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Global positioning system (GPS) is the most common instrument utilized for navigational purpose. 
Unfortunately these satellite signals may get lost due to signal blockage. On the other hand, inertial navigation 
systems (INSs) can address this problem and overcome the non-availability of GPS signals for a short period of 
time due to the inherent sensors errors. In such case, INSs can benefit from aiding such as GPS. The difference 
in sampling rate between the GPS and INS must be overcome to realize the integration of the two systems. In 
general, Kalman filter (KF) is used to predict GPS data in order to integrate signals from high data rate systems, 
like INSs, with GPS that have low data rate. However, KF is usually criticized for working under predefined 
linear dynamic error models. In this paper, adaptive neuro fuzzy inference system (ANFIS) trained using genetic 
algorithm (GA) was adopted to predict the mislaid reading data for GPS to be synchronized with those of INS 
data. Hence, the gap between the two systems reading data is solved to provide synchronization between the 
INS and GPS systems. So, it is possible to compare the reading data of both systems. Three strategies have 
been proposed and the results shows superior performance in predicting missed GPS data with lowest mean 
square error. 
 
Key words: Global positioning system, inertial navigation system, adaptive neuro fuzzy inference system, genetic 
algorithm. 
 
 
INTRODUCTION 
 
Since the 1940s, navigation systems, in particular inertial 
navigation systems (INSs), have become important 
components in military and scientific applications. In fact, 
INSs are now standard equipment on most planes, ships, 
and submarines (Farrell and Barth, 1999). 

Strapdown inertial navigation system (SDINS) 
technologies are based on the principle of integrating 
specific forces and rates measured by accelerometers 
and rate gyros of an inertial measurement unit (IMU) 
fixed on the moving body (David and John, 2004). On the 
other hand, the GPS relies on the technique of comparing 
signals from orbiting satellites to calculate position (and 
possibly attitude) at regular time intervals. But being 
dependent on the satellites signals makes GPS less 
reliable than self contained INS due to the possibility of 
drop-outs or jamming (Wellenhof et  al.,  2001;  Mohinder  
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et al., 2001). 
The combination of GPS and INS has become 

increasingly common in the past few years, because the 
characteristics of GPS and INS are complementary. GPS 
and INS both can be used for wide range of navigation 
functions. Each has its strengths and weaknesses as 
illustrated in Table 1. 

This paper aims to provide a high supremacy method 
to combined different data rate GPS with INS data 
without sacrificing performance even if using low cost 
inertial sensors. Generally INS produces a high data rate, 
compared to the GPS receiver (approximately > 10 Hz for 
INS systems and 1 Hz or more for Normal GPS). There-
fore, there is gap between these two systems reading 
data. Some researchers overcomes this difficulties by 
choosing the GPS and INS systems with the same 
sampling rate when integrating the GPS and INS systems 
(Shin and El-Sheimy, 2002), while other researcher alter 
the INS mechanization so both the INS and GPS data are 
synchronized to follow the GPS time tag (Noureldin et al., 
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Table 1. Comparison of INS and GPS systems (Chiang et al., 2008) 
 

INS GPS 

Short term position and velocity accuracy Long term position and velocity accuracy 

Accurate attitude information Noisy attitude information 

Decreasing accuracy over time Uniform accuracy over time 

High measurement output Low measurement output rate 

Autonomous Non-autonomous 

No signal outages Subject to signal outages 

Affected by gravity Not sensitive to gravity 
  
 
 

 
 
Figure 1. Main structure for GPS/INS integration showing the proposed Intelligent GPS predictor. 

  
 
 

