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Directional overcurrent relays are used to protect interconnected power systems and looped 
distribution systems. The problem is modeled as a constrained nonlinear optimization problem in which 
the decision variables are the devices that control the act of isolation of faulty lines from the system 
without disturbing the healthy lines. Time dial setting (TDS) and plug setting (PS) are considered as 
optimal parameters. IEEE 3-bus model and IEEE 4-bus model are two models of this problem. This 
paper presents a new efficient and reliable approach based on a constrained harmony search algorithm 
(HSA) to solve the problems.  The authors’ proposed technique is called Box-Muller harmony search 
(BMHS) algorithm. BMHS has been tested by applying it to two models. The simulation result of this 
technique is compared with those reported in the literature. The outcome is very encouraging and 
proves that the new technique outperforms them in terms of reaching a more optimal solution and 
speed. 
 
Key words: BMHS, Box–Muller transform, coordination, directional overcurrent relay, HSA, power system. 

 
 
INTRODUCTION 
 
The problem of determining the time dial setting of 
directional overcurrent relays using the optimization 
techniques was first stated in 1987 (Perez and Urdaneta, 
1999; Urdaneta et al., 1998). It has been shown that the 
linear programming technique can be successfully 
applied to this problem, guaranteeing the minimum 
possible settings of the relays that satisfy the time 
coordination constraints, that is, the optimal settings 
(Perez and Urdaneta, 1999; Urdaneta et al., 1998; 
Urdaneta et al., 1996; Chattopadhay et al. 1996; 
Urdaneta et al., 1997). The problem of re-setting the 
relays after a permanent topology change in the system 
reducing the number of relays to be reset was presented 
and solved using the concepts of multiple objective 
optimizations (Chattopadhay et al., 1996). The 
consideration of the dynamic changes of the system 
topology that take place during the fault clearing  process 
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using linear programming was also recently addressed 
(Urdaneta et al., 1997). However, the optimization 
problem has been formulated and solved for the systems 
including only directional overcurrent relays (DOCR) 
without considering the coordination of DOCR with other 
relay types. 
 
 
OVERVIEW 
 
As the dimension of the problem increases for the 
modern interconnected power systems, the complexity of 
the problem increases. Also, due to the complexities of 
non-linear programming techniques, most of the 
researchers have solved the problem in a linear 
environment by assuming the values of decision 
variables (all plug settings), which make the problem non-
linear. This assumption is made on the basis of 
engineering experience (Chattopadhay et al., 1996), 
(Irving and Elrafie, 1993; Urdaneta et al., 1996; Urdaneta 
et al., 2001), etc. 
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Table 1. Characteristics of standards of overcurrent relay.  
 

Normally inverse : 

 
  

Very inverse : 

 
  

Extremely inverse : 

 
  

Long time inverse  : 

 
  

RI-type : 

 
  

RXIDG-type : 
 

 
 
 

The use of optimization techniques in relay 
coordination was first suggested by Urdaneta et al. 
(1998). Irving and Elrafie (1993) used the Sparse Dual 
Revised Simplex method of linear programming 
suggested by Irving and Sterling (1983) to optimize TDS 
settings for assumed non-linear PS settings. Laway and 
Gupta (1993) applied Simplex and Rosenbrock-Hillclimb 
methods to optimize TDS and PS settings respectively; in 
a similar way, as used by Urdaneta et al. (1998). These 
approaches were further followed by the simplex-based 
approaches with more and more sophistications about 
finer aspects of the relays (Urdaneta et al., 1996), 
Chattopadhyay et al. (1996), Perez and Urdaneta (1999), 
Abdelaziz et al. (2002) and So and Li (2000) used 
evolutionary programming. A survey of all coordination 
philosophies used by the various researchers in the past 
has been presented recently by Birla et al. (2005). 

Deep et al. (2006) used random search technique 
2(RST2) of Shanker and Mohan (1987) to solve the relay 
coordination problem for IEEE 3-bus and IEEE 4-bus 
models. Dipti (2007), applied genetic algorithm (GA), self 
organizing migrating algorithm (SOMA), self organizing 
migrating genetic algorithm (SOMGA) which is a genetic 
algorithm hybridized with self organizing migrating 
algorithm to solve the problem. Bansal and Deep (2008) 
used the five different versions of Particle Swarm 
Optimization (PSOG, PSOGC, PSOL, PSOLC, CPSO) to 
solve the relay coordination problem. Barzegari et al. 
(2010) applied Harmony Search Algorithm (HSA) to solve 
the problem.  
 
