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The design of dome structures is optimized by a genetic algorithm methodology with multi populations. 
In order to increase the convergence degrees of optimal designs obtained, exploitation and exploration 
capacities of the genetic algorithm methodology are enhanced. In this regard, a radial basis neural 
network and a new design strategy based on provisions of LRFD_AISC V3 specification are 
implemented into the optimization procedure. Furthermore, the size-shape-topology design variables 
are simultaneously utilized to automatically generate both sphere and ellipse-shaped dome structures. 
The computational performance of the proposed optimization approach named as enhanced genetic 
algorithm with multiple populations (EGAwMP) is evaluated considering the design optimization of two 
dome structures. It is demonstrated that the proposed optimization approach succeed in obtaining 
optimal designs with higher converged degree. Furthermore, it is displayed that using the size-shape-
topology design variables for a sphere-shaped dome structure increases the optimality quality of 
designs compared to those obtained by using size-shaped-design variables for an ellipse-shaped dome 
structure. Consequently, the proposed optimization approach is recommended to optimize the design 
of dome structures as an intelligence optimization tool. 
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INTRODUCTION 
 
The dome structures, which of member properties are 
assigned from a ready steel profile list are preferably 
used to cover large span areas due to its higher carrying 
capacity and aesthetic feature (Saka and Kameshki, 
1998; Kameshki and Saka, 2007; Saka, 2007; Hasancebi 
et al., 2009a). Particularly, possibility of constructing it in 
considerably lower costs increases its popularity. In other 
hand, the variety in steel profiles with tube-shaped cross-
sections is a big impact on a designer who has a 
responsibility of determining the lightest dome design. 
Therefore, the best way is to utilize an optimization tool 
for the design of dome structures to reduce its 
constructing cost. Although, initially mathematical 
programming techniques governed by the design 
variables of continuous type have been used as an 
optimization tool, the design variables generated have 
not been correctly matched to available cross-sectional 
properties in a ready steel profile list. Furthermore,  when 

a solution space has irregular peaks, these gradient 
based approaches do not achieve to obtain fair and 
accurate gradient information. Therefore, stochastic 
search methods governed by probabilistic transition rules 
have been developed as an alternative to these 
deterministic approaches (Saka, 2007). Especially, meta-
heuristic search algorithms based on simulation of natural 
phenomena become more successful in drawing more 
attention of designers due to their capability of both 
hybridizing with each other and extending by various 
modifications. The simplest and primary one of these 
algorithms is Simple Genetic Algorithm (SGA) (Goldberg, 
1989). SGA based on Darwinian‟s natural selection 
theorem is widely utilized as an optimization tool in 
various structural engineering field (Saka, 1998; Ali and 
Saka, 1999; Saka et al., 2000; Kameshki and Saka, 
2001). 

SGA   uses    a   population   of   potential   designs  for 
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exploration of an optimal design. The population, each of 
which is represented by a coded chromosome is 
maintained by genetic operators like mutation, crossover 
and selection etc. This genetic search is terminated after 
a pre-defined generation number is completed. Although, 
SGA has a simple genetic search mechanism, both 
higher interaction between genetic operators (large 
number of genetic operator parameters) and complexity 
in design problem (large number of design variables, 
design constraints and large size of search space, etc) 
causes a stagnation in the genetic search (Talaslioglu, 
2009). Furthermore, using operator parameters with fixed 
values prevents to accurately adopt the genetic search to 
a varying genetic environment; hence, the computational 
cost of optimization procedures is correspondingly 
increased. In order to overcome these shortcomings 
mentioned, one of the remedies is to divide an entire 
population into sub-populations. However, it was 
demonstrated that SGA with multiple populations for 
design optimization of steel structures slightly affects the 
convergence degree of optimal designs due to usage of 
genetic parameters with pre-determined values 
(Talaslioglu, 2009). In this study, SGA with multiple 
populations is enhanced by an implementation of both a 
radial-basis neural network to adaptively adjust 
parameter values of genetic operators and a new design 
strategy based on provisions of LRFD_AISC V3 (Load 
and Resistance Factor Design_American Institute of 
Steel Construction, Version 3) specification. The adjusted 
genetic parameter values are correspondingly distributed 
to related sub-populations obtained by division of an 
entire population into small ones. Furthermore, the neural 
network implementation is also used to predict the design 
variables considering a „feasible solution pool‟, which is 
updated at each generation. Then, predicted design 
variables are utilized to re-create the population for the 
next generation depending on an activation of this design 
strategy. 

The „worst feasible solution‟ in the feasible solution pool 
indicates the maximum weight of steel structure that 
corresponds to a steel construction with the largest tube-
shaped cross-sections. Feasible solution with higher 
quality is the minimum of feasible solution pool obtained 
at current generation. The „worst unfeasible solution‟ 
indicates the minimum weight of steel structure that 
corresponds to a steel construction with the smallest 
tube-shaped cross-sections. A potential feasible solution 
called „possible feasible future‟ is obtained by an 
implementation of neural networks. In the end of a whole 
genetic search, optimum design, which contains the 
design variables corresponding to the minimum value of 
feasible solution pool is obtained. 
 
OPTIMUM DESIGN OF DOME STRUCTURES 
 

In this study, total weight of a dome structure W is 
minimized considering design constraints based on 
provisions of LRFD_AISC  V3  specification  (Equation 1).  

 
 
 
 
The violation of constraints is penalized by a penalty 
value P. The weight minimization process is formulated 
as: 
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The constants used in the penalization formulation are 
taken as r0 = 0.50, φ = 2, f = 10 and t = current generation 
number as given in Hasancebi and Erbatur (1999) 
(Equation 2). In Equation 2, the slenderness, axial 
strength and flexural strength-related constraints (gslend, 
gaxial, gmom, gshear) are expressed as: 
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and displacement constraint as: 
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Where the term W is computed using length of a member 
l and unit weight w to be selected from w-sections list. 
While d is termed as a joint displacement corresponding 
to related degree of freedom denoted by i, the terms n 
and m indicate total numbers of joint and member. The 
slenderness-related constraint limited by an upper bound 
taken as 300 is governed by the parameters, effective 
length factor keffect, member length L and gyration radius 
r. Axial force of members Puk, bending moment strength 
of members Muk, and shear strength of members Vuk are 
limited by allowable nominal axial force Pnk, nominal 
moment strength  Mnk  and  nominal  shear  strength  Vnk. 



 

 
 
 
 
Displacements of joints are constrained by an upper limit 
dmax. 

In Equations 3 and 4, 
t 0.90  ,

c 0.85  ,
b 0.90   

and 
s 0.90   are resistance factors for axial tension-

compression, moment and shear. Both the structural 
analysis of steels structure and provisions of LRFD_AISC 
V3 specification are formulated in Appendix. It is noted 
that some application examples which are solved by use 
of AISC-LRFD V3 provisions are presented in (Segui, 
2007). 
 
