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Denoising of images is one of the vital topics in image manipulating. Approaches for denoising a chain 
of images aims to attenuate additive noise to the lowest possible rates by using both spatial and 
temporal areas. Conversely, extracting the edges of images that affected by the White-Gaussian noise 
was the major dilemma faced by many researchers. Many of the denoising image methods based on 
wavelet have been proposed to extract the edges from both the vertical and horizontal image gradients. 
In this paper, denoising of images obtained after thresholding of wavelet coefficients. At the same time, 
an adaptive average filtering for each pixel in the neighborhood of the processed pixel is used. The 
method could denoise each of the smooth piecewise as well as images of the natural textured as they 
were carried enough redundancy. Furthermore, the weights in this averaging were determined after 
finding similar patches in the neighborhood around pixels matched to describe their contents. 
Accordingly, the best extraction method for the vertical and horizontal image gradients is achieved after 
changing the magnitude of the threshold. These were extracted from the histogram of these gradients. 
Experiment results demonstrate that the proposed method simultaneously provided significant 
improvements in terms of the blockiness artifacts as well as enhancing the quality of images in terms of 
visual perception. 
 
Key words: Image denoising, edge detection (ED), wavelet transforms (WT), image gradients.  

 
 
INTRODUCTION         
 
Results of experimental studies in image de-noising 
offered a lot of meaningful applications, for example, 
extracting the edges, a lossy compression, textures, 
cessations, and low light imaging. In this paper, we 
focused on extracting the edges of the blurred images. 
The challenge was how to choose the best method for 
extracting these edges. Mathematically, images are 
otherwise smooth functions with cessations along curves 
and these cessations along curves are edges. Edges are 
very necessary in recognizing the images. 
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Standard wavelet transformations have limited 
possibilities to solve these directional properties. In the 
meantime, curvelet transform is used to overcome the 
limitation capability of the wavelets in the representation 
of the edges. For clarification, the curvelets are geometric 
multiscale transform, which are intended for two 
dimensional functions, used to provide sparse 
representation of images with singularities along curves, 
as well as extracting the edges while; wavelets provide 
the best reconstruction of smooth areas and small 
patches. 

In most cases, image sequences are noisier than 
singular images due to the high capture proportion. This 
leads us to the use of temporal dimension, which is most 
appropriate   in   dealing   with   these    sequences.   The  
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proposed method in Protter et al. (2009) was the 
extension to work in each of Elad et al. (2006a and b). 
This method provided sparse and redundant 
representation to de-noising image sequences corrupted 
by the White-Gaussian noise. While, in the singular 
images, the method of clustering  singular value 
decomposition (K-SVD), which is presented in each of 
Aharon et al. (2006a and b) had been used to coach a 
sparsifying dictionary for the corrupted image, assuming 
that each patch in the image has a sparse representation 
describes the content. Whereas in the maximum a 
posteriori probability (MAP) framework, the methods 
proposed in each of Elad et al. (2006a and b) are ideal 
methods that could deal with applications of the singular 
de-noising images. 

Crouse et al. (1998) explained that the models' 
eventualities for wavelet coefficients, including Gaussian 
mixture, Gaussian scale mixture, Portilla (2003), and 
circular-symmetric Laplacian (Sendur et al., 2002) are 
adopted in applications.  

From another point of view, using the modern wavelet 
techniques, for example, curvelets, Candes et al. (1999) 
has greatly helped in creating of many of the changes, 
this reflected positively in the selection of the best 
manner to extract the edges of images. On the other 
hand, statistical modeling of the wavelet can be 
evaluated heuristically. Hirakawa et al. (2006) suggested 
a method for removing noise from the digital images that 
are corrupted by the additive, multiplicative, and mixed 
noise.  

Furthermore, a patch from an ideal image can be 
modeled as a linear combination of patches of a noisy 
image. The proposed method in Kervrann et al. (2006) is 
an adaptive and patch-based of image de-noising and 
representation. This method is based on a point wise 
selection of the small image patches of fixed size in the 
non-invariant neighborhood of each pixel. It also aims to 
be associated with each pixel the weighted sum of data 
points within an adaptive neighborhood and can be 
applied under the assumption that there exist repetitive 
patterns in a local neighborhood of a point.   