 
PROBLEM FORMULATION 
 

The operating time (T) of a DOCR is the non-linear 

function of the relay settings (time dial setting (TDS) and 
plug setting (PS) and the fault current (I) seen by the 
relay). Therefore, relay operating-time equation for a 
directional overcurrent relay is given by a non-linear 
equation as follows: 
 

                                             (1) 

 

*denotes the multiplication. Only TDS and PS are the 
unknown variables in the equation. These are the 
“decision variables” of the problem, and are the constants 
representing the behavior of characteristic in a 
mathematical way, in which operating time of the DOCR 
varies and are given as 0.14, 0.02 and 1.0 respectively 
as per IEEE standard (1997). Value of I is also known, as 
it is a system dependent parameter and continuously 
measured by measuring instruments (Bansal and Deep, 
2008).  

The ����∗ ����������_������������variable is equal to
��������������. 

Characteristics of standards of overcurrent relay are 
shown in Table 1(Kavehnia et al., 2006). 

The relay, which is supposed to operate first to clear 
the fault, is called the primary relay. A fault close to relay 
is known as the close-in fault for the relay and a fault at 
the other end of the line is known as a far-bus fault for 
this relay. Conventionally, objective function in 
coordination studies is constituted as the summation of 
operating-times of all primary relays, responding to clear 
all close-in and far-bus faults. These times have limits.  

As what is expressed in Abyaneh et al. (2003) in order 
to coordinate two overcurrent relays, one as the main 
relay (m) and the other as the backup relay (b), (it is 
shown in Figure 1), the difference between the  operation
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Figure 1. Coordination constraint of DOCRs. 

 
 
 
time of the backup relay and the operation time of the 
main relay for faults and should be more than CTI and 
are short circuits at near bus and far bus of the main 
relay respectively. CTI is the coordination time interval for 
main and backup relays. 

So the constraints for coordination of relays m and b 
will be in the form of Inequality (2). 
 

                                          (2) 
 

�������������� is operating time of the backup relay 

and
���������������� is operating time of the primary relay. Value 

of CTI is known.  
So that the formulation problem is as follows (Bansal 

and Deep, 2008): 
 

Minimize         

 
Subject to: 

                                               (3) 

 

0≥−− CTITT primarybackup  
maxmin

iTDS
i

TDSiTDS ≤≤
 

 
where 

clN,...,2,1i =
,

max

ii

min

i PSPSPS ≤≤ , ������
 is number of 

relays responding for close-in fault, 
�������� 

 is number of 

relays responding for far-bus fault, ��������−����−���� is primary 
relay operating-time for close-in fault. Here: 
 

                                                 (4) 

 

��������−������−������ is primary relay operating-time for far-bus 
fault. Here:                                                      
 

                                           (5) 

 

The values of constants ia , ib , ic  and id are given in the 

two Tables, 2 and 5 (Bansal and Deep, 2008).  

backup
i

T is operating time of the backup relay. Here:  
 

1

0.02

if*iPS

i
e
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backupT

−













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(6)

 
 

primary
j

T is operating time of primary relay.  
 

Here: 
 

1

02.0
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j
g

j
TDS*14.0j

primaryT

−
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


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=

                                       

(7) 
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Table 2. Values of constants
ia ,

ib , 
ic  and 

id  for IEEE 3-bus model. 

 

i ia  ib   ic  id  

1 9.4600 2.0600  14.0800 2.0600 

2 26.9100 2.0600  100.6300 2.0600 

3 8.8100 2.2300  12.0700 2.2300 

4 37.6800 2.2300  136.2300 2.2300 

5 17.9300 0.8000  25.9000 0.8000 

6 14.3500 0.8000  19.2000 0.8000 
 
 
 

Table 3. Values of constants ie , i
f , j

g  and jh for IEEE 3-bus model. 