 

IMPLEMENTATION DETAILS OF EGAwMP FOR 
DESIGN OPTIMIZATION OF DOME STRUCTURE 
 
Usage of design variables for generation of proposed 
sphere and ellipse-shaped dome structures 
 

In this study, optimal designs are obtained by use of both 
fixed and varying shape of the dome structures. 
Therefore, total three design variables named size, shape 
and topology are used for the design optimization. 
Whereas, size design variable represents the location 
number of cross-sectional properties in the tube-shaped 
profile list, shape design variables have certain 
parameters, radius (R) for a sphere, A, B and C for an 
ellipse. Topology design variables are represented by 
horizontal and vertical division numbers. The division 
numbers determine the horizontal and vertical lines used 
for constructing a sphere or ellipse-shaped dome. These 
design variables are coded into the chromosomes, which 
are used to represent the individuals of an entire 
population. Therefore, when the horizontal and vertical 
division numbers change, the number of joint nodes and 
truss members are correspondingly varied. Furthermore, 
if the number of member linkage or design variables 
changes depending on the activation of the design 
strategy in the following sub-section, then the length of 
chromosomes correspondingly changes. However, it is 
known that the length of a chromosome must be fixed for 
a proper execution of the optimum procedures. 
Therefore, it fails when the length of chromosome varies 
throughout the genetic search. 

In this study, in order to overcome this task, the length 
of chromosome is fixed for the current generation, but 
altered for the next generation. 
 

 

Search mechanism of EGAwMP based on multi-
started genetic search 
 

EGAwMP works with one population P, which contains a 

number of sub-populations (
SPN SPS

SubP , SPN: number 

of subpopulations, SPS: size of corresponding 
subpopulations) (pseudo code in Figure 1). It has a 
flexibility of assigning different parameter values ParAll to 
the   corresponding   sub-population   at   the  same  time 
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(name of genetic operators in Table 1). The computation 
of optimization procedure is performed in two nested loop 
bounded by an outer and inner generation numbers 
(

OGN
Par ,

IGN
Par ). The first computational loop starts 

by , and.
MI CI
MigOGN IGN SPN Comp

, , .Par Par Par Par Par . After all 

individuals of first population are filled by the worst 
feasible solution (corresponding to maximum weight) 
against the risk of un-exploration of any feasible solution 
in the first generation, the parameter values of genetic 
operators are generated randomly for the first generation. 
Fitness values F are computed following computation of 
decoded values of P. Then, a number of genetic 
operators (selection, mutation, crossover etc.) are 
sequentially executed for P. The run of genetic search is 
terminated when the loop reaches to a specified value of 

OGN
Par . The inner loop, which is limited by a specified 

value of 
IGN

Par  has a responsibility of applying a number 

of genetic operators to the current population. 
The computational procedures of migration, 

competition and selection operators are borrowed from a 
ready optimization tool called GEATbx (Polheim, 1998) 
coded in MATLAB (The MathWorks, Inc., Natick, MA, 
2008) and adopted for EGAwMP. Then, Evolution History 
Function (EHF) is computed taking into account of a 

column matrix called Feas
F  (Figure 1). According to the 

value of EHF, both parameter values of genetic operators 

ALLPar  and design variable values 
Possible_Feasible_Future

DV  

(
PFFDV ) are re-generated by implementation of a neural 

network (Figure 2). In this regard, a radial basis network 
with two layers, which is utilized for approximation of any 
mathematical function is chosen as a neural network 
model. The radial basis network has no neurons at initial 
stage and adds neurons to its hidden layer until a 
specified mean squared error goal is met (default is 
0.00). Furthermore, it is governed by a parameter named 
„spread‟. It is noted that the use of a higher spread value 
causes an increase in the number of neurons for training 
the network. Therefore, spread is taken as 0.4. After an 
implementation of Neural Network for predication of 
design variables, 

PFFDV  is used to re-create a new 

population  P  using the current population P . The re-

creation process is performed in a function named 
“Design Strategy” (Figure 1). In fact, this function is 
employed to execute computational procedures of the 
proposed design strategy based on provisions of 
LRFD_AISC V3 specification. The re-creation of new 
population  P  according to the feasible solution pool is 

formulated by Equation 5 and sketched in Figure 3. In 
fact, the re-creation approach which was firstly utilized in 
the development of a genetic algorithm methodology 
(Talaslioglu, 2009) is re-adopted for EGAwMP by 
Equation 5. 

Computational procedures of the proposed design 
strategy are  managed  by  un-penalization  degree  of   a
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OGN IGN SPNPar Par Par MinFeasPrev=10, =100, = 5, =1xE9 , Apply_Des_Str=1, 

   for i = 1 : 
OGNPar  

 if i==1 

%use randomized values 

IR IR IR

All 1 SPS 2 SPS SPN SPS 1 Sel 2 Sel SPN Sel

P P P GG GG GG CR CR

1 Sel 2 Sel SPN Sel 1 Sel 2 Sel SPN Sel 1 Cros 2 Cros

. ... ..... .. ....

........... .. .... ..

Par [[ Par Par . . Par ] [ Par Par . . Par ]

[ Par Par . . Par ] [ Par Par . . Par ] [ Par P.. . .. ..... ar ....



CR

SPN Cros

MR MR MR MI MI MI MR MR MR

1 Mut 2 Mut SPN Mut 1 Mig 2 Mig SPN Mig 1 Mig 2 Mig SPN Mig

MT MT MT CI

1 Mig 2 Mig SPN Mig 1 Comp 2

........... .. ... . ... .... ..

........... .

Par ]

[ Par Par . . Par ] [ Par Par . . Par ] [ Par Par . . Par ]

[ Par Par . . P.. .ar ] [ a. P r. CI CI CR CR CR

Comp SPN Comp 1 Comp 2 Comp SPN Comp

NSC NSC NSC

1 Comp 2 Comp SPN Comp

Par . . Par ] [ Par Par . . Par ]

[

.

Par Par . . Par

.

........... ]]

 

All All] Rand( ])[Par [Par  

%initialize 
1 SPS 2 SPS SPN SPS. .[P] [ SubP SubP SubP ],  using randomized values limited within 

UDV LDV[Par ,Par ]  

Initialize(
UDV LDV[P],Par ,Par ) 

Feas

%a string of binary coded design var iables which represents possible max imum weight corresponding to

%the worst feasible solution

[P

. . . .

]

. . . . . . .

[1001

. .

. . .

101...]





