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This paper presents a development of QFT-based self-tuning controller for a conveyor belt type grain 
dryer plant. Grain drying process is complex due to long time delay, presence of disturbances and plant 
uncertainty. QFT technique potentially has excellent solution towards this problem due to its well 
known capability to achieve robust performance regardless parameters variation and disturbances. The 
mathematical model of the grain dryer plant is obtained using system identification based on real-time 
input/output data.  A fixed robust controller could be designed using QFT technique; nevertheless the 
uncertainty range must be defined. However, in grain drying process, the parameters’ variations are 
unpredictable and may exceed the defined uncertainty ranges. Therefore, adaptive control with 
integrated Quantitative Feedback Theory (QFT) constraints is proposed to adapt larger parameters 
variation. Improved results are obtained by using the proposed method as compared to standard QFT 
procedure in terms of smaller percentage overshoot and shorter settling time when dealing with larger 
uncertainty range.  In addition, the design methodology of the proposed controller design (loop 
shaping) was improved such that the dependency on human skills was removed and the controller 
design was done online. 
 
Key words: Self-tuning, quantitative feedback theory, adaptive, grain drying, system identification. 

 
 
INTRODUCTION 
 
Grain drying is a very important process in post-harvest 
agricultural process. Grain needs to be dried to specific 
moisture content before it is safe for storage. The drying 
process is very complex and difficult to control due to 
long delay, highly non linear behaviour and presence of 
disturbances. During the drying process, the interaction 
between temperature and humidity of both drying air and 
grain may vary both in time and place which are very 
complex and highly non linear.  A good grain dryer 
control   system   should   meet   the   control  objectives;  
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stability of the system, accuracy of the product close to 
desired moisture content and robustness of the controller 
towards any disturbances such as environmental 
changes and hardware wear and tear (Liu and Bakker-
Arkema, 2001).  There are several methods that have 
been implemented to control grain dryer plant. Some 
distinctive examples are Nybrant (1988) who developed a 
model for cross flow grain dryer for use in the 
development of adaptive control system, Liu and Bakker 
Arkema (2001) who developed and tested model 
predictive control for maize cross flow dryer, Whitfield 
(1988) who developed and tested his Proportional 
Integral (PI) algorithm on mixed flow dryer and 
Atthajariyakul and Leephakpreeda (2006) who 
implemented new modern fuzzy logic technology to 
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Figure 1. Conveyor belt type grain dryer in Faculty of Engineering, Universiti Putra Malaysia. 

 
 
 
control fluidised bed paddy dryer. 

Parameters uncertainty which may come from 
modelling and hardware manufacturing tolerance adds to 
the difficulty in designing efficient grain drying control 
system. Quantitative Feedback Theory (QFT) is a robust 
controller technique that deals with plant uncertainty and 
designed based on robust specifications. QFT technique 
has been proven to control many industrial applications; 
however, the application of QFT to grain dryer plant is 
practically new. Some successful examples of QFT 
applications are in flight control system, marine auto-pilot, 
power converter, pneumatic servo actuator and robotic 
(Noor, et al., 2011; Altowati, 2007; Desanj and Grimble, 
1998; Sheldon and Rasmussen, 1994; Chang et al., 
1991). Shams et al. (2010) compared the performance of 
QFT with traditional PI controller and found the 
effectiveness of the QFT-based controller over the 
traditional method. Their study was based on load 
frequency control. Hemmati et al. (2010) provides 
comparisons between QFT, genetic algorithm, and fuzzy 
logic on his power system stabilizer (PSS) study. His 
findings showed that QFT based PSS provides among 
the best performance compared to other methods and 
conventional PSS. However, the QFT-based controller 
performance is only guaranteed for a certain uncertainty 
range defined by the designer. In grain dyer process, the 
uncertainty might goes beyond the specified range. 
Therefore, adaptive control is important, adaptive can 
cope with larger uncertainty range. Due to the fact that 
grain drying process needs both robust and adaptive 
control, the objective of this research is determined. The 
objective of this research is to design an online self-
tuning controller for a grain dryer plant which is robust 
and capable to adapt wider parameters variation 

regardless presence of disturbances. The initial controller 
is determined by using standard QFT procedures. Based 
on the structure of the controller, the adaptive controller is 
designed. Based on minimisation of the system error 
function, Recursive Least Square (RLS) method is used 
to identify the plant parameters according to plant 
changes. RLS provides fast convergence in parameters 
estimation (Wang and Feng, 2009). The controller’s 
parameters are determined from the algebraic method 
which has been integrated with QFT constraints. From 
the extensive simulation results, the proposed controller 
is found to be efficiently control the grain drying process 
regardless presence of disturbances as well as 
parameters variation. The online QFT-based self-tuning 
controller produced more desirable response than 
standard QFT-based controller in the case of larger 
parameters variation as well as, improved the controller 
design methodology.    
 