 

i

backupT  j

primaryT  

i ie  
i

f  j j
g  jh  

5 14.0800 0.8000 1 14.0800 2.0600 

6 12.0700 0.8000 3 12.0700 2.2300 

4 25.9000 2.2300 5 25.9000 0.8000 

2 14.3500 0.8000 6 14.3500 2.0600 

5 9.4600 0.8000 1 9.4600 2.0600 

6 8.8100 0.8000 3 8.8100 2.2300 

2 19.2000 2.0600 6 19.2000 0.8000 

4 17.9300 2.2300 5 17.9300 0.8000 
 
 
 

The values of constants ie , i
f , j

g and jh are given in 

Tables 3 and 6 (Bansal and Deep, 2008). 
According to Table 1 and Equation (1), in normally 

inverse equation, if we place 
����∗ ����������_������������ instead of 

��������������and  

����

����
 (

����

����
=

����

����
,

����

����
,

����

����
,

����

ℎ��
 ) 

in lieu of  

��

����������_������������

 

  , 
Equations (4) to (7) are obtained. 
 

CTI = 0.3                                                                 (8)
 

 
min
iTDS is lower limit and max

iTDS  is upper limit of 
iTDS . 

These limits are 0.05 and 1.1, respectively. 
min

iPS is lower limit and max

iPS  is upper limit of 
i

PS .These 

are 1.25 and 1.50, respectively. 
 
 
MATERIALS AND METHODS 
 
The harmony search algorithm 
 
The harmony search algorithm (HSA) is a music-inspired 
evolutionary algorithm, mimicking the improvisation process of 
music players (Geem et al., 2001; Geem et al., 2008). The HSA is 
simple in concept, few in parameters, and easy in implementation, 
with a theoretical background of stochastic derivative (Geem et al., 
2008). The algorithm was originally developed for the discrete 
optimization and later expanded for the continuous optimization 
(Lee and Geem, 2005). For continuous variables, Das et al. (2011) 
provided theoretical background of exploratory power. It has been 
successfully applied to various benchmark and real-world problems 
including   travelling   salesman   problem   (Geem   et   al.,    2005), 

parameter optimization of river flood model (Kim et al., 2001), 
design of pipeline network (Geem et al., 2002; Geem, 2006), and 
design of truss structures (Lee and Geem, 2004). Recently, 
parameter-setting-free (AKA adaptive) HS was developed (Geem 
and Sim, 2010).  

The steps in the procedure of harmony search are as follows 
(Fesanghary et al., 2008): 

 

Step 1: Initialize the problem and algorithm parameters 
Step 2: Initialize the harmony memory 
Step 3: Improvise a new harmony  
Step 4: Update the harmony memory 
Step 5: Check the stopping criterion 
These steps are described as follows: 
 
 

Initialize the problem and algorithm parameters 
 

In Step 1, the optimization problem is specified as follows: 
Minimize     )x(f

r
 

Subject to: 
 

.M,...,2,1i0)x(g i =≥
r

                                             (9) 

.P,...,2,1j0)x(h j ==
r

 

.N,...,2,1kxxx kUkkL =≤≤  

 

Where )x(f
r

 is the objective function, M is the number of 

inequality constraints and P is the number of equality constraints. x 

is the set of each decision variable 
i

x . N is the number of decision 

variables. 
The lower and upper bounds for each decision variable are 

iL
x and 

iU
x  respectively. The HSA parameters are also specified 

in this step. These are  the  harmony  memory  size  (HMS),  or  the 



 
 
 
 
number of solution vectors in the harmony memory, harmony 
memory considering rate (HMCR), pitch adjusting rate (PAR), and 
the number of improvisations (NI), or stopping criterion. The 
harmony memory (HM) is a memory location where all the solution 
vectors (sets of decision variables) are stored. The HM is similar to 
the genetic pool in the genetic algorithms (GAs) (Fesanghary et al., 
2008). 

Here, HMCR and PAR are parameters that are used to improve 
the solution vector. Both are defined in Step 3. 
 
 
Initialize the harmony memory 
 
In Step 2, the HM matrix is generated from a uniform distribution in 

the ranges ],[ iUiL xx ; where Ni ≤≤1 .  
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Infeasible solutions that violate the constraints have a chance to be 
included in the HM with the hope of forcing the search towards the 
feasible solution area. Static penalty functions are used to calculate 
the penalty cost for an infeasible solution. The total cost for each 
solution vector is evaluated using: 
 

 
[ ] [ ] .)x(h0,minβ)x(g0,minα)xf()xfitness(

2

j

P

1j

j

2

i

M

1i

i

rrrr
×+×+= ∑∑

==   

(11) 

 

Where 
i

α and 
jβ  are the penalty coefficients. Generally, it is 

difficult to find a specific rule to determine the values of the penalty 
coefficients and normally these parameters remain problem-
dependent. Selecting a suitable value of penalty coefficients, 
however, proves to be very difficult. If they are chosen to be too 

large, the search terrain of )xfitness(
r

may become too rugged to 

be searched by gradient-based methods. If they are too small, the 
solution to unconstrained problem Equation (11) may not be a CLM 
(constrained local minima) to the original problem or even may not 
be a feasible solution. Usually the selection of penalty coefficients is 
randomly done (Wang, 2001; Wang et al., 2005). 