 

d Feas

Feas[P ] = Decoding([ ])P  
Feas d

ND Feas[F ] = Fitness_Calculation(Problem_name, ,[P ])Par  
Feas Feas Feas Feas[[P ],[F ]] = Collect_Feasible_Solutions(P ,F )  

 end 

  for j= 1 : 
IGNPar  

d[P ] = Decoding([P])  
d

ND[F] = Fitness_Calculation(Problem_name, ,[P ])Par  
Feas Feas Feas Feas[[P ],[F ]] = Collect_Feasible_Solutions([P ],[F ],[P],[F])  

GG P

Sel Sel[F] = Ranking([F],Par ,Par )  
P GG

Sel Sel[P] = Selection([P],[F],Par ,Par )  
MR

Mut[P] = Mutation([P],Par )  
CR

Cros[P] = Crossover([P],Par )  

UDV LDV[P] = Control([P],Par ,Par )  % randomly generate i

j[ P]  if not within the limits of 
UDV LDV(Par ,Par )  

d[P ] = Decoding([P])  
d

ND[F] = Fitness_Calculation(Problem_name, ,[P ])Par  
Feas Feas Feas Feas[[P ],[F ]] = Collect_Feasible_Solutions([P ],[F ],[P],[F])  

GG P

Sel Sel[F] = Ranking([F],Par ,Par )  
CI CR NSC

Comp Comp Comp[P] = Competation([P],[F],Par ,Par ,Par )  

MI MR MT

Mig Mig Mig[P] = Migration([P],[F],Par ,Par ,Par )  

   end         % for j= 1 : IGNPar  
Feas

Feas

OGN

Best([F ]) - Possible Minimum Weig. . . . .ht Corresponding to Worst Unfeasible So. lution
EHF = Best([F ]) -

Par

.
 

All All[Par ] = Neural Network Implementation(Par ,. . EHF)  
Feas Feas

Possible_Feasible_FutureDV  = Neural Network Implementation([P ],[F ]. . ,EHF)  

if ( i 2 ) & (Apply_Des_Str == 1) 

ND Possible_Feasible_Future ND UDV LDVDesign _Strategy , , and ). .[P,Par ] ([P],DV Par Par Par  

 end 

end        % for i = 1 : OGNPar   
 

Figure 1. A Pseudo code for EGAwMP. 
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Table 1. Genetic operators and their related parameters (Figure 1 for ParAll). 

 

Operator name Parameter name and its abbreviation Method Static parameter value Dynamic parameter value 

- Minimum of feasible solutions obtained previously MinFeasPrev - 1xE9  
     

- Application of design strategy Apply_Des_Str  1(yes) or 0(No)  

- Number of outer generation OGNPar
 - 10 - 

- Number of inner generation IGNPar
 - 100 - 

- Number of sub-population SPNPar
 - 5 - 

- Sub-population size SPSPar
 - - 1< <20* and 1< <30* 

     

- 
Number of design variables, their upper and lower bounds NDPar

, 

UDVPar
, LDVPar

 

- Depends on design problem - 

     

Selection (stochastic universal 
sampling) 

Insertion rate 
IR

SelPar
 - - (0< <1)* 

Insertion method Fitness based selection - - 

Pressure 
P

SelPar
 - - (1< <2)* 

Ranking method  Non-linear Ranking - - 

Generation gap 
GG

SelPar
 - - (1< <2)* 

     

Crossover (single point crossover) Crossover rate 
CR

CrosPar
 - - (0< <1)* 

Mutation (single point mutation) Mutation rate 
MR

MutPar
 - - (0< <1)* 

Migration 

Migration interval 
MI

MigPar
 

- 1 - 

Migration rate 
MR

MigPar
 

- - (0< <1)* 

Migration topology 
MT

MigPar
 

Neighborhood (1) and Ring (2) - 1 or 2 

Migration selection Best individual - - 
     

Competition 

Competition interval 
CI

CompPar
 

- 1 - 

Competition rate 
CR

CompPar
 

- - (0< <1)* 

Number of sub-population 
NSC

CompPar
 for competition 

- - (1< <SN)* 

 

*Adaptively adjusted for each population. 
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Figure 2. A radial-basis neural network used for predicting genetic operator parameters. 
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Figure 3. Possibilities used in re-creation of population. 

 
 
 

feasible solution defined by a ratio of available strength of 
steel structure members to their allowable nominal 
strength called „unity‟ (Equations 3 and 4). The allowable 
nominal strengths of steel structure members are 
computed according to the provisions of LRFD_AISC V3 
specification. In order to increase the exploration 
capability of EGAwMP, maximum unities of steel 
structure members, unity_max (Equation 6) are stored in 
a pool called unity_max_pool. Thus, the most conflicted  
 
 

members of steel structure are determined according to 
the history of unity_max recorded. If a feasible solution 
with a higher quality is not obtained in current generation, 
the conflicted members of steel structure are discarded 
from the corresponding group and receive a different 
design variable number. The main advantage of this 
design strategy is its ability of evaluating the sensitivity 
degree of each member towards a number of 
simultaneous loading conditions. 
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Figure 4. A dome structure with 354-bar. 
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DESIGN EXAMPLES 
 

The two design examples borrowed from the application 
examples utilized in literature are used to demonstrate 
the computational performance of EGAwMP. While a 
benchmark design example (dome structure with 354) is 
optimized using only size design variables, the last 
design example is tackled to optimize the design of 
sphere and ellipse-shaped dome structure using size-
shape-topology design variables. Particularly, the design 
complexity of first design example arisen from the higher 
spanning length and member number is higher compared 
to the last one. Thus, it is possible to demonstrate the 
effectiveness of EGAwMP‟s components on maintenance 
of optimal design quality. The last design example with 
relatively less design complexity is chosen to evaluate 
the effect of simultaneously using of size, shape and 
topology design variables on the optimality quality. The 
design provisions of these application examples are 
taken from LRFD_AISC V3 specification. Therefore, the 
number of constraints (for example stability and tension-
compression-flexural strength-related constraints) is 
higher than those used by the optimization approaches in 
literature. Hence, the computational performance of 
EGAwMP is assessed under more severe design 
conditions. According to the proposed technique 
aforementioned, total generation number is divided into 

10 equal intervals ( OGNPar  = 10). Thus, both the lengths 

of chromosomes and parameter values of genetic 
operators are adaptively adjusted to properly execute the 
optimization procedures of EGAwMP. Optimization 

procedures of EGAwMP run 10 times for each design 
examples. 

The number of sub-populations is taken as 5 (
SPNPar  = 

5) for this study. The higher number of genetic operator-
related parameters prevents simultaneously visualization 
of their parameter values. In order to demonstrate the 
importance of neural network implementation for the 
optimal design of dome structures, the crossover, 
mutation, migration and competition rates for each sub-
population is presented for the design examples. 
 
 
Benchmark design example: A dome structure with 
354-bar 
 
The weight of this dome structure which has a material 
elasticity module 199947.961 N/mm

2
 (29000 ksi) and 

yielding point 248.211 N/mm
2
 (36 ksi) was first minimized 

by Hasancebi et al. (2009b). It has three load cases 
which is used to represent various combinations of dead, 
snow and wind load and calculated according to 
provisions of ASCE 7-98 (Hasancebi et al., 2009b). This 
braced dome with a diameter of 40 m (1574.803 in) and 
height of 8.28 m (325.984 in) has 127 joints and 354 
members (Figure 4). Its members are linked into 22 
groups (ParND = 22); hence, size design variables are 
represented as: 
 
A1(1-24), A2(25,27,), 
A2(25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71), 
A3(26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62, 64,66,68,70,72), 
A4(73-96), 
A5(97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,13

5,137,139,141,143), A6(98,100,102,104,106,108, 

110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144), 
A7(1454-168),  
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Figure 5. Trend steps for rates of crossover (a), mutation (b), competition (c) and migration (d) (354-bar Dome structure). 