2007; Noureldin et al., 2009; Xu et al., 2010; Chiang et 
al., 2008), or using Kalman filter to predict the sampling 
between instants (Mayhew, 1999; Mao et al., 2007; 
Nassar and El-Sheimy, 2006). Typically, INS has been 
widely used as reference system, which provides naviga-
tion solutions such as position, velocity, and attitude. 
Although GPS measurements are used to update and 
correct the INS solution and approximate the error states. 
Also, Kalman filter has been widely used to predict the 
GPS sampling data between instant. Hence, Mohamed 
and Schwarz (1999) use a decentralized filtering 
technique, where two Kalman filters are formulated. One 
is the GPS filter that deals with GPS data only to predict 
the missing GPS data, while the second filter is the INS 
filter to estimate the error states for position, velocity, and 
attitude. Moreover, these filters can work independently 
to   handle      the      GPS     and     INS    measurements 

together. However, there are several significant 
drawbacks related to Kalman filter such as the necessity 
for a priori information of the system and measurement 
covariance matrices for each new sensor that could be 
difficult to accurately verify. Another typical problem 
related to Kalman filtering is weak observability of some 
of the error states that may lead to unstable estimate of 
another error states (Al-Faiz and Ismaeel, 2005; Lorinda 
and Aboelmagd, 2006; Vanicek and Omerbasic, 1999). 
While this paper is different in handling the deficiency in 
navigation systems utilizing the adaptive neuro-fuzzy 
inference system by using the GPS data outputs as 
inputs to the proposed intelligent predictor to predict the 
GPS data between instants as shown in the main 
structure of the GPS/INS integration in Figure 1. 

In general, utilizing artificial intelligence (AI) presents 
numerous  compensations  if  evaluated  against  Kalman  
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Table  2. Comparison between AI and Kalman filtering GPS/INS integration system (Nguyen, 2009). 
 

 Kalman filtering AI 

Model dependence 
Mathematical model is needed (deterministic 
model + stochastic model) 

Empirical and adaptive model 

   

A priori Knowledge 
Required the covariance of INS and GPS 
data (mainly Q and R matrix) 

Not required 

   

Sensor dependence 
Re-design of Kalman Filter parameters is 
needed for different systems  

An adaptable, platform and system 
independent algorithm 

   

Linearity Linear processing Nonlinear processing 

Design time Long Short 
  
 
 

filtering (KF). A comparison between artificial intelligence 
and kalman filtering techniques is illustrated in Table 2. 

It is widely anticipated that intelligent predictor should 
be used with different types of sensors. However, from 
the literature it is evident that there is a lack of research 
which focuses on these issues. Also, many published 
work in the GPS/INS integration field suggest solving the 
difference in data rate problem as a future work 
(Mayhew, 1999; Nguyen, 2009). The proposed solution 
provide flexibility to integrate different rate systems, such 
as GPS and INS. ANFIS trained by genetic algorithm 
(GA) is adopted in this paper to predict the intermediate 
GPS data between instants. 

This paper is organized as follows: in section 2 we 
describe the adaptive neuro fuzzy inference system 
structure by illustrating its five consequent layers. Section 
3 presents the Genetic Algorithm used to optimize the 
learning parameters for the intelligent predictor. The 
suggested integration structure is explained in section 4. 
While three strategies to predict the missing GPS data 
based on ANFIS are discussed in section 5. Finally, 
results and discussion are given in section 5. 
 
 
ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 
STRUCTURE 
 
Adaptive fuzzy system was selected for implementing the 
intelligent predictor due to several reasons:  
(1) Its swift ability of input and output mapping, therefore, 
well-compatible for mapping the GPS data as input to 
predict missing GPS data as outputs. 
(2) The proposed model-less system requires no prior 
information of the GPS sensor characteristics and 
simplifies the integration of different type of system. 
(3) Adaptive fuzzy system consists of a fixed simple 
structure with compact computation resources leading to 
real time implementation.  
 
Consequently, ANFIS is simplest compared to other 
artificial intelligence such as neural  network  that  require 

to find out the optimal number of hidden layer and the 
number of neurons  in  each  layer (Al-Faiz  and  Ismaeel, 
2005; Jeffrey and Ben, 2004). 

The most useful class of defuzzifier is the center 
average of the form: 
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where M is the number of fuzzy IF-THEN rules, while yj is 
the center of fuzzy set fj, that is, a point in the universe of 
discourse V at which µFi(y) achieves its highest value, 
and µFi(y) is given by a product inference engine, since 
the product operator retains more information than MIN 
operator when implementing the fuzzy AND because the 
last scheme only preserve one piece of information 
whereas the product operator compose of n-pieces. 

Also, using product operator normally provides a 
smoother output surface, a desirable attribute in 
modelling and control systems. Hence, Equation (1) 
becomes: 
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where n is the number of input linguistic variables. 
 