 
 
Improvise a new harmony 
 

A new harmony vector, ),,,( 21 Nxxxx ′′′=′ K
r

, is generated based 

on three rules: 

 
(1) Memory consideration 
(2) Pitch adjustment 
(3) Random selection 

 
Generating a new harmony is called “improvisation” (Fesanghary et 
al., 2008). In the memory consideration, the value of the first 

decision variable )( 1x ′  for the new vector is chosen from any of the 

values in the specified HM range )(
HMS

11 xx −′ . Values of the other 

decision   variables  ),,,( 32 Nxxx ′′′ K
 
are  chosen  in  the  same 
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manner. The HMCR, which varies between 0 and 1, is the rate of 
choosing one value from the historical values stored in the HM, 
while (1-HMCR) is the rate of randomly selecting one value from the 
possible range of values, as shown in Equation (12). 
 

end.

Xxx

else

}x,,x,{xxx

HMCR)if(rand()

iii

HMS
i

2
i

1
iii

∈′←′

∈′←′

<

L

                                               (12) 

 

Where rand () is a uniform random number between 0 and 1 and 

iX  is the set of the possible range of values for each decision 

variable, that is .xXx iUiiL ≤≤
 

For example, a HMCR of 0.85 indicates that the HSA will choose 
the decision variable value from historically stored values in the HM 
with an 85% probability or from the entire possible range with a 
(100 to 85)% probability (Fesanghary et al., 2008). Every 
component obtained by the memory consideration is examined to 
determine whether it should be pitch adjusted. This operation uses 
the PAR parameter, which is the rate of pitch adjustment as follows: 

 

.end

xx

else

bw()randxx

)PAR()rand(if

ii

ii

′←′

∗±′←′

<

                                                          (13) 

 
Where bw is an arbitrary distance bandwidth. To improve the 
performance of the HSA and eliminate the drawbacks associated 
with fixed values of PAR and bw, Mahdavi et al. (2008) proposed 
an improved harmony search (IHS) algorithm that uses variable 
PAR and bw in improvisation step. In their method PAR and bw 
change dynamically with generation number as expressed below: 
 

.gn
NI

)PAR(PAR
PARPAR(gn) minmax

min ×
−

+=                        (14) 

 
Where PAR (gn) is the pitch adjusting rate for each generation, 

minPAR  is the minimum pitch adjusting rate, 
maxPAR  is the 

maximum pitch adjusting rate and gn is the generation number. 
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c

exp(c.gn).bwbw(gn)
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min

max
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


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



=

=

                                                        (15) 

 

Where bw(gn) is the bandwidth for each generation, 
minbw  is the 

minimum bandwidth and 
maxbw  is the maximum bandwidth. 

Recently other variants of harmony search have been proposed. 
Omran and Mahdavi (2008) proposed a new variant of harmony 
search, called the global best harmony search (GHS), in which 
concepts from swarm intelligence are borrowed to enhance the 
performance of HSA such that the new harmony can mimic the best 
harmony in the HM. Geem (2009) claimed that HS is better than 
GHS for a large-scale problem with 454 discrete variables while 
GHS is better than HS for small or medium sized problems. Also, 
Geem (2008) proposed a new stochastic derivative for the discrete 
variables based on  a  harmony  search  algorithm  to  optimize  the 
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problems with discrete variables and the problems in which the 
mathematical derivative of the function cannot be analytically 
obtained. 
 
 
Update harmony memory 
 

If the new harmony vector, ),,,(
21 N

xxxx ′′′=′ K
r

, has a better 

fitness function than the worst harmony in the HM, the new 
harmony is included in the HM and the existing worst harmony is 
excluded from the HM. 
 
 
Check stopping criterion 
 
The HSA is terminated when the stopping criterion (example, 
maximum number of improvisations) has been met. Otherwise, 
Steps 3 and 4 are repeated. 
 