 
 
 
A8(169,171,173,175,177,179,181,183,185,187,189,191,193,195,197,199, 

201,203,205,207,209,211,213,215), 
A9(170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,

208,210,212,214,216), A10(217-240), A11 

(241,244,247,250,253,256,259,262,265,268,271,274), 

A12(242,245,248,251,254,257,260,263,266,269,272,275), 
A13(243,246,249,252,255,258,261,264,267,270,273, 276), A14(277-288), 
A15(289,291,293,295,297,299,301,303,305,307,309,311), 
A16(290,292,294,296,298,300,302,304,306,308,310,312), A17(313-324), 
A18(325 ,328,331,334,337,340), A19(326,329,332,335,338,341), 
A20(327,330,333,336,339,342), A21(343,344,345,346,347,348), 
A22(349,350,351,352,353,354) 
 
It is observed that there is not a certain relationship 
among the parameters of genetic operators used by 

crossover ( CR

CrosPar ), mutation ( MR

MutPar ), migration 

( MR

MigPar ) and competition ( CR

CompPar ) (Figure 5a to d). 

Considering convergence history obtained by EGAwMP, 
it is seen that the proposed design strategy is activated 

when parameter OGNPar  equals to 5 (Figure 6). Due to 

the fact that the genetic search is stagnated, the 
members of No 163, 164, 165, 166, 235 and 310 are 
discarded from corresponding groups and assigned a 
new group number (unity values of members and 
displacement values of joints in Figure 7a to d). Thus, the 
number of groups increases to 22 from 23. The increase 
in the number of groups leads to an elevation in the 
number of feasible solution (Table 2). Following the 
activation of proposed design strategy, EGAwMP 
achieves to decrease the entire weight of dome structure 
from 221885.830 N  (49881.919  lbf)  corresponding  to  a 

stagnation situation in genetic search to 141613.912 N 
(31836.074 lbf) (Table 2). 

The optimal weight of dome structure obtained by 
EGAwMP, 221885.830 N (49881.919 lbf) is also lighter 
compared to both 275584.677 N (61953.9 lbf) obtained 
by genetic algorithm with multi-populations ignoring 
neural network implementation and 144753.999 N 
(32541.993 lbf) obtained by Hasancebi et al. (2009b) 
(Table 2). It is obvious that the proposed design strategy 
leads to acceleration in evolutionary computation of 
EGAwMP (Figure 6). 

 
 
A dome with varying size-shape-topology 

 
The entire volume of this dome structure with a radius of 
20 m (787.401 in) was firstly minimized by Kaveh and 
Talatahari (2010) using size design variables. While its 
material property values are taken as 205 kN/mm

2
 

(29000 ksi) for elasticity module and 68.95 N/mm
2
 (10 

ksi) for yielding limit, a vertical downward load of (-500) 
kN and two horizontal loads of (-100) kN in x and y 
directions are used to define its loading conditions. In this 
study, the volume of this dome structure with relatively 
lower radius (R) compared to first design example is 
minimized by use of size-shape-topology design 
variables in order to demonstrate the effectiveness of 
these design variables on optimality quality of designs. 
Furthermore, two shape templates, sphere and ellipse 
are utilized both to obtain practically-applicable-dome 
shapes from the design optimization and observe the 
effect   of  dome  shape  on  the  convergence  degree  of
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Figure 6. Convergence history of genetic search included optimum design (354-bar Dome structure). 
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Figure 7. Maximum displacements and Unity_Max vlaues corresponding to feasible solution with higher quality obtained when ParOGN = 
5(a-b) and optimum design (c-d) (354-bar dome structure). 
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Top View 3D View of Vertical-Horizontal Lines 

(a) 

Top View 3D View of Vertical-Horizontal Lines and Diagonal Members 

(b)  
 

Figure 8. Schematic view of sphere-shaped templates used for Case 1, 3(a) and 2(b). 

 
 
 
optimal designs. For this purpose, total of three cases are 
devised to define a dome topology (Figure 8). Depending 
on presence of diagonal members, these cases named 
Case I, II and III are arranged as: 
 
i) It is not used as diagonal member to construct the 
dome structure. While two size design variables are used 
to represent the cross-sectional properties of members 
located on vertical and horizontal lines, two topology 
design variables are responsible to assign the numbers 
of horizontal and vertical lines (Figure 8a). 
ii) Diagonal members are included into construction of 
dome structure. While three size design variables are 
used to represent the cross-sectional properties of 
members located on vertical, horizontal and diagonal 
lines, two topology design variables are responsible to 
assign the numbers of horizontal and vertical lines 
(Figure 8b). 
iii) It is not used as a diagonal member to construct the 
dome structure. While total number of size design 
variables is 1+ the number of vertical lines, two topology 
design variables are responsible to assign the numbers 
of horizontal and vertical lines (Figure 8a). 

Firstly, the parameters of shape design variables of Case 
I, II and III are adjusted by use of a fixed value, R = 20 m 
(787.101 in), then varying values in the ranges as 770 
and 400 in < R < 800 in. Also, design of ellipse-shaped 
dome structures is optimized using two parameter value 
sets of shape design variables: 770 in < A < 800 in, 800 
in < B < 850 in and 770 in < C < 800 in and 770 in < A < 
800 in, 800 in < B < 850 in and 400 in < C < 800 in. The 
optimal designs and their fitness values-related statistical 
data are tabulated according to two topology design 
variables, horizontal and vertical division numbers 
(Tables 3, 5 and 7). The parameter values of size and 
shape design variables corresponding to the optimal 
designs of sphere and ellipse-shaped dome structures 
are presented in Tables 4, 6 and 8. It is mentioned that 
the flexibility of EGAwMP is increased using sphere and 
ellipse-shaped templates to form geometrical 
configurations of dome structure with varying shapes. In 
this regard, the execution of EGAwMP for design 
optimization of sphere and ellipse shaped dome structure 
with fixed and varying radius is resulted with 
corresponding convergence histories of genetic searches 
(Figures 9 and 12). It is  clear  that  the  proposed  design
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Table 2. Comparison of optimum designs (354-bar spatial truss structure). 