Wu et al. (2005) suggested in the selection of an 
optimal threshold, which selects the de-noising threshold 
according to the turbulent degree of detected edge points 
in edge detection based on wavelet transform, in which 
adjacent domain division algorithm (ADDA) and parabola 
fitting algorithm (PFA) is used to separate edge curves 
from each other after wavelet transform. In addition, the 
entropies corresponding to the possible thresholds can 
be calculated by the adoption of each of the numbers and 
lengths of the detected curves. 

Several methods had been suggested to study and 
tackle the problems of extracting edges of images. These 
methods have been classified into two categories: (1) 
gradient, and (2) Laplacian. In the gradient method, the 
edges were detected by looking for maximum and 
minimum magnitudes in the first derivative of the image.  

 
 
 
 
While in the Laplacian method, inspecting for zero-
crossings in the second derivative of the image were 
utilized.  

In this paper, vertical and horizontal image gradients 
were extracted from the denoising image and then 
created an appropriate threshold of the histogram of the 
magnitudes of those gradients. In this context, traditional 
methods used to remove mitigation of noise and 
specifically, images corrupted by white-Gaussian noise 
have been developed through the results of simulations 
of this paper. The proposed method used each of the 
sparse and redundant representations of the sequences 
of the de-noising images. In addition, new adaptive 
impulse filters to refine the images from the 
decomposition of “Haar" wavelet is derived. 

Subsequently, approximate expressions for the de-
noising score and the use of robust estimate was derived 
and the procedure to obtaining the image gradients and 
edge detection related to our work explained.  A brief 
description for a perfect matching boundary and 
numerical solutions to the non-local smoothing filter is 
also discussed.  
 
 

WAVELET THRESHOLDING  
 
Thresholding is a non-linear technique based directly on 
wavelet coefficients, in which each coefficient was 
compared with the threshold value. In the case where the 
value of a coefficient smaller than the threshold, this is 
required to set the coefficient value equal to zero without 
impacting the quality of the image. While in the case 
where the value of a largest coefficient, this means that 
the coefficient is meaningful and important. For 
clarification, hard thresholding employed the traditional 
process for setting the value of the elements those were 
their absolute values less than the threshold equal to 
zero. The hard threshold is given: 
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Let, I denote the MM  matrix of the original image to 
be threshold.                                                                                                              

Let, C be the outcome coefficients matrix after utilizing 
the hard thresholding. Therefore, the thresholding image 
matrix (for example, smoothed image) can be obtained 
as follows: 
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Where, 
1T  denotes the 2-dimensional matrix of the 

inverse discrete wavelet transform. 
The thresholding score in percentage is given as: 



 
 
 
 

 2100 DWS VVTH                                               (3)                                                                                                                                                                                                                                                                        

 

Where, D  denotes the wavelet decomposition structure 

of the input image I , WV  is the vector-norm of the 

wavelet decomposition structure of THI , and DV  is the 

vector-norm of the wavelet decomposition structure of I . 

If, I  is one-dimensional signal with orthogonal wavelet, 

STH  is reduced to: 
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The underlying model for noising signal is basically as 
follows: 
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Where, time n  is equally spaced. Suppose that 
)(ne

is a 

Gaussian white noise 
)1,0(N

 and the noise level , is 
supposed to be equal to 1. The de-noising objective is to 

suppress the noise part of the signal s  and to recover I . 
 
In general, we can ignore the noise level that must be 
estimated. The detail coefficients such as at level-1 (the 
fines scale) are essentially noise coefficients with 

standard deviation equal to  . The median absolute 

deviation of the coefficients is a robust estimate of . 
The use of robust estimate is crucial for two reasons. The 
first reason is if level-1 coefficients contain I details, these 
details are concentrated in a few coefficients. The second 
reason is to avoid signal end effects, which are pure 
artifacts due to computations on the edges. 
 
 

EDGE DETECTION AND RELATED WORK  
 

Edges of the image are often resulted from sharp 
cessations in intensity function and for several reasons: 
(1) different depths of objects within the components of 
the scene; (2) varying in ratios of lighting of these objects, 
and; (3) the actual features of these objects. Accordingly, 
the edges of image and in most cases are attributed to 
the gradient image, in which the intensity of objects had 
been presented prominent peaks near the lighting 
cessations.  

