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In this paper, a three-species Lotka-Volterra food-chain model with spatial diffusion and time delays is 
investigated. We first analyze the local stability of the steady states and the existence of Hopf bifurcation 
to this system under homogeneous Neumann boundary conditions. We consider the effects of impulses 
on the dynamics of the above food-chain model without spatial diffusion. Numerical simulations show 
that the system with constant periodic impulsive perturbations admits rich complex dynamics. 
 
Key words: Hopf bifurcation, food chain, reaction diffusion, delay, stability, chaos. 

 
 
INTRODUCTION 
 
The dynamic relationship between predators and their 
preys has long been and will continue to be one of the 
dominant themes in both ecology and mathematical 
ecology due to its universal existence and importance. 
The classical Lotka-Volterra type systems are very 
important in the models of multi-species population 
dynamics and have been studied by many authors for 
example (Huang and Zou, 2002; Kuang, 1993; Liu et al., 
2005; Xu et al., 2004; Yan and Chua, 2006). 

Recently, the effect of spatial dispersion on population 
dynamics has received considerable attention. In this 
situation, the governing equations for the population 
densities are described by a system of reaction-diffusion 
equations for example (Cosner and Lazer, 1984; Gan et 
al., 2009; Pao, 2003, 2004, 2007; Tang and Zhou, 2007). 
On the other hand, time delays of one type or another 
have been incorporated into biological models by many 
researchers; we refer to the monographs of Gopalsamy 
(1992), Kuang Kuang (1993) and references cited therein 
for general delayed biological systems. In general, delay 
differential equations exhibit much more complicated 
dynamics than ordinary differential equations since a time 
delay could cause a stable equilibrium to become 
unstable and cause the populations to fluctuate for 
example, (Beretta and Kuang, 1998; Busenberg and 
Huang,1996; Faria, 2001; Gan et al., 2009; Song et   al., 
2004). Time delay due to gestation is a common example, 
because generally the consumption  of  prey  by  the 
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predator throughout its past history governs the present 
birth rate of the predator. Therefore, more realistic models 
of population interactions should take into account the 
effects of time delays. In this paper, motivated by the 
above discussions, we are concerned with the following 
three-species food chain model with spatial diffusion and 
time delays (Xu and Zhien, 2009; Kaifa et al., 2007): 
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with initial conditions; 
 

),(),(),,(),(),,(),( 321 xtxtwxtxtvxtxtu ρρρ ===  

[ ] Ω∈−∈ xt ,0,τ                                 (2) 
 

In system (1)-(2), Ω  is a bounded domain in nR  with 
smooth boundary Ω∂ The data )3,2,1)(,( =ixtiρ  are 
nonnegative and HÖlder continuous and 

satisfy 0=∂∂ xiρ in )0,(−∞ Ω× . ( , ), ( , )u t x v t x  

and ( , )w t x  represent the densities of the prey, predator 
and top predator population at time t , and location x  
respectively. The parameters  11 12, ,a a 21 22 23, , ,a a a 32a ,  



 
 
 
 

33a , τ ,iD ( 1,2,3)ir i =  are positive constants. 
We note that impulsive differential equations are 

suitable for the mathematical simulation of evolutionary 
process in which the parameters undergo relatively long 
periods of smooth variation followed by a short-term rapid 
change (that is, jumps) in their values. Recently, 
equations with impulsive effect have been found in almost 
every domain of applied science. Numerous examples are 
given in Bainovs and his collaborator's book (Bainov and 
Simeonov, 1993; Lakshmikantham et al., 1989). Some 
impulsive differential equations have recently been 
introduced in population dynamics in relation to impulsive 
birth (Roberts and Kao, 1998; Tang and Chen, 2002), 
impulsive vaccination (D'Onofrio, 2002; Shulgin et al., 
1998), chemotherapeutic treatment of disease (Lakmeche 
and Arino, 2000; Panetta, 1996), and population ecology 
(Ballinger and Liu, 1997). Motivated by the work above, in 
this paper, we further discuss the effect of impulses on the 
dynamics of Equation (1). To this end, we discuss the 
following impulsive equations: 
 