 

Size design variable 
number 

The worst unfeasible 
solution 

Feasible solution with higher quality obtained 
when ParOGN = 5 

Optimum design 
Genetic algorithm with multi-populations 
ignoring neural network implementation 

Hasancebi and et al. 
(2009b) 

1 PIPST(1/2) PIPST(3) PIPST(3) PIPST(3) PIPST(2) 

2 PIPST(1/2) PIPST(3) PIPST(3) PIPST(3) PIPST(3) 

3 PIPST(1/2) PIPST(3 1/2) PIPST(3 1/2) PIPST(6) PIPST(4) 

4 PIPST(1/2) PIPST(3) PIPST(3) PIPST(3) PIPST(3 1/2) 

5 PIPST(1/2) PIPST(3) PIPST(3) PIPST(3) PIPST(3) 

6 PIPST(1/2) PIPST(3) PIPST(3) PIPST(3) PIPST(3) 

7 PIPST(1/2) PIPST(8) PIPST(2 1/2) PIPDEST(4) PIPST(3) 

8 PIPST(1/2) PIPST(2 1/2) PIPST(2 1/2) PIPDEST(2 1/2) PIPST(2 1/2) 

9 PIPST(1/2) PIPST(3) PIPST(3) PIPST(3) PIPST(3) 

10 PIPST(1/2) PIPST(2 1/2) PIPST(2 1/2) PIPDEST(2 1/2) PIPST(3) 

11 PIPST(1/2) PIPST(6) PIPST(2 1/2) PIPST(2 1/2) PIPST(2 1/2) 

12 PIPST(1/2) PIPST(5) PIPST(2 1/2) PIPST(2 1/2) PIPST(2 1/2) 

13 PIPST(1/2) PIPDEST(6) PIPST(2 1/2) PIPST(5) PIPST(2 1/2) 

14 PIPST(1/2) PIPST(3) PIPST(3) PIPST(3) PIPST(2 1/2) 

15 PIPST(1/2) PIPST(2 1/2) PIPST(2 1/2) PIPST(2 1/2) PIPST(2 1/2) 

16 PIPST(1/2) PIPST(3) PIPST(2) PIPST(6) PIPST(2 1/2) 

17 PIPST(1/2) PIPST(2) PIPST(2) PIPST(6) PIPST(2 1/2) 

18 PIPST(1/2) PIPST(2) PIPST(2) PIPST(10) PIPEST(2) 

19 PIPST(1/2) PIPST(2) PIPST(2) PIPDEST(8) PIPEST(2) 

20 PIPST(1/2) PIPST(2) PIPST(2) PIPST(2) PIPST(2) 

21 PIPST(1/2) PIPST(2) PIPST(2 1/2) PIPDEST(4) PIPST(2) 

22 PIPST(1/2) PIPEST(2) PIPEST(2) PIPST(5) PIPST(2) 

23 - - PIPST(3) - - 

      

No. of penalized joint 546 0 0 0 0 

No. of penalized element 354 0 0 0 5a 

Weight 19444.239 N (4371.239 lbf) 221885.830 N (49881.919 lbf) 141613.912 N (31836.074 lbf) 275584.677 N (61953.9 lbf) 144753.999 N (32541.993 lbf) 

Maximum weight -  342013.217b N (76887.629 lbf)  342013.217b N (76887.629 lbf) N/A 

Average weight -  208115.381 N (46786.198 lbf)  301689.478 N (67822.492 lbf) N/A 
 

a: Penalized due to the application of severe constraints; b: Obtained by use of design variables corresponding to the worst feasible solution. 
 
 
 
strategy is not activated because any stagnation 
in genetic search does not exist. However, the 
neural network implementation achieves to adopt 
the parameters of genetic operators (ParAll) for  an 

exploitation of current valuable genetic material 
for next generations (Table 3). This success is 
seen from the more converged results of 
EGAwMP compared to the approach proposed by 

Kaveh and Talatahari (2010) (Table 4). Although, 
the number of feasible solution (NFS = 2838 and 
4494) obtained by Case I and II are lower 
compared to Case II (NFS =  119  +  129  +  177 +
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Table 3. Statistical values of optimal designs according to topology design variables (horizontal and vertical division numbers) (a sphere-shaped dome structure with a fixed radius of R = 20 

m [787.101 in)]. 
 

Shape design 
variables of sphere  

Cases 
Statistical values of 
feasible solutions obtained  

Hor = 2   
Ver = 2 

Hor = 2   
Ver = 3 

Hor = 2   
Ver = 4 

Hor = 3   
Ver = 2 

Hor = 3   
Ver = 3 

Hor = 3   
Ver = 4 

Hor = 4   
Ver = 2 

Hor = 4   
Ver = 3 

Hor = 4 

Ver = 4 

R = 20 m (787.101 in) 

Case I 

NFS 24 29 40 143 216 226 864 1296 1312 

Vol. (m
3
) 

Max. 2.507 3.326 4.106 3.453 4.338 5.149 4.368 5.313 6.147 

Min. 1.373 1.715 2.057 1.732 1.898 2.253 2.147 2.324 2.689 

Aver. 1.934 2.539 3.011 2.592 3.126 3.710 3.256 3.828 4.429 

            

Case II 

NFS 119 129 177 430 1194 1329 715 1500 1963 

Vol. (m
3
) 

Max. 3.909 4.666 6.088 5.574 6.654 7.813 7.203 8.302 9.471 

Min. 2.439 2.917 3.429 3.860 4.441 5.267 5.265 6.030 6.733 

Aver. 3.163 3.888 4.777 4.698 5.577 6.487 6.137 7.128 8.039 

            

Case III 

NFS 60 61 62 300 354 359 1094 1057 1147 

Vol. (m
3
) 

Max. 2.507 3.326 4.106 3.453 4.338 5.149 4.151 5.033 5.758 

Min. 1.373 1.870 2.349 2.140 2.689 3.191 2.707 3.456 3.810 

Aver. 1.934 2.582 3.208 2.783 3.494 4.139 3.428 4.172 4.818 
 

Vol: volume, NFS: number of feasible solutions, Hor: horizontal division number, Ver: vertical division number. 
 
 
 
Table 4. The values of size and shape design variables corresponding to optimal designs (a sphere-shaped dome structure with a fixed radius of R = 20 m [787.101 in]. 
 

Parameter 
Shape and size design variable values according to design approaches 

Case I Case II Case III Kaveh and Talatahari (2010) 

SHDV R = 20 m (787.101 in) SIDV 

SIDV1 PIPST(8) PIPST(8) PIPST(8) - 

SIDV2 PIPST(10) PIPST(10) PIPST(10) - 

SIDV3 PIPST(10) - PIPST(10) - 

SIDV4 - - PIPST(12) - 

        

SHDV R = 20 m (787.101 in) R 20 m (787.101 in) 20 m (787.101 in) 20 m (787.101 in) 20 m (787.101 in) 

       

Hor 2 2 2 - 

Ver 2 2 2 - 

     

SHDV R = 20 m (787.101 in) Optimal volume  1.373 m
3
 (83785.600 in

3
) 2.439 m

3 
(148836.911 in

3
) 1.373 m

3
 (83785.600 in

3
) 1.94 m

3 
(118386.063 in

3
) 

 

SHDV: Shape design variables; SIDV: size design variables; Hor: horizontal division number; Ver: vertical division number. 
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Table 5. Statistical values of optimal designs according to topology design variables (horizontal and vertical division numbers) [a sphere-shaped dome structure with varying radius (R)]. 