Most of the methods used to detect edges of the 
images were based on multi-stage detectors. These 
detectors do not deal directly with the details of the image 
within the different levels of gray but take advantage of 
intermediate representations. Thus, such detectors,  used  
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some kernels in the spatial domain for the purpose of 
obtaining filtered images (Haralick, 1984) or performing a 
match with a predefined edge templates (Shneier, 1982), 
it will then be to apply some of the operations of the  
threshold election, which aims to reduce the noisy edge 
points.  

One of the most used approaches in this field is the 
edge detector proposed by Canny (1986), which was 
considered a standard of comparison in assessing the 
efficiency of performance. Grigorescu et al. (2004) used 
some of the computational applications, which were 
called by surround suppression to improve detection of 
objects schemes in natural scenes. These calculations 
were supported by neural network to distinguish the 
edges and lines after adding of the Canny edge detector, 
for the purpose of separating each of the lines and edges 
respectively.  

Ye et al. (2005) proposed edge detection algorithm at 
sub-pixel level, after the adoption of a model for a 
corrupted edge. This method was applied to both 
synthetic and real images for the purpose of assessing 
after the use of some of derivatives of the least-squared 
error.   

The detection technique in Dong et al. (2005) gave 
better norm for detecting edge points. This technique 
combined each of pixel-level method and sub-pixel-level 
method to detect the target edge. In addition, this 
detection consisted of two steps: First, all probable edge 
points were detected utilizing the Sobel operator; 
secondly, Zernike moments operator was utilized to 
accurately transport edges from the detected points by  
Sobel operator, in this step, two masks (one real and one 
complex) were reduced and based on the Zernike 
moments theory.  

In the meantime, Shih MY, et al. (2005) explained that 
extraction the edges by using only the image gradients 
will appear blurring in addition to breaking these edges. 
Whereas, the proposed method in Hirakawa et al. (2006) 
aimed to reduce the contributions from the irrelevant 
image patches as well as reducing the edge artifacts. 
     From the other point of view, the proposed method in 
He et al. (2007) exploited efficiently to extract the edges 
of images corrupted by white-Gaussian noise, and also 
accurately to locate these edges. More than this, the 
methods in Belaid et al. (2008), Novotny et al. (2005), 
and Amstutz et al. (2005) indicated that it is probably to 
solve the problems of image restoration specifically, 
edges and gradients of images by using the topological 
idealization tools. Also, they clarified that image can be 
viewed as a piece-wise smooth function while, the edges 
can be considered as set of singularities. 

The method in Hermosilla et al. (2008) was non-linear 
interpolation procedure based on the essentially non-
oscillatory (ENO). In this method, there are two cases 
should be taken into consideration: (1) each pixel of the 
image represents a point value, and; (2) the pixel is an 
average value of a function. After image interpolation, the  
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Figure 1. Neighbouring boundary pixels to the corrupted MB. 

 
 
 
canny edge detection is applied, with the objective of 
improving the localization and geometry of the edges at a 
sub-pixel level. 

The method in Carnicer et al. (2008) was a non-
parametric method for uni-model thresholding in the 
context of edge detection. This method assigned a point 
in a receiver operating characteristic (ROC) space to 
each possible threshold without the need of a reference 
image. The goal of the work in Martin et al. (2004) was to 
accurately detect and localize boundaries in natural 
images using local image measurements (brightness, 
color, and texture exemplars). 

Zhang et al. (2009) suggested an edge detection 
method based on directional wavelet transform, which 
reserves the separable filtering and the simplicity of 
computations and filter design from the two-dimensional 
WT, and the image gradients magnitudes is also 
redefined. While we have seen that the proposed method 
in Sen et al. (2010) have been carried out on accurate 
analysis to extract  image gradients through an 
appropriate threshold level taken from image gradient 
histogram. This threshold is the same as the upper 
threshold that is used in the hysteresis process for 
eliciting the edges.  

Finally, the method in Coleman et al. (2010) was 
adaptive procedure for image gradient operators utilized 
to change the shape to accommodate irregular data 
distribution, through appropriate analysis of the output 
responses. This method was most appropriate for direct 
use on range image data without re-sampling. 