In order to develop training algorithm for this fuzzy logic 
system, the functional form of µFi(xi) must be specified. 
The bell-shaped membership function, based on the 
normal distribution of the grades of the membership, 
would be used, since this function is differentiable and 
can   be  applied  when  using  the  genetic  algorithm  for  
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Figure 2. The Architecture of an ANFIS network for predicting GPS data. 

 
 
 

optimizing the ANFIS parameters, i.e. the membership 
function can be given by the following equation: 
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where mi and σi are, respectively, width and center of the 
bell shaped function of the i

th
 input variable. 

 

Now from Equations (2) and (3) the overall function of 
fuzzy logic system can be obtained: 
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where: f(x): fuzzy logic system output, which represent a 
function to n input variables x. xi : Input variable in the 
input universe of discourse. yj :Center of fuzzy set Fj, 
which is, a point in the universe of discourse V when 
membership function (µFj(y) achieves its maximum value, 
and µFj(y) is given by a product inference engine. M, 
N:number of fuzzy rules and input variables respectively. 
mi, σi: Center and width of the bell-shaped function of the 
ith input variable, respectively. 
 
This equation represents a fuzzy logic system with center 
average defuzzifier, product inference rule, singleton 
fuzzifier, and bell shaped membership function (Saraireh 
et al., 1999). Wang (1994) shows that this fuzzy logic 
system is universal approximator (that is, able of uniformly 
approximating any nonlinear function to any degree of 
accuracy). 
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Equation (4) can be embodying as a feed-forward 
neural network (NN) as expose in Figure 2. This 
connectionist model adopted in Figure 2 mixes the 
approximate reasoning of fuzzy logic into a neural 
network structure. 

With five-layered structure of the proposed 
connectionist model, the basic purposes of the nodes in 
each layer would be defined. 

Associated with each node in a typical neural network 
is an integration function which serves to fuse information 
or activation from the other nodes. 

This function 
1

i
X provides the net input of the ith node 

in layer l. A second action taken by each node is to 
output an activation value as a function of its net input: 
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where g(.) represents the activation function. 
 
The functions of the nodes in each layer of the fuzzy-
neural network can be summarized as follows: 
 
(1) Input layer: The unique function of these nodes in this 
layer is just transmitting their input values directly to 
Layer 2: 
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where i=1,2,...,n and n is the number of the input 
linguistic variables. 
 

(2) Antecedent layer: The output from this layer is 
described by: 
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where 
2

iX is the input to node i in Layer 2 and 
i

F is the 

linguistic label assigned to fuzzy set (small, large, etc.). 
 
From Equation (3), Equation (8) becomes: 
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where ijσ and ijm are the width and center of the bell-

shape function of the i
th
 input of the j

th
 rule,  respectively.  

 

(3) Rule layer: The magnitude of the output from each 
node in this layer is dictated  by  the  firing  strength  of  a 

 
 
 
 
rule. With the proposed scheme (that is, Equation 4), the 
rule nodes perform the fuzzy product operation; 
Therefore: 
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where
3

ijX denotes the i
th
 input to node j in Layer 3. 

 
(4) Consequent layer: From this layer, the upper node 
sums all outputs from the rule layer with action strengths 
(yj) and the lower node sums those with unity strength, as 
shown: 
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where N and D represents the numerator and 
denominator of Equation (4) respectively. 
 
(5) Action layer: Only one node exits in this layer. Here 
the actual output would be pumped out the net: 
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GENETIC ALGORITHM BASED STRUCTURE 
OPTIMIZATION AND PARAMETERS LEARNING 
 
GA is an optimizing algorithm based on the mechanics of 
natural selection and natural genetics. The searching pro-
cess is comparable with the natural evolution of biological 
creatures in which successive generations of organisms 
are given birth and raised until they themselves are able 
to breed. GAs has revealed their robustness in the field of 
optimization, especially when the mathematical model of 
the optimization problem is quite complicated or not well 
defined (Saggiani et al., 2004; Taghi et al., 2010). 