 
MATERIALS AND METHODS 

 
This paper is focused on the control design methodology for a 
conveyor belt type grain dryer. More discussion on controller’s 
design will be found in this section. However, brief discussion on 
the grain dryer plant and the methods on obtaining the 
mathematical model of the grain dryer will be presented.  
  
 
Grain dryer plant 

 
The grain dryer plant under study is a laboratory scale continuous 
flow conveyor belt type grain dryer with dimension:  2300 mm (L) × 
350 mm (W) × 800 mm (H). Experiment was conducted on the grain 
dryer for data collection. Paddy grain was used in this experiment.  
As shown in Figure 1, the grain dryer was connected to a computer  
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Figure 2. Input and output data collection a) voltage supplied to the motor (V) b) grain moisture content collected at the output (% 
w.b). 

 
 
 
via National Instrument Analogue Output Data Acquisition System 
(DAQ), particularly NI USB-6211 DAQ. Offline moisture analyser 
(Precisa XM 120) was used to determine the moisture content of 
the grain. Wet grain of about 17% w.b. moisture content was 
spread evenly at the inlet of the dryer. The conveyor belt moved the 
wet grain towards the outlet while the blower blew the hot air 
supplied by the heater.  By manipulating the speed of the motor that 
rotates the conveyor belt (varying the residence time), the 
respective grain moisture content was measured. From the control 
system point of view, the input of the system is the voltage supplied 
to the motor (set between 0.3 to 2 V) and the output is the grain 
moisture content collected at the end of the dryer. The input and 
output data is represented in Figure 2. 
 
 
The grain dryer model 
 
The input and output data has been used to obtain the 
mathematical model of the grain dryer, using System Identification 
(SI). Matlab System Identification Toolbox (MSIT) has been used to 
simplify the mathematical calculations (Ljung, 2008). Linear process 
model has been chosen to represent the grain dryer plant. In order 
to apply QFT technique, the plant must be represented in frequency 

domain where the representation can be obtained from state space 
or Linear Time Invariant (LTI) format (Borghesani et al., 1999). 
Linear process model provides low order transfer to describe the 
linear system dynamics of the plant. The input and output data is 
divided into two parts; As model estimation and model validation. 
The estimation of the model parameters is done using Prediction 
Error Minimization (PEM) method (Ljung, 2008). The best 
performance model obtained based on the highest best fit (Ljung, 
2008) is given in equation (1): 

 

       (1) 

 
Where K = 0.17788; Tw = 0.32426; ζ = 0.17533; Tp3 = 32.076; Td = 
27.027; Tz = 0.47177.  

Equation (1) with its parameters value is considered as the 
nominal plant in QFT design. There are uncertainties in grain drying 
process as a result of linearization, parameters variation and delay 

in the process. Therefore, 5% uncertainty range has been 

defined for parameters in equation (1). Multiplicative non parametric 
uncertainty is considered as it will cover larger uncertainty range, 
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Figure 3. Structure of control system using QFT technique. 

 
 
 

Table 1. Random LTI plants parameters. 
 

Plant K Tw ζ Tp3 Tz 

Sys1 0.14230 0.25941 0.14026 25.66080 0.37742 

Sys2 0.17788 0.32426 0.17533 32.07600 0.47177 

Sys3 0.21346 0.38911 0.21034 38.49120 0.56612 

Sys4 0.14230 0.32426 0.21034 25.66080 0.47177 

Sys5 0.17788 0.38911 0.14026 32.07600 0.56612 

Sys6 0.21346 0.25941 0.17533 38.4912 0.37742 

Sys7 0.21346 0.38911 0.21034 25.66080 0.56612 

Sys8 0.14230 0.38911 0.17533 38.49120 0.56612 

 
 
 
unmodeled dynamics at high frequencies (Doyle et al., 1990) and 
delay and parameter loss due to linearization. The block diagram of 
the grain drying control system is shown in Figure 3. Eight sets of 
parameters uncertainty were chosen randomly as the LTI plants 
those cover the minimum and maximum variation of the plant. The 
LTI plants parameters are summarised in Table 1. 

 
 
Standard QFT design 

 
The QFT design procedure involves three basic steps (Borghesani 
et. al., 1999). These steps are; 1) Computation of QFT bounds; 2) 
Design of controller and possibly pre-filter; 3) Analysis of the 
design. QFT bounds are generated from the combination of desired 
specifications and plant templates (results of plant uncertainty) 
which are converted into magnitude and phase constraints on a 
nominal open loop function. A nominal open loop function is then 
designed (via loop shaping) to simultaneously satisfy its constraints 
as well as to achieve nominal loop stability. Analysis of the design 
is important to ensure the design requirements are met at defined 
frequency range. The grain dryer system can be presented by a 
family of third order transfer functions as the followings: 
 

      (2) 

Where 

;  
 
k = 0.16899 to 0.18677; Tw = 0.30805 to 0.34047; ζ  = 0.16656 to 
0.18410; Tp3 = 30.4722 to 33.6798; Tz = 0.44818 to 0.49536. 