�
�
�
�
�

�

��
�
�
�

�

�

=
�
�

�
�

�

=−=∆
=−=∆
=−=∆

≠

�
�

�

�
�

�

�

−−+−=

−−−+−=

−−=

+−+

−+

−+

⋅

⋅

⋅

nTt

twtwtwtw

tvtvtv
tututu

nTt

xtwaxtvarxtwtw

xtwaxtvaxtuarxtvtv

xtvaxtuarxtutu

)()()()(
0)()()(
0)()()(

)),(),()(,()(

)),(),(),()(,()(

)),(),()(,()(

33323

2322212

12111

ζ

τ

τ  (3) 

                                         
 
LOCAL STABILITY AND HOPF BIFURCATION 
 
In this section, we investigate the local stability of the steady states 
and the existence of Hopf bifurcation to Equation (1) with the initial 
conditions in Equation (2) and the homogeneous Neumann 
boundary conditions: 
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where x∂∂  denotes the outward normal derivative on Ω∂ , the 
homogeneous Neumann boundary conditions imply that the 
populations do not move across the boundary Ω∂ . 
It is easy to show that Equation (1) always has a trivial steady state 

0 (0,0,0)E and a semi-trivial steady state 1 1 11( ,0,0)E r a . If 

1 21 2 11r a r a> , Equation (1) has a semi-trivial steady state 

2 1 2( , ,0)E s s , where 
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If the following holds: 
 

1( )H  21 32 1 11 32 2 12 21 3 11 22 3 0a a r a a r a a r a a r- - - >  
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system (1) has a unique positive steady state

*
1 2 3( , , )E k k k , 

where 
 

22 33 1 23 32 1 12 33 2 12 23 3
1

12 21 33 11 22 33 11 23 32
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Let �<<= 210 µµ  be the eigenvalues of the operator ∆−  

on Ω with homogeneous 

Neumann boundary conditions, and )( iE µ be the eigenspace 

corresponding to iµ  in )(1 ΩC . Let [ ]31 )(Ω=Χ C , 

{ })(dim,,1; iij Ej µφ �=  be an orthonormal basis of )( iE µ , 

and { }3Rcc ijij ∈=Χ φ . Then 
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And ),,( 000 wvuE
∧

represents any feasible uniform steady state 

of Equation (1). The linearization of system (1) at
∧
E is of the 

form LZZ t = .For each 1≥i , iX is invariant under the operator 

L , and λ is an  eigenvalue of L if and only if it is an eigenvalue of 

the matrix )(
∧

+− EDi ςµ for some 1≥i ,in which case, there is an 

eigenvector in iX . The characteristic equation of )( 0EDi ςµ +− is 

of the form: 
 

0))()(( 332211 =++++−+ rDrDrD iii µλµλµλ    (4)  
 

Clearly, for 1i = , Equation (4) always has a positive real root 1r . 

Therefore, there is a characteristic root λ , with positive real part in 
the spectrum of L. Accordingly, the trivial uniform steady state 

0 (0,0, 0)E  is always unstable. The characteristic equation of 

)( 1EDi ςµ +−  is of the form 
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0))()(( 33111212211 =++−++++ rDararDrD iii µλµλµλ   (5)                                                                                                 

 
Clearly, for any 1≥i , Equation (5) always has two negative real 

roots 11 rDi −− µ  and 33 rDi −− µ . Its other root 

is 1112122 ararDi +−− µ . 

If 1 21 2 11r a r a> , 2 21 1 11 0r a r a- + > .Hence, when 1i = , 

Equation (5) has a positive real root. Therefore, there is a 
characteristic root λ with positive real part in the spectrum 

of L .Accordingly, if
1 21 2 11 0r a r a- > , 1 1 11( ,0,0)E r a is unstable. 