ANFIS is an adaptive network based on fuzzy inference 
systems. The training and optimization of the ANFIS 
parameters is one of the major problems. ANFIS 
architecture consists of five consecutive layers as 
illustrated in Figure 2. Different interpretations for the 
fuzzy IF-THEN rules result in different mappings of the 
fuzzy inference engine; also there are different types of 
fuzzifier and defuzzifier. Several combinations of the 
fuzzy inference engine, fuzzifier, and defuzzifier may 
comprise useful fuzzy logic system can be represented 
as a feed  forward  network,  and  then  genetic  algorithm  
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Table 3. Continuous genetic algorithm parameters settings. 
 

Parameters  Setting 

Max. generation 100 

Population size 10 

Selection type Hybrid selection method 

Crossover One point crossover 

Mutation Replace the mutated gene with random number 

Crossover probability (Pc) 0.8 

Mutation probability (Pm) 0.02 

Gene range [-1, 1] 

Number of genes in chromosome 110 
  
 
 

The training of the ANFIS network in the antecedent 
part is more difficult than the consequent part, because in 
gradient descent (GD) method it must go through all 
layers which increase the required calculation. The GD 
that is used in the antecedent part may lead to a local 
minimum. Therefore, we propose GA as an optimization 
method which can optimize the antecedent part. 

Equation (4) represents a fuzzy logic system with 
centre average defuzzifier, product inference rule, non-
singleton fuzzifier, and bell-shaped membership function. 

In this paper, the MatLab software has been used for 
the implementation of a real-coded GA, specifically 
developed in order to optimize and train the conceptual 
intelligent predictor, rather than using the available 
genetic and fuzzy logic toolboxes in MatLab used in 
reference (Hassanain et al., 2004). 

In addition to, Equation (4) can be implemented on a 
forward neural network (FNN) and based on the GA 
optimization technique, the goal is to determine a fuzzy 
logic f(x), in the form of Equation (4), which minimizes the 
objective function:  
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where P is the number of outputs and  dj (k) is the jth 
desired output at time k. According to Equation (14) if the 
number of rules is M, then the problem becomes training 
the parameters yj, mij, and σij such that E(k) is minimized. 
Then, the chromosome representation for the prediction 
system can be summarized as: 10 genes for yj, and 50 
genes for both mij, and σij. Therefore, a total of 110 genes 
are required to represent each chromosome in the GA for 
training the predictor system. And it must be mentioned 
that the range for the initial population of these 
parameters is [-1,1]. Table 3 shows the parameters used 
for initializing the GA. 
 
 

Real coded genetic algorithm 
 
The real-coded GA requires the following operators: 

Hybrid selection method 
 
After the initial population a hybrid selection method 
which is incarnation of roulette wheel and deterministic 
selection. This selection method ensures that the new 
population will contain chromosomes with better fitness 
values than the worst individual in the old population. 
This permutation will reduce the iteration required for 
learning process while ensuring good guidance in a 
complex and nonlinear search space (Al-Said, 2000). 
 
 
Elitism 
 
In this procedure the best parents from the old population 
will be copied into the next generation without performing 
any operators to increase the probability of obtaining best 
fitness values and preventing performance degradation of 
the learning process compared to the previous 
generation (Mitchell, 1998). 
 
 
Crossover operator 
 
The crossover operator is similar in both real and binary 
coding, a crossover is a process of exchanges informa-
tion by exchanging the genes between a two selected 
chromosomes (Mitchell, 1998; Din, 2008). In this paper a 
single point crossover was used for each chromosome of 
the chromosome-pair, where an integer position (k) is 
selected randomly along the chromosome length. The 
genes between position (k+1) and L (chromosome 
length) are swapped to create a new pair of 
chromosome. 
 
 
Mutation operator 
 

This operation causes random changes in the 
components of the chromosomes in the new population. 
Mutation operation in real-coded GA is different from 
binary coded. In binary-coding, this operator randomly 
flips some of the bits in chromosomes from  0's  to  1's  or 
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INS (10 Hz) 

GPS (1 Hz) 

Time 

Time 

Time 

INS data 
GPS data 

Predicted GPS data 

Predicted GPS data   
 
Figure 3. Graphical description of GPS and INS data rate. 