In this paper, both gradient magnitude and gradient 
orientation are expressed in terms of the two directional 

derivatives ),( jiIv and ),( jiIh . The gradient 
magnitude is defined as: 

22 )),(()),((),( jiIjiIjiI hv 
                (6)                                                                                                                                                                                                                         

 

Where, 
),( jiI

is a continuous image, i  and j  are the 
row and column coordinates, respectively. And the 
gradient orientation is given as: 
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Where, VH GG ,  are the horizontal and vertical image 
gradients. Further, the threshold has been extracted from 
the histograms of the magnitudes of the gradients. This 
procedure greatly facilitates the evaluation of the desired 
results in the detection of the edges. Furthermore, the 
edge components in the neighboring boundary pixels, 
which are surrounded with the group of damaged blocks, 
are detected. Therefore, and for every block in the 
damaged group, it is an indication to decide whether any 
of these edges has an impact on the block. At the same 
time, each pixel in this damaged block is interpolated with 
the boundary pixels according to the corresponding 
edges.                                                                                                                                                                                                                                
The method of the quadrilinear border interpolation (QBI) 

interpolates the value of the missing pixel ( PM ) in the 
damaged block, as shown below, as shown in Figure 1. 

Where, RLBT HHVV ,,,  are the vertical top, bottom, and 
horizontal left, right pixels, respectively. 
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Where, VH GG ,  are the horizontal and vertical image 

gradients. Further, the threshold has been extracted 

from the histograms of the magnitudes of the 

gradients. This procedure greatly facilitates the 

evaluation of the desired results in the detection of 

the edges. Furthermore, the edge components in 

the neighboring boundary pixels, which are 

surrounded with the group of damaged blocks are 

detected. Therefore, and for every block in the 

damaged group, it is an indication to decide 

whether any of these edges has an impact on the 

block. At the same time, each pixel in this 

damaged block is interpolated with the boundary 
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Figure 1 Neighboring boundary pixels to the 

corrupted MB. 
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Where, ,,, LBT PPP and RP  are the top, bottom, left, and 

right pixels. And D  is the distance between the missing 

pixel PM  and four adjacent pixels.  
In the case where the LB has one dominate edge, 

perhaps only two of LB_HT, LB_HB, LB_HR, LB_HL is 

small. The missing pixel PM  is obtained from. 
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While in the case where the edge is smooth (that is, 
object is out of focus). There are two trends of the 
solution to detect such edges. One is to use the CvT 
instead of WT, which is only good at isolating the 
discontinuities at edge points, but cannot detect the 
smoothness along the edges, and the other is to combine 
the original images’ edge with the filtered image in each 
subband. If we were to classify a block containing an 
edge as texture, it requires us to consider the 8-
neighborhood of a 8 × 8 block and calculate the 
difference between the average values of the blocks on 
opposite sides of the center block. If the 4 resulting 
differences are below a threshold, this is an indication 
that an edge does indeed pass through the textured 
block. 

On the other hand, blocking artifacts are generated by 
independent coding of adjacent groups of pixels and are 
typically represented by unexpected transitions of 
luminance across block boundaries. This leads in 

decreasing the smoothness of image data. Let O  and D  
represent the vectors of original image and distorted 

image from blocking artifacts, respectively. Let e  be the 

vector of error between O  and D . 

If, the number of pixels in an image is N , then: 
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The structural similarity (SSIM) metric aims to measure 
quality by capturing the similarity of image. The structure 

comparison function 
 DOS ,  is defined as: 
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Where OD  is the correlation between O  and D  and C   
Is   a   constant  that  provides  stability.  The  amount  of  
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compression and the quality can be controlled by the 
quantization step. As the quantization step size becomes 
larger, the structural differences between original and 
distorted image will generally increase, and in particular 

the structure term  DOS ,  will become smaller.                                                 
Finally, the proposed method can miss a true edge in the 

case where the luminance comparison function  DOL ,

is used in order to control the smoothness of image data 
and given as: 
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Where O  and D
 are the mean values of O and D , 

respectively. 
 