 
Box-Muller harmony search algorithm (BMHS) 
 
Inspired by the concept of Box-Muller transform, a new variation of 
HSA is proposed in this study. A Box–Muller transform is a method 
of generating pairs of independent standard normally distributed 
(zero expectation, unit variance) random numbers, given a source 
of uniformly distributed random numbers (Box and Muller, 1958).  

It is commonly expressed in two forms. The basic form as given 
by Box and Muller takes two samples from the uniform distribution 
on the interval (0, 1) and maps them to two normally distributed 
samples. The polar form takes two samples from a different interval, 
(−1, +1), and maps them to two normally distributed samples 
without the use of sine or cosine functions. One could use the 
inverse transform sampling method to generate normally-distributed 
random numbers instead; the Box–Muller transform was developed 

to be more computationally efficient. Suppose 
1U  and 

2U  are 

independent random variables that are uniformly distributed in the 
interval     (0, 1):  
 

)U2cos(Uln2)cos(RZ 211 πθ −==
                                 

(16) 

 
And  
 

).U2sin(Uln2)sin(RZ 212 πθ −==                                  (17) 

 

Then 
1Z  and 

2Z  are independent random variables with a normal 

distribution of standard deviation 1. 
The derivation is based on the fact that, in a two-dimensional 

Cartesian system where X and Y coordinates are described by two 
independent and normally distributed random variables, the random 

variables for 
2R  and θ  (shown earlier) in the corresponding polar 

coordinates are also independent and can be expressed as: 
 

1
2

Uln2R −=                                                                              (18) 

 
And 
 

.U2 2πθ =                                                                                    (19) 

 
The Box-Muller harmony search (BMHS) algorithm generates 
random numbers by means of Box–Muller method. BMHS has 
exactly the same steps as the HSA but the only difference lies in 
the Steps 2 and 3 which are modified as presented in Figure 2. In 
Figure 2, Z-rand generates random number in range 0.0~1.0 by. 

 
 
 
 
Box–Muller method. 
 
 
RESULTS 

 
To examine the applicability and accuracy of the 
proposed method, BMHS has been applied to two 
models. The obtained results are compared with the 
results of the other methods. Programming commands 
used in this simulation are taken from VB.Net software. 

 
 
3-bus system 
 
For the coordination problem of IEEE 3-bus model, value 

of each of ������ and 
�������� is 6 (equal to number of relays 

or twice the lines). Accordingly, there are 12 decision 
variables (two for each relay) in this problem, that is, 

������1  to ������6  and ����1 to ����6 . The 3-bus system can 
be visualized as shown in Figure 3, also Table 2 shows 

ia , ib , ic  and id  and Table 3 shows operating time of 

backup relay and operating time of primary relay. 
The problem formulated in problem formulation is 

solved using BMHS technique. The parameters used for 
the simulation are as follows: HMCR = 0.85, 

minPAR = 

0.05, 
maxPAR = 0.95, HMS (The population size) = 10 and 

NI=10000. Also, In Equation(11), 
i

α and 
jβ respectively 

are 80 and 1000. Figure 4 illustrates the convergence of 
BMHS where it clearly shows that the optimal solution is 
obtained after 9500 iterations. 

According to Equation (1), if PS is constant then the 
time based on TSM changes linearly. Thus, objective 
function and constraints become linear based on TSMs. 
So the optimization problem becomes a linear 
programming (LP) form (Perez and Urdaneta, 1999; 
Zeineldin et al., 2005; Yue et al., 2006; Braga and 
Saraiva, 1996). In this model employed in this paper, 
obtained PSs via BMHS were put into objective function 
and constraints. Then the problem, using general 
algebraic modeling system (GAMS) software and 
MATLAB Optimization Toolbox, was solved. 

Table 4, shows a comparison of the optimal values of 
decision variables (DV) and objective function (OBJ) 
obtained by BMHS, LP and other algorithms for IEEE 3-
bus model.  
 
 
4-bus system 
 

The next coordination problem is of IEEE 4-bus model, 
value of each of 

cl
N  and 

farN is 8 (equal to number of 

relays or twice the lines). Accordingly, there are 16 
decision variables (two for each relay) in this problem, 

that is, ������1    to ������8  and ����1 to ����8 . The 4-bus system 
can be visualized as  shown  in  Figure  5.  The  objective
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Figure 2. Optimization procedure of BMHS. 
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Figure 3. A typical IEEE 3-bus DOCRs coordination problem model. 