  
 
 

vice versa while in real-coded, this operator is 
implemented by simply replacing the randomly mutated 
'gene' with another random number chosen in the same 
range assigned for the 'gene' in the initial population 
(Hasan et al., 2010; Hamedi, 2005, Omar et al., 2009). 
 
 
SUGGESTED INTEGRATION SCHEME 
 
Figure 1 shows the block diagram of the suggested 
integrated GPS/INS system using the proposed predictor, 
which consists of INS, and GPS systems, predictor, 
Integration algorithm, and two subtractions. The INS 
system is terrestrial strapdown inertial navigation, which 
measures vehicle latitude, longitude, height, and north, 
east, down velocities. It is assumed that these 
measurements are provided every 0.1 second, while the 
GPS information is available every one second. The 
predictor is used to predict the GPS information each 0.1 
second (GPS information is predicted in nine time 
instants between two successive GPS measurements), 
so that the inputs for the integration algorithm is supplied 
by the difference between INS measurement and GPS 
information each 0.1 s.  
 
 
GPS DATA PREDICTION STRATEGIES 
 
Synchronization must be achieved in order to integrate 
the low rate GPS with the high rate INS system as shown 
in Figure 3. The synchronization will make it possible to 
compare the data from both systems in order to realize 
the proposed integration.  

In this paper predicting the missing data of the GPS to 
be compatible with those of the INS data can solve the 
difference   in  sampling  rate  problem  between  the  two 

systems. Three strategies are proposed to predict the 
GPS data (data at intermediate times): 
 
(i) First strategy: The first strategy supposes that the 
GPS and INS provide reading data each 1 and 0.1 s 
respectively. It assume that we have the first two reading 
data at time 1 and 2 s of the GPS and the intelligent 
predictor will be used to predict the GPS data at time 
(2.1, 2.2,…., 2.9 s) then the reading data at time 3 s will 
be already available from GPS system and we do not 
need to process it to be predicted further more it can be 
assigned from INS data in order to reduce the deviation 
of the prediction process. So, the reading data at time 2, 
and 3 s was available and the ANFIS will predict the GPS 
data at time (3.1, 3.2,…., 3.9 s) and continue this 
processing until reach the end of the number of samples. 
It must be noticed that we predict the reading from time 
(2.1 to 2.9 s) depending on reading data at time (1 and 2 
s) which are already available. 
 
(ii) Second strategy: Since the INS reading data is 
delivered every (0.1 s) then after 10 reading of INS data 
was received the estimation process was accomplished 
to estimate the reading data at time (2.1 s) depending on 
two previous reading data at times  (1.9 and  2 s) and 
after the processes to estimate the reading data at time 
(2.1 s) was completed, then we use the data at time 2, 
and 2.1 s to estimate the data at time (2.2 s) and so on, 
notice that the data at time (2 s) will be used with the data 
obtained from the estimation process at time (2.1 s). 
Figure 4 shows the schematic diagram for predicting 
GPS data. 
 
(iii)Third strategy: The main idea is the same as second 
strategy but to achieve more accurate result some 
reading data from the INS system will be assigned  in  the  
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Figure 4. Schematic diagram for predicting missing GPS data. 

  
 
 

prediction process to reduce the oscillation, which result 
from the estimation process. So, the reading data in 
integer times such as (2, 3, 4 s, …, etc), will be assigned 
instead of predict them which produce more accurate 
estimated trajectory. 

RESULTS AND DISCUSSION 
 
From the results obtained in this paper we can conclude 
that the ANFIS gives a better solution to the problem of 
difference in sampling rates in a short  time  interval.  The   
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Figure 5. Performance of the intelligent predictor based ANFIS for (a) position, and (b) 

velocity. 
  
 
 

performance of using different assumptions for the 
proposed strategies on the predicted data and is shown 
in Figure 5 and the time required for prediction is 0.0047 
s. In general, third strategy produces better results, in 
terms of the mean square error, than the other two 
strategies since it uses the true trajectory data of the 
nearest samples to the predicted one. The three 
strategies give better results in predicting the velocity 
components than the position components. 