 
MATERIALS AND METHODS 

 
Image denoising 

  
Denoising of images is one of the vital topics in image manipulating. 
In image applications over unreliable channels, the decoder has to 
contend with data corrupted by channel errors. These errors lead to 

missing rectangular regions, which needs to be perfectly estimated 
by appropriate recovery and concealment algorithms. In the case 
where the missing regions of pixels are containing textures, edges, 
and other image features that are not readily handled by these 
algorithms. It, therefore, necessitated using denoising rather than 
EC algorithms. Moreover, the denoising does not require any 
complex predisposing, segmentation, or edge detection steps, and 
it can be written as a sequence of denoising operations. In this 
case, the missing information is likely recovered under the MSE 
fidelity metric using the sparsity constraint that a portion of the 
images transforms coefficients over missing regions are zero or 
close to zero. 

In the meantime, if a linear transforms that is expected to provide 
sparse decompositions over missing regions is used. These small 
magnitude coefficients can be adaptively determined through 
thresholding, establish sparsity constraints, and estimate missing 
regions in images using information surrounding these regions. 

In this work, chains of denoising images aim to attenuate additive 

noise to the lowest possible rate by using both spatial and temporal 
areas, after thresholding of wavelet coefficients are simulated. At 
the same time, approaches to extract the edges of images 
corrupted by the White-Gaussian noise are also extracted. The 
denoising of images is obtained after the adoption of three steps: 1) 
computation of wavelet decomposition, 2) thresholding the 
coefficients of each decomposed level, and 3) computation of 
wavelet reconstruction. Figure 2 shows the steps required for 

denoising the images. 
The decomposition of a two-dimensional noisy image is 

accomplished using the wavelet analysis function (i.e., Haar 
wavelet decomposition). The Haar function decomposed the image 

of the matrix I  at level N . The outputs are the decomposition 

vector C  and the corresponding book-keeping matrix S . N  
should be a strictly positive integer. The decomposition filters are 
given as: 
 

   DHiDLoNIHaarSC _,_,,
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Figure 2. The steps required for denoising a two dimensional images. 

 
 
 

Where, DLo_  and DHi_  are the high-pass and low-pass 

decomposition filters. Vector C  is organized as: 
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where, ,,, VHA  and D  are row vectors such that: A  is the 

approximation coefficients. H  is the horizontal detail coefficients. 

V  is the vertical detail coefficients, and D  is the diagonal detail 

coefficients. Matrix S  is such that:  :,1S  is the size of 

approximation coefficients  N  and  :,iS , is the size of detail 

coefficients  2 iN  for 1,2  Ni   and 

   IsizeNS  :,2 . Figure 3 illustrates the decomposition of the 

aforementioned analysis. 
The denoising procedure which previously mentioned in Figure 2 

proceeds in three steps, and uses two-dimensional wavelet tools. 
Thresholding selection rules are based on the underlying model 

  etIy  . Where, I  is a two-dimensional image, and we 

assume the noise e  to be a white, zero-mean Gaussian noise 

where,  2,0~ Ne . Dealing with unscaled or nonwhite 

noise can be handled using a rescaling output threshold. A direct 
translation of a one-dimensional model is given as: 

 

     jiejiIjiIn .,,                                          (13)                                                                                             

 

Where, nI  is a noisy image results from noise e superimposed on 

an original image I . In this simulation, the threshold is estimated by 
the adoption of the following steps: 

 
1. Using a fixed-form threshold yielding mini-max performance 

multiplied by a small factor proportional to   Ilengthlog . 

The mini-max principle is used in order to design the estimator. The 

estimator used is MAD ( 6745.0MAD ), which is suitable for 

zero mean Gaussian white noise in the denoising one-dimensional 
or two-dimensional models. 

 
 
Two dimensional adaptive noise removal filtering 

 
The low-pass Wiener filtering is utilized for filtering a grayscale 
image that has been degraded by constant power additive noise, in 
which the adaptive pixel wise is based on statistics estimated from 
the local neighborhood of each pixel is used. The adaptive filter is 

more selective than a comparable linear filter, preserving edges 
and other high-frequency parts of an image. The novelty of our 
proposed filter is in employing an adaptive average filtering for each 
pixel in the neighborhood of the processed pixel, with the intention 
of attenuating the noise. Further, the weights in this averaging are 
determined after finding similar patches in the neighborhood around 
pixels matched to describe their contents. 