 
 
 

 
 
Figure 4. The convergence of BMHS for IEEE 3-bus model. 

 
 
 

function and constraints for this model will be of the same 
form as in the case of 3-bus system (with 8=

cl
N and 

8=farN ). The values of constants ia , ib , ic , id  and ie , 

i
f , j

g , jh  for IEEE 4-bus model are given in Tables 5 

and 6 respectively. 

The parameters used for this simulation are as follows: 

HMCR = 0.85, minPAR = 0.05, maxPAR = 0.95, HMS (The 

population size) = 10 and NI=20000. Also, In Equation 

(11), iα and jβ respectively are 80 and 1000. Figure 6 

shows   the   convergence   of   BMHS.   This  solution  is
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Table 4. Optimal decision variables and optimal values of objective function for IEEE 3-bus model.  
 

DV GA SOMA RST2 SOMGA PSOG PSOGC PSOL PSOLC CPSO LP BMHS 

TDS1 0.0500 0.1296 0.0501 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0558 0.0123 

TDS2 0.2469 0.5478 0.2107 0.2003 0.1976 0.2009 0.1976 0.2009 0.1976 0.3378 0.3059 

TDS3 0.0500 0.1000 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0082 

TDS4 0.2469 0.2058 0.2188 0.2092 0.2094 0.2096 0.2090 0.2127 0.2090 0.3317 0.1886 

TDS5 0.1936 0.0835 0.1881 0.1814 0.1838 0.1814 0.1812 0.1812 0.1812 0.2335 0.1352 

TDS6 0.1977 0.2778 0.1954 0.1860 0.1807 0.1825 0.1807 0.1894 0.1807 0.1964 0.1209 

PS1 1.2500 1.3922 1.2512 1.0250 1.2500 1.2500 1.2500 1.2500 1.2500 1.2642 1.2642 

PS2 1.2500 1.4881 1.3534 1.4720 1.5000 1.5000 1.5000 1.5000 1.5000 1.2567 1.2567 

PS3 1.2500 1.4465 1.2500 1.2500 1.2500 1.2514 1.2500 1.2500 1.2500 1.2745 1.2745 

PS4 1.2500 1.3839 1.3818 1.4978 1.4991 1.5000 1.5000 1.4964 1.5000 1.2770 1.2770 

PS5 1.2739 1.3544 1.3743 1.4962 1.4502 1.4971 1.5000 1.5000 1.5000 1.2840 1.2840 

PS6 1.2500 1.3489 1.2502 1.4035 1.5000 1.4671 1.4999 1.3479 1.5000 1.2509 1.2509 

OBJ 5.0762 8.0102 4.8354 4.7899 4.7838 4.8022 4.7807 4.8192 4.7807 6.1522 3.6810 
 
 
 

 
 
Figure 5. A typical IEEE 4-bus DOCRs coordination problem model. 

 
 
 

obtained after 19000 iterations. It is important to mention 
that this solution was obtained using HSA after 100,000 
iterations.  Again, in the same manner as previous 
section, the LP problem is solved with GAMS and 
MATLAB Optimization Toolbox. Table 7 shows the 
results for IEEE 3-bus model obtained by BMHS, LP  and 

other algorithms. 
 
 
DISCUSSION 
 
Depending on the results presented on  Tables  4  and  7,
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Table 5. Values of constants
ia ,

ib , 
ic  and 

id  for IEEE 4-bus model. 

 

i ia  ib   ic  id  

1 20.3200 0.4800  12.4800 0.4800 

2 88.8500 0.4800  23.7500 0.4800 

3 13.6100 1.1789  10.3800 1.1789 

4 116.8100 1.1789  31.9200 1.1789 

5 116.7000 1.5259  31.9200 1.5259 

6 16.6700 1.5259  12.0700 1.5259 

7 71.7000 1.2018  18.9100 1.2018 

8 19.2700 1.2018  11.0000 1.2018 
 
 
 

 
 
Figure 6.  The convergence of BMHS for IEEE 4-bus model. 

 
 
 

Table 6. Values of constants
ie , i

f , j
g  and 

jh for IEEE 4-bus model. 