It can be said that ANFIS require prior knowledge of the  

trajectory. To solve this problem a database must be built 
for the selected trajectories to be used (that is, roads in 
the city for the moving vehicle). On the other hand, the 
ANFIS has an advantage over other algorithms such as 
Neural Network in terms of the capacity required in 
memory to implement the prediction algorithms regarding 
to the programs that will be used. However, the third 
strategy provides acceptable positions and velocity 
accuracies compared to the other strategies it is also 
shown that optimization technique that is used  enhances  



Hasan et al.          2357 
 
 
 

0 100 200 300 400 500 600
-5000

0

5000

10000

15000

20000

Time (s)

P
o
s
it
io

n
 i
n
 X

-a
x
is

 (
m

)

 

 

True Trajectory

Strategy One

Strategy Two 

Strategy Three

0 100 200 300 400 500 600
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

4

Time (s)

P
o
s
iti

o
n
 i
n
 Y

-A
x
is

 (
m

)

 

 

True Trajectory

Strategy One

Strategy Two

Strategy Three

0 100 200 300 400 500 600
-300

-250

-200

-150

-100

-50

0

50

Time (s)

P
o
s
it
io

n
 i
n
 Z

-A
x
is

 (
m

)

 

 

True Trajectory

Strategy One

Strategy Two

Startegy Three

  



2358            Sci. Res. Essays 
 
 
 

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

Time (s)

N
o
rt
h
 V

e
lo

c
it
y
 (
m

/s
)

 

 

True Trajectory

Strategy One

Strategy Two

Strategy Three

0 100 200 300 400 500 600
-800

-700

-600

-500

-400

-300

-200

-100

0

Time (s)

E
a
s
t 
V
e
lo

c
it
y
 (
m

/s
)

 

 

True Trajectory

Strategy One

Strategy Two

Startegy Three

0 100 200 300 400 500 600
-16

-14

-12

-10

-8

-6

-4

-2

0

2

Time (s)

D
o
w
n
 V

e
lo
c
it
y
 (
m
/s
)

 

 

True Trajectory

Strategy One

Strategy Two

Startegy Three

  
 
Figure 6. Comparison between the true and predicted trajectories using three strategies for 
Position and Velocity in all directions. 

 
 
 

the accuracy for the prediction process. As shown in 
Figure 6 by comparing the three proposed strategies with 
the true trajectory. 

ACKNOWLEDGEMENT 
 
The authors would like to thank the Computer Systems  



 
 
 
 
Engineering Research Group at the University Putra 
Malaysia, 43400 Serdang Selangor Darul Ehsan, 
Malaysia, for their continuous help and support. Also, this 
work was supported in part by the Graduate School of 
Studies through the Graduate Research Fellowship 
(GRF).           
 
 
REFERENCES 
 
Al-Faiz MZ, Ismaeel SA (2005). Design of Kalman Filter for Augmenting 

GPS to INS Systems: International Conference on Advanced 
Remote Sensing for Earth Observation; Syst., Tech. Appl., pp. 14-
20  

Al-Said I (2000). Genetic algorithm based intelligent control. PhD 
dissertation, University of Technology, Baghdad-Iraq. p. 83. 

Chiang K, Noureldin A, El-Shiemy N (2008). Constructive Neural-
Networks-Based MEMS/GPS Integration Scheme, IEEE Trans. 
Aerospace Electon. Syst., 44: 582-594. 

Din D (2008). Genetic algorithm for finding minimal cost light-forest of 
multicast routing on WDM networks, Artif. Intell. Rev., 29: 195-222. 

David H, John L (2004). Strapdown Inertial Navigation Technology, 
Michael Faraday House, p. 58. 

Farrell J, Barth M (1999). The Global Positioning System and Inertial 
Navigation. McGraw-Hill Companies, Inc., p. 49. 

Hassanain M, Reda TM, Noureldin A, El- Sheimy N (2004). 
Automization of an INS/GPS integrated system using genetic 
optimization: Proceedings of ISSCI 2004 5th International 
Symposium on Soft computing for industry, WAC 2004, Seville, 
Spain, 6: 30-36. 

Hasan AM, Samsudin K, Ramli AR, Azmir RS (2010). Automatic 
Estimation of inertial navigation system errors for global positioning 
system outage recovery, J. Aerospace Eng., 225: 86-96. 