In other words, the noisy image nI  is filtered using pixel wise 

adaptive Wiener filtering, using neighborhood of size 
NbyM 

 
to estimate the local image mean and standard deviation. The 
estimation of the local mean and variance around each pixel is  
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Figure 3. The decomposition analysis of an image with 384 x 384 pixels. 
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Where,


, is the local mean, and I  denote the entrance image 
matrix. 
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Where, 


  is the 
NbyM 

 local neighborhood of each pixel 

in the image I .   is the standard deviation of the zero mean 
Gaussian white noise in the denoising model. The creation of a 
pixelwise is achieved after using these estimates: 
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Where, 
2v  is the noise variance. In the case where the noise 

variance is not given, Wiener filter uses the average of all the local 
estimated variances. 

 
 
Local Smoothing Process 

 
The main goal behind the process of local smoothing is to attenuate 

the noise as well as recover the main geometric disposition but not 
at the expense of keeping the fine structure and the details. The 
novelty of our proposed local smoothing is  in  using  sparse  and  
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redundant representations for image sequence denoising. 
Furthermore, we assume that small image patches in the 
neighborhood of an estimation pixel contain the essential process 
required for local denoising. For clarity, the pixel content with a 
similar patch to the central patch has larger weights in the average. 

In the gray level images, 
p

 is a point on a two-dimensional grid. 

Therefore, each pair 
)),(,( pup

 where 
)( pu

the value at grid is 

is called a pixel. In this case, the neighborhood of 
p

 is predefined 

as any set of pixels 
j

 in the image looks like a window around 
.p
 

Let sI  be the noisy image observation predefined on a bounded 

domain
2 , and let .v .  The nonlocal means algorithm 

estimated the value of v , as all values of pixels whose Gaussian 

neighborhood looks like the neighborhood of 
,v
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Where, kG  is a Gaussian kernel with standard deviation 
hk ,

 acts 
as a filtering parameter, and
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Denoising simulation and results 
 
The problem with image restoration is to reduce 
undesirable distortions and noise while preserving 
important features, such as edges, and textures. Further, 
the local variance is actually useful for localization of 
significant image features. From another point of view, 
natural images often contain many irrelevant objects, 
thus making image denoising very hard. We have applied 
the assumption that small image patches in the 
neighborhood of an estimation point contain the essential 
process required for local denoising to many standard 
test images, including, Barbara, cameraman, Lena, and 
Mandrill. 

To obtain results with high accuracy compared with the 

other conventional methods, our approach to detect the 

edges of images that are affected by the White-Gaussian 

noise has been adopted to these sequences, as a 

criterion for comparison. Here, the threshold extracted 

from the histogram of the image gradients' magnitudes, 

this greatly facilitated in extracting the largest number of 

edges. The calculations of PSNR on the signal impeding 

capacity of the restoration  algorithm  and  is  defined  as  

 
 
 
 

follows:  dB
MSE

PSNR
2

10

255
log10 , where the MSE  between 

the filtered image, U  and the original noise free image, 

nI  of size nm  is given as:  
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Figure 4 shows the vertical and horizontal noisy image 
gradients, in addition to the histograms of these 
gradients. To assess the performance efficiency of this 
method, we have to blur the sequences with the largest 
possible extent of noise. The relationship between 
different extents of the White-Gaussian noise and 
computations of each of MSEs and PSNRs are 
summarized in Tables 1 and 2, respectively. The results 
summarized in these Tables are considered as the 
results of detection of the gradients of sequence images 
that were placed under test. In this test, the histogram of 
the image gradients was changed several times after the 
adoption of different angles to those gradients. The goal 
behind this work was to extract the largest number of 
significant edges. The performance efficiency of the 
proposed method is shown by the simulation sketches 
shown in the following Figures 5 to 7. While, Figure 8 
explains the simulation of each of the denoising and the 
filtering images for the proposed method.  