If 
1 21 2 11r a r a< , 01112122 <+−− ararDiµ for 

any 1≥i .Therefore, all characteristic roots λ are negative 

constants in the spectrum of L . Accordingly, if 1 21 2 11r a r a< , 

1 1 11( ,0,0)E r a  is locally asymptotically stable. The 

characteristic equation of )( 2EDi ςµ +− is of the form 

 

)()((( 111123233 ++−++ µλµλ saDsarD ii

0)))( 2121122222 =+++ − λτµλ essaasaDi  
(6) 

                                           
If (

1H ) holds, for 1i = , 023233 >+−− sarDiµ , Equation(6) has a 

positive real root. Therefore, there is a characteristic root λ with 

positive real part in the spectrum of L .Accordingly, if ( 1H ) holds, 

2 1 2( , ,0)E s s is unstable. If the following (H2) holds: 

21 32 1 11 32 2 12 21 3 11 22 3 0a a r a a r a a r a a r- - - <  

For 1≥i ,  Equation   (6) always  has  a  negative 

root 23233 sarDi +−− µ . Its other roots are determined by  the 

following equation: 
 

02
001 =−+++ λτλλ ebaa                       (7) 

 
Where ))(( 222211110 saDsaDa ii ++= µµ , 

222211111 saDsaDa ii +++= µµ , 2121120 ssaab = . It is easy to 

see that the roots of Equation (7) are negative real constants 
when 0=τ , then 

2 1 2( , ,0)E s s  is locally asymptotically stable 

when 0=τ . If )0( >σσi is a solution of Equation (7), separating 
real and imaginary parts, we can derive that 
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Squaring and adding the two equations of Equation (8), it follows 
that 
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If 
11 22 12 21a a a a> , we have 

2
1 02 0aa - >  and 

2 2
0 0 0ba - > , 

then Equation (9) have no positive roots for all 1≥i . Therefore, all  

 
 
 
 
characteristic roots λ are negative constants in the spectrum of L . 

Accordingly, if ( 2H ) holds and 11 22 12 21a a a a> , 

2 1 2( , ,0)E S S is locally asymptotically stable for all 0>τ . 

If 11 22 12 21a a a a< , we have 
2
1 02 0aa - >  and 

2 2
0 0 0ba - < , then Equation (9) have one positive root 0σ  for 

1i = . From Equation (8), we obtain 
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Where 0,1, 2,j = � , then 0σ± is a pair of pure imaginary roots 

of Equation (8) with
*
jτ . Define 

**
oττ =  

When 
*
jττ = , for 1i = , Equation (7)has a pair of purely 

imaginary roots 0σ± and all roots of Equation (7) have negative 

real parts for 2≥i . Noting that if  )( 2H holds, the positive 

uniform steady state 2E  is locally stable when 0=τ , by the 

general theory on characteristic equations of delay differential 

equations from (Kuang,1993) (Theorem 4:1), 2E remains stable 

for
*ττ < . 

We now claim that 
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This will signify that there exists at least one eigenvalue with positive 

real part for
*ττ > . Moreover, the conditions for the existence of a 

Hopf bifurcation (Hale, 1977) are then satisfied yielding a periodic 
solution. To this end, differentiating Equation (7) with respect τ  , 
we obtain 
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Therefore, the transversal condition holds. From Equation (11), we 

know that a Hopf bifurcation occurs at 
0σσ = *ττ = . 

The characteristic equation of )( *EDi ςµ +−  is of the form 
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2

2
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where 

))()(( 3333222211110 kaDkaDkaDp iii +++= µµµ  

))(())(( 33332222222211111 kaDkaDkaDkaDp iiii +++++= µµµµ  

))(( 33331111 kaDkaD ii +++ µµ  

)()()( 3333222211112 kaDkaDkaDp iii +++++= µµµ  

)()( 111132322333332121120 kaDkkaakaDkkaaq ii +++= µµ  

3232232121120 kkaakkaaq +=  

 
When 0=τ , Equation (12) becomes  
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It is easy to verify that 2 0p > , 

0 0 0p q+ > and 1 1 2 0 0( )p q p p q+ > + .Then it follows from 

Hurwitz criterions that all roots of Equation (13) have negative parts. 

Hence, the positive uniform steady state
*E is locally asymptotically 

stable when 0=τ . 

