3: Improvise a new harmony from the HM 
 

In this step, a new harmony vector 
′′′

=′ Nx...,,x,xx 21  is 

improvised by following three rules: HM consideration, pitch 
adjustment and random selection. As a musician plays any pitch 
out of the preferred pitches in his/her memory, the value of decision 
variable is chosen from any pitches stored in HM 

({
HMS
iii x...,,x,x 21

 }) with a probability of HMCR (0 ≤ HMCR ≤ 

1) while (1-HMCR) is the rate of randomly selecting one value from 
the possible range of values.  
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Every component obtained by the memory consideration is 
examined to determine whether it should be pitch-adjusted. This 
operation uses the PAR parameter, which is the rate of pitch 
adjustment, as follows (Mahdavi et al., 2007): Pitch adjusting 
decision for 
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The value of (1 - PAR) sets the rate of doing nothing. If the pitch 

adjustment decision for 
′

ix  YES, 
′

ix  is replaced as follows: 

 
 

( ) bwrandxx ii ⋅±
′
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,               (5) 

 
where bw is an arbitrary distance bandwidth; rand( ) is a random 
number between 0 and 1. 

In step 3, HM consideration, pitch adjustment or random 
selection is applied to each variable of the  new  harmony  vector  in  
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turn. 
 
 
Step 4: Update the HM 
 

In this step, if the new harmony vector 
′′′

=′
Nx...,,x,xx 21  is 

better than the worst harmony in the HM in terms of the objective function 
value, the new harmony is included in the HM and the existing worst 
harmony is excluded from the HM. The HM is then sorted by the objective 
function value. 
 
 
Step 5: Repeat steps 3 and 4 until the termination criterion is 
satisfied 
 
This is the final step where the computations are terminated when 
the termination criterion is satisfied. Otherwise, steps 3 and 4 are 
repeated. 
 
 
Settings parameters of HSA 
 
The algorithm requires several parameters, including HMS, NI, 
HMCR, PAR, bw (Sarvari and Zamanifar, 2011). 

The HMCR and PAR parameters introduced in Step 3 help the 
algorithm find globally and locally improved solutions, respectively 
(Geem et al., 2001). PAR and bw in HSA are very important 
parameters in fine-tuning of optimized solution vectors, and can be 
potentially useful in adjusting convergence rate of algorithm to 
optimal solution. So, fine adjustment of these parameters is of great 
interest.  

The traditional HSA uses fixed value for both PAR and bw. In the 
HSA method, PAR and bw values are adjusted in initialization step 
(step 1) and cannot be changed during new generations. The main 
drawback of this method appears in the number of iterations the 
algorithm needs to find an optimal solution.  

Mahdavi et al. (2007) offer an improvement of the traditional 
HSA. The key difference between the improvement of the traditional 
HSA and traditional HSA is in the way of adjusting PAR and bw. To 
improved the performance of the HSA and eliminate the drawbacks 
with fixed values of PAR and bw, the improvement of the traditional 
HSA which uses variable PAR and bw in the improvisation step was 
proposed by Mahdavi et al. (2007). In this paper, the IHSA was 
used. 
 
 
Taguchi experimental design 
 
The Taguchi technique is a well-known, unique and powerful 
technique for product/process quality improvement. It has broad 
application in engineering design (Taguchi, 1986) and can be 
applied to many aspects, such as optimization, experimental 
design, sensitivity analysis, parameter estimation, model prediction, 
etc. 

The Taguchi experimental design is a more structured and 
efficient technique that differs from the classical design of 
experiment, and, in that sense, it is a relatively simple method. The 
classical design of experiment (DoE) is sometimes too complex, 
time-consuming and not easy to use (Montgomery, 2001). A large 
number of trials have to be carried out when the number of process 
factors increases. By using highly fractionated factorial designs and 
other types of fractional designs obtained from orthogonal 
(balanced) arrays instead of full factorial, the Taguchi experimental 
design allows for an easy set-up of experiments with the minimum 
number of trials. Fewer trials imply that time and costs are reduced. 
In a full factorial design with more factors and several levels of each  

 
 
 
 
factor, the total number of trials (N) can be obtained by using the 
equality as follows: 
 

kLN = , (6) 
 
where L is the number of levels and k is the number of design 
factors. 