 

Shape design variables 
sphere  

Design 
approaches 

Statistical values of 
feasible solutions obtained 

Hor = 2 

Ver = 2 

Hor = 2 

Ver = 3 

Hor = 2   
Ver = 4 

Hor = 3 

Ver = 2 

Hor = 3   
Ver = 3 

Hor = 3   
Ver = 4 

Hor = 4   
Ver = 2 

Hor = 4   
Ver = 3 

Hor = 4   
Ver = 4 

(19.56 m < R < 20.32 m); 

(770 in < R < 800 in) 

Case I 

NFS 196 249 155 191 353 311 80 230 159 

Vol. (m
3
) 

Max. 1.921 2.568 3.153 2.666 3.223 3.966 3.198 3.985 4.461 

Min. 1.343 1.681 2.144 1.598 1.755 1.469 2.041 1.750 1.904 

Aver. 1.564 2.031 2.529 2.051 2.404 2.584 2.570 2.690 3.060 

            

Case II 

NFS 12 21 10 4 68 117 1 48 64 

Vol. (m
3
) 

Max. 2.869 3.393 4.447 3.711 4.723 5.341 4.886 5.527 7.065 

Min. 2.430 2.716 3.015 3.459 3.179 3.128 4.886 3.984 4.005 

Aver. 2.609 2.973 3.580 3.586 4.016 4.436 4.886 4.927 5.370 
            

Case III 

NFS 76 114 56 206 328 314 75 221 153 

Vol. (m
3
) 

Max. 1.931 2.500 2.948 2.504 3.150 3.618 3.042 3.549 3.976 

Min. 1.344 1.679 2.148 1.488 1.640 1.468 1.948 1.921 2.155 

Aver. 1.612 2.058 2.532 1.970 2.310 2.524 2.459 2.735 3.063 
             

(10.16 m < R < 20.32 m); 

(400 in < R < 800 in) 

Case I 

NFS 437 493 262 396 605 310 196 287 152 

Vol. (m
3
) 

Max. 1.858 2.569 3.017 2.427 2.953 3.577 2.995 3.447 4.095 

Min. 0.371 0.492 0.607 0.565 0.699 0.839 0.725 0.890 1.170 

Aver. 0.976 1.310 1.584 1.309 1.627 1.893 1.583 1.949 2.317 
            

Case II 

NFS 210 282 171 178 344 231 85 187 135 

Vol. (m
3
) 

Max. 2.605 3.253 4.089 3.781 4.568 5.392 4.232 5.591 6.433 

Min. 0.625 1.011 1.190 1.022 1.395 1.572 1.526 1.950 2.020 

Aver. 1.387 1.779 2.122 1.904 2.595 3.073 2.481 3.229 3.782 
            

Case III 

NFS 375 364 193 398 595 326 196 341 170 

Vol. (m
3
) 

Max. 1.742 2.380 2.778 2.378 2.794 3.228 2.648 3.336 4.043 

Min. 0.376 0.528 0.651 0.636 0.764 0.979 0.789 1.063 1.155 

Aver. 0.928 1.195 1.501 1.244 1.624 1.951 1.541 2.005 2.297 
 

Vol: volume, NFS: number of feasible solutions, Hor: horizontal division number and Ver: vertical division number. 
 
 
 

430 + 1194 + 1329 + 715 + 1500 + 1963 = 7556) 
(Table 3). 

The unity values of their members and the 
displacement values of their joints are depicted for 

optimal designs (Figure 10). Furthermore, the 
corresponding member and joint numbers are 
schematized in Figure 11a for Case I and III, and 
Figure 11b for Case II.  Considering  Table  4,  the 

success of EGAwMP is shown with the lowest 
entire volume of dome structure with a fixed 
radius of 20 m (787.101 in), 1.373 m

3
 (83785.600 

in
3
) compared to  2.439  m

3
  (148836.911 in

3
)  and
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(a) 

(b) (c) 

 
 

Figure 9. Convergence History of Genetic Search for Sphere-shaped Dome Structure Obtained by Use of Size Related Design Variable: R = 
20 m (787.101 in) (a), 19.56 m < R < 20.32 m (770 in < R < 800 in) (b), and 10.16 m < R < 20.32 m (400 in < R < 800 in) (c). 

 
 
 

 

 

(a) (b)  
 

Figure 10. Maximum displacements and Unity_Max vlaues corresponding to optimum design (a-b) (A dome structure with varying size-

shape-topology). 
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(a) (b) 
 

 

Figure 11. Member and Joint Coding Scheme of Optimum Design Obtained by CaseI III (a) and II (b) Using The Shape-

related Design Variable as R = 20 m (787.101 in) (Table 5). 

 
 
 

 
 
 
 

 
 
 
 
 

(b) 
(a) 

 
 
Figure 12. Convergence history of genetic search for ellipse-shaped dome structure obtained by use of size related design variable: 

19.56 m < R < 20.32 m (770 in < R < 800 in) (a) and 10.16 m < R < 20.32 m (400 in < R < 800 in) (b). 

 
 
 
1.94 m

3
 (118386.063 in

3
) obtained by usage of 

geometrical configuration represented by Case II and 
Kaveh and Talatahari (2010). Following the usage of a 
fixed parameter value of shape design variable [R = 20 m 
(787.101 in.)], the design of same sphere-shaped dome 
structure is optimized utilizing varying shape design 
variables. The statistical data and design variables of 
optimal designs are tabulated in Tables 5 and 6. 
EGAwMP is also successful to decrease the entire 
volume of sphere-shaped dome structure from 1.373 m

3
 

(83785.600 in
3
), 2.439 m

3 
(148836.911 in

3
) and 1.373 m

3
 

(83785.600 in
3
) to 1.343 m

3
  (81984.764  in

3
),  2.430 

(148296.428 in
3
) and 1.344 m

3
 (82066.549 in

3
) for Case I, 

II and III, respectively; thereby altering the radius (R) of 
dome structure within upper and lower limits 19.56 m 
(770 in) and 20.32 m (800 in). The success of EGAwMP 
with respect to big variation in radius (R) of dome 
structure within upper and lower limits 10.16 m (400 in) 
and 20.32 m (800 in) is also proven by a decrease in the 
entire volume of dome structure from 1.343 m

3
 

(81984.764 in
3
), 2.430 (148296.428 in

3
) and 1.344 m

3
 

(82066.549 in
3
) to 0.371 m

3 
(22639.809 in

3
), 0.625 m

3 

(38169.307 in
3
) and 0.376 m

3 
(22978.796 in

3
) for Case I, 

II and III respectively (Table 6). 
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Table 6. The values of size and shape design variables corresponding to optimal designs [a sphere-shaped dome structure with varying radius (r)]. 
 