If )0( >ωωi is a solution of Equation (12), separating real and 
imaginary parts, we derive that: 
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Squaring and adding Equations(14), it follows that 
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Let 
2ω=z , Equation (15) becomes 
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In the following, we need to seek conditions under which Equation 
(16) has at least one positive root. Denote 
 

3 2 2 2 2 2 2
2 1 1 0 2 1 0 0( ) ( 2 ) ( 2 2 )h z z p p z p p p q z p q= + - + - - + -  (17) 

                                                
If the following holds: 
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3( )H  11 22 33 12 21 33 11 23 32 0a a a a a a a a a- - >  

 
It is easy to verify 

that
2 2 2
2 1 0 02 0, 0p p p q- > - > and

2 2
1 0 2 12 0p p p q- - >  

for all 1≥i . Hence, Equation (15) has no positive roots in this 
case. 

If the following holds: 
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2 2
0 0 1 2 3 11 22 33 12 21 33 11 23 32 0 0( )( ) 0p q k k k a a a a a a a a a p q- = - - + <

and ∞=∞→ )(lim zht  for 1i = , then Equation (15) has at 

least one positive root. Hence, Equation (12) has a pair of purely 

imaginary roots 0ωi± , and all roots of Equation (12)have negative 

real parts for 2≥i . 
Suppose that Equation (16)has positive roots. Without loss of 

generality, we assume that it has three positive roots, defined 

by 1 2,z z  and 3z respectively. Then Equation (15) has three positive 

roots 11 z=ω 22 z=ω and 33 z=ω . From (14), we have 
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Where 1, 2,3; 0,1,k j= = � , then kω± is a pair of pure 

imaginary roots of Equation (14) with
)( j

kτ . Define 
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Therefore, the transversal condition holds and a Hopf bifurcation 

occurs at 
*E  when 0ωω = , 0ττ = . We therefore obtain the 

following results. 
 
 
RESULTS 
 
Theorem 2.1  
 
Let *τ and 0τ be defined by Equation (11) and 
Equation(19), respectively. For Equation (1) we have 
 
(i) The trivial uniform steady state

0 (0,0,0)E is always 
unstable. 
(ii) If 1 21 2 11r a r a< ,the semi-trivial steady 

state
1 1 11( ,0,0)E r a is locally asymptotically stable; if 

1 21 2 11r a r a> , 
1E is unstable. 

(iii) Let
1 21 2 11r a r a> . If 

2( )H holds and 
11 22 12 21a a a a> the 

semi-trivial steady state 
2 1 2( , , 0)E s s is locally asymptotically 

stable for all 0≥τ ; if 
1( )H holds, 

2E is unstable 

for all 0≥τ ; if 
2( )H holds and 

11 22 12 21a a a a< , 2E  is 

locally asymptotically stable when *0 ττ <≤ and is 

unstable when *ττ > ; further, Equation (1) undergoes a 

Hopf bifurcation at 2E when *ττ = . 

(iv) Let 1( )H hold. If 
3( )H holds, the positive uniform steady 

state *
1 2 3( , , )E k k k is locally asymptotically stable for 

all 0≥τ ; if 
4( )H holds, the positive uniform steady 

state *E is asymptotically stable when 00 ττ <≤ and is 

unstable when 0ττ > ; further, Equation (1) undergoes a 

Hopf bifurcation at *E  when 
0ττ = . We now give two 

examples to illustrate the main results. 

  
 
 
 
Example 1  
 
In Equation (1), we set

1 2 3 1D D D= = = , 1 2 32, 0.5r r r= = =

11 22 33a a a= =  0.3= 12 3a = 23 0.5a = 21 0.6a =

32 0.7a = . It is easy to show that Equation (1) has three 
steady states 

0 1(0,0,0), (20 3,0,0)E E and 2 (10 9,5 9,0)E . By 

Theorem 2.1 we see that 0E  and 1E  are unstable for 

all 0>τ , 2E is asymptotically stable when 

4676.00 * =<≤ ττ  and the bifurcation occurs when τ  

crosses *τ  to the right ( *ττ > ). These facts are 
illustrated by the numerical simulations in Figures 1 and 2. 
 
 
Example 2  
 
In Equation (1), we let 

1 2 3 1D D D= = = 1 2r =

2 3r r= = 0.5 11 22 33 0.3a a a= = = 12 23 0.5a a= = 21 0.6a =

32 0.7a = .It is easy to show that system (1.1) has four 

steady states 0 (0,0,0)E 1(20 3,0,0)E ,
2 (85 39,35 13,0)E  

and *(415 111,65 37,90 37)E . It follows from Theorem 2:1 

that 0E 1E
2E  are unstable for all 0>τ , *E is 

asymptotically stable when 4749.00 0 =<≤ ττ and the 

bifurcation takes place when τ  crosses *τ to the right 
( 0ττ > ). These facts are illustrated by the numerical 
simulations in Figures 3 and 4. 
 