For example, for experiment with 4 factors at 3 levels, a full 
factorial design would require 34=81 trials. Using the Taguchi 
experimental design, the standard orthogonal array (OA) denoted 
by the symbol L9 (3

4) requires only 9 trials. 
Each row of an OA represents one trial with the levels of different 

factors in that trial. The number of rows must be at least equal to 
the total degrees of freedom required for the experiment. Each 
column of an OA represents one factor and its setting levels in each 
trial. 

Traditionally, data from experiments is used to analyze the mean 
response. However, in the Taguchi experimental design the mean 
and the variance of the response (experimental result) at each 
setting of parameters in OA are combined into a single performance 
measure known as the signal-to-noise (S/N) ratio. Depending on 
the criterion for the quality characteristic to be optimized, different 
S/N ratios can be chosen: smaller-the-better, larger-the-better and 
nominal-the-best (Phadke, 1989).  

The Taguchi method is a robust design technique, which in its 
essence optimizes the settings of the process factor values as 
close as possible to the target factor values, with minimum 
variation. However, the goal of this paper is to identify IHSA 
parameter combination yielding to global optimum of Rosenbrock 
and Wood-Colville function. To this aim, the application of the 
Taguchi method was reduced to using the Taguchi experimental 
design as experimental matrix where IHSA parameters and their 
corresponding levels were arranged. 
 
 
Unconstrained test functions 
 
In mathematical optimization, the Rosenbrock function (Equation 
10) is a non-convex function used as a performance test 
problem for optimization algorithms. It was introduced by 
Rosenbrock (1960). It is also known as Rosenbrock’s valley or 
Rosenbrock’s banana function. Finding the valley is trivial, 
however, convergence to the global optimum is difficult, hence, 
this problem has been repeatedly used to assess the 
performance of optimization algorithms. It is defined by Equation 
7: 
 

( ) ( ) ( )2
1

22
12 1100 xxxxf −+−⋅= .          (7) 

 
This results in a global minimum at x* = (1, 1), where f*(x) = 0.0. A 
different coefficient of the second term is sometimes given, but 
this does not affect the position of the global minimum. 

The second test function is the fourth-degree Wood-Colville 
function. It is a particularly good test of convergence criteria and 
simulates a feature of many physical problems quite well (Lee and 
Geem, 2004). It is computed using the equation as follws: 
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The global minimum of the function is obtained at the point x* = (1, 1, 1,  
1) with the corresponding objective function value of f* = 0.0. Since the  
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Table 1. IHSA design parameters and their levels. 
 

Factor Factor description 
Level 

1 2 3 4 5 

A HMS 5 10 20 40 80 
B HMCR 0.35 0.5 0.65 0.8 0.95 
C PARmin 0.1 0.2 0.3 0.4 0.5 
D PARmax 0.8 0.85 0.9 0.95 0.99 
E bwmin 0.00001 0.0001 0.001 0.01 0.1 
F bwmax 0.2 0.4 0.6 0.8 1 

 
 
 
number of design variables was increased, the optimization became 
more complex and computationally demanding, hence the number of 
searches was increased. The IHSA was implemented using the 
available Matlab’s code on desktop computer with a Intel Core2Duo 
E6550, 2.33 GHz processor and 2 GB RAM.  
 
 
RESULTS 
 
Application of Taguchi experimental design for 
assessing IHSA performance 
 
Two optimization problems taken from the literature were 
used to test the performance of IHSA. By arranging IHSA 
parameters in Taguchi’s L25 OA, IHSA was tested in 
finding global optimum of two unconstrained function 
minimization examples, namely Rosenbrock and Wood-
Colville function. 

IHSA parameters considered in the experiment were: 
HMS, HMCR, PARmin, PARmax, bwmin and bwmax. Each of 
these design factors can have some levels. The IHSA 
design parameters and the corresponding levels are 
shown in Table 1. 