 

i

backupT   j

primaryT  

i ie  
i

f   j j
g  jh  

5 20.3200 1.5259  1 20.3200 0.4800 

5 12.4800 1.5259  1 12.4800 0.4800 

7 13.6100 1.2018  3 13.6100 1.1789 

7 10.3800 1.2018  3 10.3800 1.1789 

1 1.1600 0.4800  4 116.8100 1.1789 

2 12.0700 0.4800  6 12.0700 1.1789 

2 16.6700 0.4800  6 16.6700 1.5259 

4 11.0000 1.1789  8 11.0000 1.2018 

4 19.2700 1.1789  8 19.2700 1.2018 



Fetanat et al.          4089 
 
 
 
Table 7. Optimal decision variables and objective function optimal values for IEEE 4-bus model. 
 

DV GA SOMA RST2 SOMGA PSOG PSOGC PSOL PSOLC CPSO LP BMHS 

TDS1 0.0500 0.0500 0.0500 0.0501 0.0500 0.0502 0.5000 0.0500 0.0500 0.0517 0.0579 

TDS2 0.2281 0.2167 0.2242 0.2155 0.2122 0.2125 0.2122 0.2253 0.2122 0.2242 0.1827 

TDS3 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0160 

TDS4 0.1688 0.1642 0.1587 0.1517 0.1516 0.1520 0.1516 0.1518 0.1516 0.1617 0.2046 

TDS5 0.1391 0.1377 0.1367 0.1284 0.1265 0.1282 0.1264 0.1280 0.1264 0.1374 0.1416 

TDS6 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0156 

TDS7 0.1688 0.1564 0.1388 0.1340 0.1338 0.1342 0.1339 0.1348 0.1338 0.1459 0.1118 

TDS8 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0187 

PS1 1.3750 1.3464 1.2910 1.2725 1.2843 1.4999 1.2733 1.5000 1.2733 1.2559 1.2559 

PS2 1.2500 1.4058 1.2645 1.4296 1.5000 1.5000 1.5000 1.2500 1.5000 1.2847 1.2847 

PS3 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2631 1.2500 1.2973 1.2973 

PS4 1.2500 1.2500 1.3460 1.4981 1.5000 1.4926 1.5000 1.5000 1.5000 1.2860 1.2860 

PS5 1.2500 1.2511 1.2669 1.4503 1.5000 1.5000 1.5000 1.5000 1.5000 1.2660 1.2660 

PS6 1.2500 1.2500 1.2512 1.2500 1.2500 1.2524 1.2500 1.2500 1.2500 1.2914 1.2914 

PS7 1.2500 1.3770 1.3937 1.4945 1.5000 1.5000 1.5000 1.4838 1.5000 1.2705 1.2705 

PS8 1.2500 1.2500 1.2508 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500 1.2536 1.2536 

OBJ 3.8587 3.7892 3.7050 3.6745 3.6702 3.6940 3.6693 3.7018 3.6693 3.7411 2.9999 
 
 
 

for the two models, we find that there is big change on 
problem parameters before and after applying BMHS. 
Using the two random functions in Box-Muller transform, 
we can make more changes in solutions; hence, the 
efficiency and flexibility of the problem increase. 

Therefore, Box-Muller transform, when applying the 
proposed approach on the optimization problem, affects 
the optimization parameters values. From Figures 4 and 
6, it is clear that the BMHS method is fast and reaches 
the optimal solution with a relatively low number of 
iterations. This behavior represents a powerful feature of 
this new method. In this study, the proposed method 
shows better performance than the other algorithms. 
 
 
Conclusion 
 
The problem is to determine the optimal values of time 
dial setting (TDS) and plug setting (PS) so that the sum 
of the relays operation time can be minimized. Up to this 
time, linear programming (LP) and other methods are 
applied in this problem; each of the aforementioned 
methods has advantages and disadvantages. The 
harmony search algorithm (HSA) is one of the meta-
heuristic methods that has a high degree of flexibility, fast 
convergence, and implement ability on any multi-bus 
power systems. In this paper, using Box-Muller transform 
previous harmony algorithms speed has increased that 
authors called it BMHS here. Two models of this problem 
namely IEEE 3-bus and IEEE 4-bus are solved using 
BMHS. Two models have been tested and the obtained 
results using BMHS in Tables 4 and 7 have been 
compared with other optimization methods; the result 
indicates its superiority. Based on this study, BMHS can 

be applied satisfactorily to different types of optimization 
problems in the area of power systems.  
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