Parameter 
Shape and size design variable values according to design approaches 

Case I Case II Case III 

SHDV 

(19.56 m < R < 20.32 m); (770 in < R < 800 in) 

SIDV 

SIDV1 PIPST(8) PIPST(8) PIPST(8) 

SIDV2 PIPST(10) PIPST(10) PIPST(10) 

SIDV3 - PIPST(10) PIPST(10) 

SIDV4 - PIPST(12) - 

     

(10.16 m < R < 20.32 m); (400 in < R < 800 in) 

SIDV1 PIPST(6) PIPST(6) PIPST(6) 

SIDV2 PIPST(6) PIPST(6) PIPST(6) 

SIDV3 - PIPST(6) PIPST(6) 

SIDV4 - PIPST(6) - 
       

SHDV 
(19.56 m < R < 20.32 m); (770 in < R < 800 in) R 19.58 m (770.811 in) 19.92 m (784.420 in) 19.59 m (770.849 in) 

(10.16 m < R < 20.32 m); (400 in < R < 800 in) R 10.18 m (400.923 in) 11.01 m (433.491 in) 10.33 m (406.806 in) 
      

Hor 2 2 2 

Ver 2 2 2 
    

SHDV 
(19.56 m < R < 20.32 m); (770 in < R < 800 in) 

Optimal volume  
1.343 m

3
 (81984.764 in

3
) 2.430 (148296.428 in

3
) 1.344 m

3 
 (82066.549 in

3
) 

(10.16 m < R < 20.32 m); (400 in < R < 800 in) 0.371 m
3 
(22639.809 in

3
) 0.625 m

3 
(38169.307 in

3
) 0.376 m

3 
(22978.796 in

3
) 

 

SHDV: shape design variables, SIDV: size design variables, Hor: horizontal division number and Ver: vertical division number.  
 
 
 

Table 7. Statistical values of optimal designs according to topology design variables (horizontal and vertical division numbers) [an ellipse-shaped dome structure with varying parameters of 
shape design variables (A, B and C)]. 
 

Shape design variables 
of ellipse 

Design 
approaches 

Statistical values of feasible 
solutions obtained  

Hor = 2 

Ver = 2 

Hor = 2 

Ver = 3 

Hor = 2   
Ver = 4 

Hor = 3 

Ver = 2 

Hor = 3 

Ver = 3 

Hor = 3 

Ver = 4 

Hor = 4 

Ver = 2 

Hor = 4 

Ver = 3 

Hor = 4 

Ver = 4 

Set 1 Case I 

NFS 131 377 207 112 398 317 63 287 166 

Vol. (m3) 

Max. 1.994 2.668 3.276 2.765 3.477 4.019 3.343 4.128 4.715 

Min. 1.576 1.862 2.340 2.133 2.324 2.253 2.437 2.605 2.732 

Aver. 1.752 2.194 2.706 2.415 2.792 3.028 2.861 3.258 3.567 
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Table 7. Contd. 
 

 

Case II 

NFS - - 24 - 1 53 - 6 60 

Vol. (m
3
) 

Max. - - 4.598 - 4.852 6.073 - 6.654 7.424 

Min. - - 3.880 - 4.852 4.394 - 5.444 5.822 

Aver. - - 4.231 - 4.852 5.256 - 5.8955 6.407 

Case III 

NFS 72 235 119 78 317 339 65 290 161 

Vol. (m
3
) 

Max. 2.008 2.615 3.264 2.663 3.275 3.969 3.205 4.015 4.449 

Min. 1.488 1.868 2.369 2.106 2.056 2.302 2.408 2.592 2.851 

Aver. 1.724 2.147 2.720 2.342 2.634 3.020 2.797 3.192 3.637 

             

Set 2 

Case I 

NFS 191 393 199 214 505 275 89 311 160 

Vol. (m
3
) 

Max. 1.943 2.625 3.108 2.607 3.381 3.976 3.418 3.993 4.518 

Min. 1.206 1.566 1.955 1.835 1.735 1.980 2.324 2.224 2.473 

Aver. 1.573 2.010 2.455 2.197 2.495 2.825 2.781 3.017 3.452 

Case II 

NFS - 29 56 - 47 127 - 17 62 

Vol. (m
3
) 

Max. - 3.427 4.731 - 4.857 5.805 - 6.040 7.075 

Min. - 2.624 2.782 - 3.651 3.771 - 4.919 5.227 

Aver. - 3.024 3.593 - 4.363 4.798 - 5.552 6.046 

Case III 

NFS 140 294 159 119 520 359 62 319 172 

Vol. (m
3
) 

Max. 2.004 2.493 3.126 2.469 3.276 3.804 3.243 3.828 4.219 

Min. 1.204 1.455 1.785 1.722 1.764 2.120 2.202 2.346 2.716 

Aver. 1.538 1.947 2.336 2.126 2.456 2.840 2.653 3.041 3.430 

             

Set 1: Set 2: 

19.56 m. < A < 20.32 m (770 in. < A < 800 in.) 19.56 m. < A < 20.32 m (770 in. < A < 800 in.) 

20.32 m. < B < 21.59 m (800 in. < B < 850 in.) 20.32 m. < B < 21.59 m (800 in. < B < 850 in.) 

19.56 m. < C < 20.32 m (770 in. < C < 800 in.) 10.16 m. < C < 20.32 m (400 in. < C < 800 in.) 
 

Vol: volume, NFS: number of feasible solutions, Hor: horizontal division number, Ver: vertical division number.  

 
 
 

According to optimal volume values, the 
sphere-shaped dome configuration represented 

by Case I leads to the most convergence 
degree  in  entire  volume  by decreasing entire 

volume from 1.343 m
3
 (81984.764 in

3
) to 0.371 

m
3  

(22639.809  in
3
) (Table 6). Furthermore, the 
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Table 8. The values of size and shape design variables corresponding to optimal designs [(an ellipse-shaped dome structure with varying parameters of shape design variables (A, B and C)].  
 

Parameter 
Size and shape design variable values according to design approaches 

Case I Case II Case III 

SHDV 

SHDV set 1 

SIDV 

SIDV1 PIPST(6) PIPST(6) PIPST(6) 

SIDV2 PIPST(10) PIPST(8) PIPST(10) 

SIDV3 - PIPST(8) PIPST(8) 

SIDV4 - PIPST(10) - 

     

SHDV set 2 

SIDV1 PIPST(6) PIPST(6) PIPST(6) 

SIDV2 PIPST(8) PIPST(6) PIPST(6) 

SIDV3 - PIPST(8) PIPST(8) 

SIDV4 - PIPST(10) - 

       

SHDV 

SHDV set 1 

A 19.69 m (775.227 in) 20.03 m (788.559 in) 20.09 m (790.909 in) 

B 20.35 m (801.472 in) 20.59 m (810.638 in) 20.80 m (818.954 in) 

C 19.58 m (770.909 in) 19.88 m (782.785 in) 19.56 m (770.160 in) 

     

SHDV set 2 

A 19.64 m (773.532 in) 20.03 m (788.721 in) 19.87 m (782.214 in) 

B 20.36 m (801.591 in) 20.39 m (802.942 in) 20.35 m (801.372 in) 

C 12.42 m (489.278 in) 12.52 m (493.026 in) 12.07 m (475.266 in) 

      

Hor 2 2 2 

Ver 2 3 2 

    

SHDV 
SHDV set1 

Optimal volume  
1.576 m

3 
(96173.420 in

3
) 3.88 m

3 
(236804.256 in

3
) 1.488 m

3 
(90849.618 in

3
) 

SHDV set2 1.206 m
3 
(73594.635 in

3
) 2.624 m

3 
(160126.304 in

3
) 1.204 m

3 
(73472.587 in

3
) 

      

SHDV set1: SHDV set2: 

19.56 m. < A < 20.32 m (770 in. < A < 800 in.) 19.56 m. < A < 20.32 m (770 in. < A < 800 in.) 