If all of the possible combinations of the six design 
parameters were to be considered (full factorial design), 
then 56 = 15625 experiment trials would have to be 
carried out. This was unrealistic, so by using Taguchi’s 
OA this number was significantly reduced. As the total 
degree of freedom (DoF) for the six design factors was 4 
∗ 6 = 24, the L25 OA was used (Phadke, 1989). This 
experimental design allowed assessing the performance 
of IHSA taking five HMCR values at different 
combinations of other parameters.  

For each experiment trial corresponding to each row of the 
L25 OA, three replications were used. Thus, a total of 75 
experiment trials were conducted in order to assess the 
performance of the IHSA for each of the test functions. The 
performance of IHSA was tested at various numbers of 
improvisations using the performance measure shown in 
Equation 9: 
 

( ) ( )∑
=

−=
n

i
i )g)m(xmE

1

2 ,   (9) 

 
Where, xi is the resulted value from running IHSA at 

given parameter combination settings and g is the global 
optimum of the test function. The parameter combination 
that yields a lower value of E (m) has better performance.  

In the case of Rosenbrock’s function the performance 
of IHSA was tested at various numbers of 
improvisations, that is: 5000, 12500, 25000, 50000 and 
100000. On the other hand, in the case of Wood-Colville 
function, the performance of IHSA was tested at 25000, 
75000, 150000, 300000 and 600000 improvisations. 

When applying the IHSA to the two selected test 
functions, the design variables, xi, were set between 
−10.0 and 10.0. The L25 OA used for experimental design is 
shown in Table 2. 

The performance of IHSA was assessed using Equation 
9, and is graphically shown in Figure 1(a) for Rosenbrock 
and Figure 1(b) for Wood-Colville function. From Figure 
1(a), one can see that the global optimum was consistently 
found 5 times. The IHSA parameter combination yielding 
to global optimum corresponds to trials 8 and 9 for 50000 
and 100000 improvisation and trial 2 for 100000 
improvisations. It is also noticeable that with the increasing 
number of improvisations, the average E(m) decreases. 
However, this is not valid for particular IHSA parameter 
combination (trial 15). When IHSA was run at 100000 
improvisations, 22 out of 25 parameter combinations 
yielded average E(m) bellow 0.005 which means that 
these values are quite close to the global optimal point.  

As shown in Figure 1(b), the global optimum of Wood-
Colville function was consistently found 2 times. The IHSA 
parameter combination yielding to global optimum 
corresponds to trials 15 for 300000 and 600000 
improvisations. When IHSA performance is considered, 
the observations for Rosenbrock function are valid. 
Generally, the average E(m) is indirectly proportional to the 
number of improvisations. 

The relationship between the number of the global 
optima found and the number of improvisations for the 
selected test functions is shown in Figure 2. 

The best obtained IHSA parameter combinations were 
further tested for consistency. The IHSA was rerun with the 
best identified parameter combinations for 10 times and the 
performance is shown in Table 3.  

For solving the Rosenbrock function, the best IHSA 
parameters obtained using the Taguchi experimental designs  
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Table 2. L25 used for experimental design. 
 

Trial no. 
Coded design factor  Actual IHSA parameter values 

A B C D E F  HMS HMCR PARmin PARmax bwmin bwmax 

1 1 1 1 1 1 1  5 0.35 0.1 0.8 0.00001 0.2 

2 1 2 2 2 2 2  5 0.5 0.2 0.85 0.0001 0.4 

3 1 3 3 3 3 3  5 0.65 0.3 0.9 0.001 0.6 
4 1 4 4 4 4 4  5 0.8 0.4 0.95 0.01 0.8 

5 1 5 5 5 5 5  5 0.95 0.5 0.99 0.1 1 

6 2 1 2 3 4 5  10 0.35 0.2 0.9 0.01 1 

7 2 2 3 4 5 1  10 0.5 0.3 0.95 0.1 0.2 

8 2 3 4 5 1 2  10 0.65 0.4 0.99 0.00001 0.4 

9 2 4 5 1 2 3  10 0.8 0.5 0.8 0.0001 0.6 

10 2 5 1 2 3 4  10 0.95 0.1 0.85 0.001 0.8 
11 3 1 3 5 2 4  20 0.35 0.3 0.99 0.0001 0.8 