Hamedi M (2005). Intelligent fixture design through a hybrid system of 
artificial neural network and genetic algorithm. Artif. Intell. Rev., 23: 
295-311.  

Jeffrey D, Ben Z (2004). Threshold extension with kalman array for 
synchronization of burst communication, IEICE Trans. Electron., 1: 
165-170. 

Lorinda S, Aboelmagd N (2006). Bridging GPS outages using neural 
network estimates of INS position and velocity errors, Meas. Sci. 
Technol., 17: 2783-2798. 

Mohinder S, Lawrence R, Angus P (2001). Global Positioning Systems, 
Inertial Navigation, and Integration. John Wiley & Sons, Inc.  

Mayhew DM (1999). Multi-rate Sensor Fusion for GPS Navigation using 
Kalman Filtering, M.Sc. dissertation, Virginia Polytechnic Institute 
and state University, Electrical Engineering Department, USA. p. 92. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Hasan et al.          2359 
 
 
 
Mao G, Drake S, Anderson BDO (2007). Design of an Extended 

Kalman Filter for UAV Localization: Proceeding of Information, 
Decision, and Control, Adelaide, Australia, pp. 224-229.  

Mohamed AH, Schwarz KP (1999). Adaptive kalman filtering for 
INS/GPS. J. Geodesy., 73: 193203. 

Mitchell M (1998). An introduction to genetic algorithm. MIT Press, 
Cambridge, Massachusetts.  

Noureldin A, El-Shafie A, Taha MR (2007). Optimizing neuro-fuzzy 
modules for data fusion of vehicular navigation systems using 
temporal cross-validation. Eng. Appl. Artif. Intell., 20: 49-61. 

Noureldin A, Karamat TB, Eberts MD, El-Shafie A (2009). Performance 
Enhancement of MEMS-Based INS/GPS Integration for low-cost 
Navigation Applications. IEEE Trans. Vehicul. Technol., 58: 1077-
1096. 

Nassar S, El-Sheimy N (2006). A combined algorithm of improving INS 
error modeling and sensor measurements for accurate INS/GPS 
navigation. GPS Solution, 10: 29-39. 

Nguyen H, Kang H, Suh Y, Ro Y (2009). INS/GPS Integration System 
with DCM Based Orientation Measurement. Springer-Verlag. 
Lecture Notes in Computer Science (LNCS). Volume 5754: 856-869. 

Omar FL, Moha SB, Marhaban MH, Abbas KA (2009). Genetically 
trained adaptive neuro-fuzzy interference system network utilized as 
a proportional-integral-derivative-like feedback controller for 
nonlinear systems., J. Syst. Control Eng., 223(3): 309-321. 

Shin EH, El-Sheimy N (2002). Accuracy Improvement of Low Cost 
INS/GPS for Land Applications: Proceedings of the 14th ION 
Meeting, Jan 2002, San Diego, USA, pp. 146-157. 

Saraireh M, Saatchi R, Al-Khayatt S, Strachau R (1999). Assessment 
and improvement of quality of service in wireless networks using 
fuzzy and hybrid genetic-fuzzy approaches. Artif. Intell. Rev., 27: 95-
111.  

Saggiani GM, Caligiana G, Persiani F (2004). Multiobjective wing 
design using genetic algorithms and fuzzy logic. Proc. IMechE, Part 
G: J. Aerospace Eng., 218: 133-145.  

Taghi M, Baghmisheh V, Salim M (2010). The design of PID controllers 
for a Gryphon robot using four evolutionary algorithms: a 
comparative study. Artif. Intell. Rev., 34: 121-132. 

Vanicek P, Omerbasic M (1999). Does a navigation algorithm have to 
use Kalman Filter?. Canadian Aeronautics and Space J., 45:1-9. 

Wellenhof BH, Lichtenegger H, Collins J (2001). GPS Theory and 
Practice. Springer-Verlag / Wien. 

Wang LX (1994). Adaptive Fuzzy Systems and Control: Design and 
Stability Analysis. Prentice-Hall, Inc., p. 81. 

Xu Z, Li Y, Rizos C, Xu X (2010). Novel hybrid of LS-SVM and Kalman 
Filter for GPS/INS Integration. J. Navigat., 63: 289-299. 

 
 
 
 
 