 
Chaotic behavior in Equation (3) 
 
The influences of τ  may be documented by 
stroboscopically sampling some of the variables over a 
range of τ  values. 

In Equation (3), we let 
1 2r = 2 3 12 23 0.5r r a a= = = =

11 22 33 0.3a a a= = = 21 0.6a = 32 0.7a = 0.8ς = 2T =
0.5 0.9τ≤ ≤ . 
 
The influences of τ  may be documented by 
stroboscopically sampling some of the variables over a 
range of τ  values. We numerically integrate Equation (3) 
for 500 pulsing cycles at each value ofτ . For each τ , we 
plot the last 100 measures of prey u , predator v  and 
top predator w . Since we sample at forcing period, the 
T-periodic solutions appear as fixed points, the 
2T-periodic solutions appear as two cycles, and so forth. 
The resulting bifurcation diagrams (Figure 5) clearly show 
that: with the increasing of τ  from 0.5 to 0.9, Equation (3) 
experiences process of cycles → periodic doubling 
cascade →chaos (Figure 6). This periodic-doubling route 
to chaos is the hallmark of the  logistic and Ricker maps 
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Figure 1. The temporal solution found by numerical integration of problem (1.1)-(1.2) with 

1 2 3 1D D D= = = 1 2r = , 
2 3 23 0.5r r a= = = ,

11 22 33a a a= = 0.3= , 12 3,a = 21 0.6a = , 

32 0.7a = 2.0=τ  and ),(),(),( 321 xtxtxt ρρρ == xe 201 −+= , [ ]0,2.0−∈t . 

 
 

 
 
Figure 2. The temporal solution found by numerical integration of problem (1.1)-(1.2) 

with
1 2 3 1D D D= = = 1 2r = , 

2 3 23 0.5r r a= = = 11 22 33a a a= = 0.3=

12 3,a =
21 0.6a = 32 0.7a = 6.0=τ  and ),(),(),( 321 xtxtxt ρρρ == xe 201 −+= , 

[ ]0,6.0−∈t . 
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Figure 3.The temporal solution found by numerical integration of problem (1.1)-(1.2) with 

1 2 3 1D D D= = = 1 2r = , 
2 3 12 23 0.5r r a a= = = = 11 22 33 0.3a a a= = = 21 0.6a =

32 0.7a = 3.0=τ and xext 20
1 3),( −+=ρ xext 20

2 1),( −+=ρ xext 20
3 2),( −+=ρ [ ]0,3.0−∈t . 

 
 
 

 

 
 

 
 
Figure 4.The temporal solution found by numerical integration of problem (1.1)-(1.2) with 

1 2 3 1D D D= = = 1 2r = , 
2 3 12 23 0.5r r a a= = = = 11 22 33 0.3a a a= = = 21 0.6a =

32 0.7a = 6.0=τ and xext 20
1 3),( −+=ρ xext 20

2 1),( −+=ρ xext 20
3 2),( −+=ρ

[ ]0,6.0−∈t . 
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Figure 5. Bifurcation diagrams of Equation (3) showing the effect of τ  with

1 2r =

2 3 12 23 0.5r r a a= = = = 11 22 33 0.3a a a= = =
21 0.6a = 32 0.7a = 8.0=ζ 2T =

9.05.0 ≤≤ τ , and initial values 2.5u = 4=v 6w = . 

 
 

 

  
 
Figure 6. Chaos of Equation (3) for 0.89τ = : (a) time series of prey u; (b) time series of 
predator v; (c) time series of top predator w; (d) phase portrait. 
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(May, 1974; May and Oster, 1976) and has been studied 
extensively by Mathematicians Collet and Eeckmann, 
1980; Venkatesan and Parthasarathy, 2003). For the 
predator-prey system, chaotic behaviors are usually 
obtained by continuous system with periodic forcing 
(Vandermeer et al., 2001). 
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