12 3 2 4 1 3 5  20 0.5 0.4 0.8 0.001 1 

13 3 3 5 2 4 1  20 0.65 0.5 0.85 0.01 0.2 

14 3 4 1 3 5 2  20 0.8 0.1 0.9 0.1 0.4 

15 3 5 2 4 1 3  20 0.95 0.2 0.95 0.00001 0.6 

16 4 1 4 2 5 3  40 0.35 0.4 0.85 0.1 0.6 

17 4 2 5 3 1 4  40 0.5 0.5 0.9 0.00001 0.8 
18 4 3 1 4 2 5  40 0.65 0.1 0.95 0.0001 1 

19 4 4 2 5 3 1  40 0.8 0.2 0.99 0.001 0.2 

20 4 5 3 1 4 2  40 0.95 0.3 0.8 0.01 0.4 

21 5 1 5 4 3 2  80 0.35 0.5 0.95 0.001 0.4 

22 5 2 1 5 4 3  80 0.5 0.1 0.99 0.01 0.6 

23 5 3 2 1 5 4  80 0.65 0.2 0.8 0.1 0.8 

24 5 4 3 2 1 5  80 0.8 0.3 0.85 0.00001 1 
25 5 5 4 3 2 1  80 0.95 0.4 0.9 0.0001 0.2 

 
 
 
are: HSA=10; HMCR=0.95; PARmin=0.1; PARmax=0.85; 
bwmin=0.001, and bwmax=0.8 with 50 000 improvisations. A 
similar proposal of IHSA parameters for solving the 
Rosenbrock function was offered by Orman and Mahdavi 
(2008) in their paper: HMS=5, HMCR= 0.99; PARmin=0.01; 
PARmax=0.9; bwmin=0.0001 with 50 000 improvisations.  
 
 
DISCUSSION 
 
Analyzing Table 3 and Figures 1(a) and (b), one can see 
that global optima are found using small HMS depending 
on the number of improvisations. This means that in 
searching for the global optimum for small scale 
optimization problems, it is sufficient to use small HMS. 
Such a small number of HMS corresponds to a problem 
with 2 and 4 variables, that is, functions with 2 and 4 
variables, which are considered in this paper. However, 
this does not mean that such a small number of HMS will 
correspond to more complex problems with multiple 
variables or real problems. 

Conclusions 
 
IHSA possesses a potential for obtaining good solutions 
in solving unconstrained function minimization problems 
for various combinations of parameters. Using the 
Taguchi experimental design, one can identify IHSA 
parameter settings yielding to good solutions with 
minimum experimentation. However, the optimum 
calibration of IHSA parameters in solving real world 
optimization problems needs more experience. Future 
work will include integrating the Taguchi experimental 
design with IHSA in solving real optimization problems. 

A series of computational experiment trials, planned 
according to Taguchi’s experimental design, was used to 
systematically identify the best combination of IHSA 
parameters at various numbers of improvisations in order 
to analyze the performance of IHSA in solving 
unconstrained function minimization problems.  

Analysis of the results showed that there was direct 
relationship between the number of improvisations of the 
IHSA and the number of global optimum found, and that 
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Figure 1. The performance of IHSA:  (a), Rosenbrock function; (b), Wood-Colville function. 

 
 
 

 
 
Figure 2. Number of improvisations and global optimums found. 
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Table 3. Testing the best identified IHSA parameter combinations. 
 

Parameter  Rosenbrock function  Wood-Colville function 
Combination  I II III IV V  I II 

Trial  2 8 8 9 9  15 15 
Number of improvisations  105 5×104 105 5×104 105  3×105 6×105 
Average E  0 0.001639 0 0 0  3.80E-06 0 

 
 
 
the number of global optimums found was decreased 
with an increase in the number of function variables. For 
solving unconstrained function minimization problems, it 
was sufficient to use small HMS along with increasing the 
number of improvisations, especially when the number of 
design variables was increased, and this will be analyzed 
in the further research. The authors will also test the 
sensitivity of IHSA parameters to real engineering 
problems in future research. 
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