 
 
CONCLUSION 

 
In this paper, denoising images were successfully 
obtained through the thresholding of wavelet coefficients. 
The method could denoise each of smooth piecewise as 
well as images of the natural textured as they were 
carried enough redundancy. The novelty of the proposed 
filter is in employing an adaptive average filtering for each 
pixel in the neighborhood of the processed pixel, to 
attenuate the noise to the lowest possible rates. Further, 
the weights in this averaging were determined after 
finding similar patches in the neighborhood around pixels 
matched to describe their contents. Accordingly, the best 
extraction method for the vertical and horizontal image 
gradients is achieved after changing the magnitude of the 
threshold. These were extracted from the histogram of 
these gradients. Experiment results demonstrated that 
the proposed method simultaneously provided significant 
improvements in terms of both blockiness and blurring 
artifacts, as well as, enhancing the quality of images in 
terms of visual perception.  
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Figure 4. The vertical and horizontal noisy image gradients: (a) Threshold = 

0.1; (b) Threshold = 0.2; (c) Threshold = 0.3; and (d)Threshold = 0.4. 
 
 
 

Table 1. The relationship between different extents of the White-Gaussian noise and the computations of MSE for both vertical 

and horizontal image gradients. 
 

Variable Ratio 0.0 0.1 0.2 0.3 0.4 

Barbara 
MSE-VG 0.068 0.025 0.007 0.004 0.001 

MSE-HG 0.070 0.032 0.006 0.002 0.001 

 

Lena 

MSE-VG 0.023 0.010 0.005 0.004 0.002 

MSE-HG 0.023 0.011 0.005 0.004 0.004 

Mandrill 
MSE-VG 0.025 0.006 0.001 0.001 0.000 

MSE-HG 0.025 0.008 0.001 0.000 0.000 

       

Barbara 

Ratio 0.5 0.6 0.7 0.8 0.9 

MSE-VG 0.001 0.001 0.001 0.000 0.000 

MSE-HG 0.001 0.001 0.001 0.000 0.000 

Lena 
MSE-VG 0.001 0.001 0.000 0.000 0.000 

MSE-HG 0.003 0.001 0.001 0.000 0.000 

Mandrill 
MSE-VG 0.000 0.000 0.000 0.000 0.000 

MSE-HG 0.000 0.000 0.000 0.000 0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(a) 

(c) 

(d) 

Figure 4 The vertical and horizontal noisy image gradients: 
(a) Threshold = 0.1; (b) Threshold = 0.2; (c) Threshold = 0.3; 
and (d) Threshold = 0.4.    
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Table 2. The relationship between different extents of the White-Gaussian noise and the computations of the PSNR for both vertical 
and horizontal image gradients. 
 

Variable Ratio 0.0 0.1 0.2 0.3 0.4 

Barbara 
PSNR-VG         29.83 30.83 32.06 32.66 33.40 

PSNR-HG         29.79 30.56 32.21 33.20 33.82 

 

Lena 

PSNR-VG         30.91 31.68 32.37 32.67 33.13 

PSNR-HG         30.89 31.64 32.40 32.55 32.65 

 

Mandrill 

 

PSNR-VG         30.83 32.13 33.69 34.00 34.49 

PSNR-HG         30.82 31.91 33.91 34.27 34.34 

       

 

Barbara 

Ratio 0.5 0.6 0.7 0.8 0.9 

PSNR-VG         33.65 33.82 34.01 34.35 34.50 

PSNR-HG         34.00 34.07 34.07 34.62 34.77 

 

Lena 

PSNR-VG         33.42 33.80 34.23 35.18 35.18 

PSNR-HG        32.88 33.43 34.00 34.26 35.37 

 PSNR-VG         34.55 34.55 35.39 35.24 35.24 

Mandrill PSNR-HG         35.05 35.05 35.05 35.16 36.81 

 
 
 

 
 

Figure 5. The computations of MSE against noise ratios for Barbara, Lena, and Mandrill images' 
sequences.  
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Figure 6. The computations of PSNR against noise ratios for Barbara, Lena, and Mandrill 

images' sequences.  

 
 
 

 
 

Figure 7. The performance efficiency of the proposed method. 
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Figure 8.  (a) 20% noise. 

 
 
 

 
 
Figure 8.  (b) 60% noise. 
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Figure 8.  (c) 100% noise. 

 
 
 

 
 
Figure 8.  (d) 60% noise. 
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Figure 8.  (e) 60% noise. 
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