20.32 m. < B < 21.59 m (800 in. < B < 850 in.) 20.32 m. < B < 21.59 m (800 in. < B < 850 in.) 

19.56 m. < C < 20.32 m (770 in. < C < 800 in.) 10.16 m. < C < 20.32 m (400 in. < C < 800 in.) 
 

SHDV: shape design variables, SIDV: size design variables, Hor: horizontal division number and Ver: vertical division number.  



 

 
 
 
 
effect of ellipse-shaped dome structure on the 
convergence degree of optimal designs is also 
investigated. Therefore, fitness value-related statistical 
data and values of design variables are tabulated in 
Tables 7 and 8. EGAwMP achieves to minimize the entire 
volume of ellipse-shaped dome structure with varying 
parameters of shape design variables (A, B and C) to the 
smallest value 1.488 m

3 
(90849.618 in

3
) compared to 

1.576 m
3 

(96173.420 in
3
) and 3.88 m

3 
(236804.256 in

3
) 

obtained by use of geometrical configurations 
represented by Case I and II (Table 8). Furthermore, 
EGAwMP is also executed for design optimization of 
ellipse-shaped dome structure using decreased values of 
shape design variables (A, B and C) and proven its 
success with a decrease in the entire volume of dome 
structure from 1.576 m

3 
(96173.420 in

3
), 3.88 m

3 

(236804.256 in
3
) and 1.488 m

3 
(90849.618 in

3
) to 1.206 

m
3 

(73594.635 in
3
), 2.624 m

3 
(160126.304 in

3
) and 1.204 

m
3 

(73472.587 in
3
) for Case I, II and III. Particularly, it is 

obvious that usage of geometrical configuration 
represented by Case III is resulted with an optimal design 
with most converged degree. 
 
 

FINAL REMARKS 
 
In this study, a traditional genetic algorithm methodology 
integrated with multiple populations is enhanced by an 
implementation of neural network and a new design 
strategy. The enhanced genetic algorithm methodology 
named EGAwMP is proposed to optimize the design of 
dome structures, while the implementation of neural 
network is used to adopt both parameter values of 
genetic operator and design variables, a stagnation 
problem arisen in any evolving generation of genetic 
search is overcome by the new design strategy based on 
provisions of LRFD_AISC V3 specification. Furthermore, 
in order to improve the convergence degree of optimal 
designs, topology and shape design variables along with 
size design variables are coded into the chromosomes of 
individuals. In this regard, the varying lengths of 
chromosomes are adopted by use of a new technique 
named multi-started genetic search to properly execute 
the optimization procedures of EGAwMP. The 
computational performance of EGAwMP is evaluated by 
two application examples. Furthermore, one of these 
examples is used to investigate the effect of using 
varying shape and topology design variables on the 
convergence degree of optimal designs. Also, this effect 
is investigated for design optimization of both ellipse and 
sphere-shaped dome structure. According to optimal 
designs obtained by EGAwMP and the other optimization 
approaches in literature, it is demonstrated as: 
 

i) EGAwMP has a better computational capacity thereby 
obtaining more converged optimal designs than the other 
existing optimization approaches. 
ii) EGAwMP   succeed   in   increasing   the  convergence 
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degree of its optimal designs by activating both the 
proposed design strategy and neural network 
implementation. 
iii) An inclusion of shape and topology design variables 
along with size design variables into optimization 
procedures of EGAwMP leads to an increase in the 
quality degree of optimal designs. 
iv) Constructing the dome structure using a sphere-
shaped template rather than ellipse-shaped one leads to 
a reduction in its volume. 
v) The inclusion of diagonal member to optimization 
procedures of EGAwMP causes a reduction in the 
converged degree of optimal designs. Particularly, using 
only size design variables along with decreased topology 
design variables, vertical and horizontal division numbers 
leads to an increase in the quality degree of optimal 
designs. 
vi) Reducing the parameter values of both shape and 
topology design variables also elevates the quality 
degree of optimal designs. 

 
Nomenclature: Ag, Gross cross sectional area; λ, 
slenderness parameter; Fy, yield stress; S, elastic section 
modules; Fcr, critical stress; Mn, nominal flexural strength; 
K, effective length factor; Mr, limiting buckling moment; L, 
Un-braced member length; Mp, plastic bending moment; 
Q, reduction factor; Pn, nominal axial strength; h, clear 
distance; Cb, bending coefficient;  Aw,  area  of  web;  Cw, 
warping coefficient; t, plate thickness; Vn, nominal shear 
strength; b, plate width. 
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APPENDIX 
 
Design requirements of skeleton steel structures with rolled beams 
 

While nominal axial tension strength 
tension

nP is governed by Equation A1, nominal axial compression strength 
compression

nP  

is determined based on limit states of flexural buckling (Equation A2). Nominal flexural strength 
nM  varies depending 

on build-up member bent about their major axis. Thus, 
nM  is the lower value obtained according to the limit states of 

yielding, lateral-torsional buckling, flange and web buckling (Equations A3 to A6). Also, nominal shear strength is 
computed using Equation A7. Furthermore, nominal strength parameters are presented in Table A-F1-1 in manual of 

AISC_LRFD V3. Nominal Axial Tension Strength (D1-1) for tension
nP  in manual of AISC_LRFD V3: 

 
tension

n y gP F *A                                                                                                                           (A1) 

 

Nominal Axial Compressive Strength (E2-1) for compression
nP , A-B5-15, A-B5-16 for Fcr, [Q for A-B5-17, A-B5-12, A-B5-5, 

A-B5-6] 
 

compression

n g crP A F                                                                                                                       (A2) 

 

Nominal Flexural Strength, Min ( Yielding

nM , Lateral Torional Buck. g

n

. linM , Flange Local Buckling

nM , Web Local Buckling

nM ); Yielding (F1-1) for Yielding
nM  

 
yielding

n yM F *S                                                                                                                       (A3) 

 

Flange local buckling (A-F1-1)-(A-F1-4) for 
FlangeLocalBuckling
nM  

 

y z P

pFlange Local Buckling

n p p r p r

r p

z cr r
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 
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                                             (A4) 

 

Lateral Torsional Buckling (F1-2)-(F1-16) for 
LateralTorsionalBuckling
nM  

 

p p

pLateral Torional Buckling

n b p p r p r

r p
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.
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 
    

                                           (A5) 

 

Web-Local Buckling (A-F1-3) for 
WebLocalBuckling
nM  

 

y z p

Web Local Buckling
pn

p p r p r

r p

............................................. ..

............

F *Z if

M
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

  
        

                                         (A6) 

 

Nominal Shear Strength (F2-1), (F2-3) or (A-F2-1) ile (A-F2-3) for nV  
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