The uncertainty range considered is ±5% parameters variation; 

 is obtained from the transfer function of the grain dryer 

that gives the highest variation of frequency response of parameter 

variation (LTI);  becomes the disk radius in multiplicative 

non parametric uncertain plant which covers larger uncertainty 
range. In QFT approach, the controller is designed based on 
desired specifications which are given as the following: 
 

Robust stability margin; 
 

        (3) 
Robust output disturbance rejection; 
 

        (4) 
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Figure 4. Loop shaping and superposition of all bounds. 

 
 
 
Robust input disturbance rejection; 
 

    (5) 
 
Where L (jω) = G (jω)P(jω); L (jω) is the nominal loop, G (jω) is the 
controller and P(jω) is the plant. As a result from the inequalities in 
(3), (4) and (5), stability, robust output disturbance rejection and 
robust input disturbance rejection boundaries are generated.  

A QFT-based controller is determined using loop shaping 
Interactive Design Environment (IDE) (Borghesani et al., 1999) to 
satisfy these constraints. This IDE helps the designer to design a 
controller in graphical approach and see the trade-off between 
controller complexity and performance specifications 
instantaneously. The superposition of all stability, robust output 
disturbance rejection, robust input disturbance rejection bounds and 
the nominal loop obtained from manual loop shaping is shown in 
Figure 4. Considering low-order controller that can meet the robust 
performance specifications, the best obtained QFT-based controller 
for the grain drying process is given by equation (6): 

 

       (6) 
 
The analysis of the design is important to ensure the obtained QFT-
based controller meets the desired specifications at all frequencies. 
Figure 5 shows the analysis of robust margin, robust output 
disturbance and robust input disturbance. The signals lie below the 

dotted lines which indicate those signals do not exceed the pre-
defined specifications. Therefore the QFT-based controller design 
for the grain dryer plant is considered successful. 
 
 
Online QFT-based self-tuning controller 
 
Adaptive element is needed for a grain dryer plant due to some 
reasons. The parameters variation occurred during drying process 
might be larger than expected. In standard QFT design 
methodology, the controller is designed only for a certain 
uncertainty range. The controller might produce unacceptable 
response if the parameters variation exceeds the uncertainty range. 
Therefore, adaptive control is important as it can cope with larger 
parameters variation and consequently automate the controller’s 
design (loop shaping) which is human dependence. Adaptive 
control also produces low control effort which is desirable. The 
online QFT-based self-tuning controller block diagram is shown in 
Figure 6.  The design steps for the proposed online QFT-based 
self-tuning controller can be summarised as the following:  
1. The parameter of the QFT controller designed under standard 
QFT procedure is used as the initial parameters for the proposed 
online QFT-based self-tuning controller. 
2. During the system operation process, the minimization of the 
system error function is the main task of the controller. Recursive 
least square will be used to identify the plant’s parameters 
according to plant changes. 
3. Algebraic method (pole placement) with integrated QFT 
specifications is used to find the optimal values of the controller.  
4. By using step 2 at each running step of the system operation, a 
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Figure 5. Analisis of the design. a) robust stability margin b) robust output disturbance c) robust input 
disturbance. 
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Figure 6. Block diagram of online QFT-based self tuning controller for a grain dryer 
plant. 
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Figure 6. Block diagram of online QFT-based self tuning controller for a grain dryer plant. 

 
 
 
new set of the controller’s parameters is given, only if condition in 
step 3 satisfied. The controller will be updated for the next step of 
time. 
 
 
The Grain Dryer Plant 
 
In order to apply adaptive control, the continuous transfer function 
of the plant is converted to discrete using a zero order hold (zoh) 
and sampling period of 1.  Besides its simplicity, ZOH is a typical 
approach used to make data suitable for feedback control (Triplett 
and Kristi, 2006). The discrete transfer function of the grain dryer 
plant is given by equation (7): 
 

       (7) 
 
Representing in terms of the output y(k)  and previous input u(k), in 
the form of time shift operator, equation (7) becomes: 
 

             
 
In adaptive, the plant is represented in terms of regression as 
shown in equation (9); 
       

       (9) 
 

Where  are the current estimations of 

process parameters. However, the coefficients in equation (8) are 
very important to be used as the priori information in order to 
prevent inadequate controller design (Sen, 2006; Bobal et al., 
2005). 
 
 

System identification 
 
Recursive Least Square (RLS), particularly RLS with adaptive 
directional forgetting has been used to identify to plant model at 
each running step. In general, equation (9) can be written in vector 
form (Bobal and Chalupa, 2008): 

                                                  (10) 
 

Where  ;  

 

 
 
Least square objective function is based on minimisation of the sum 
of prediction errors squares, given by equation (11): 
  

                                       (11) 
 

Where yi is process output in i-th step whereas  is predicted 

process output. Recursive least square method is obtained when 
the vector of parameters estimation is updated in each step, 
according to equation (12): 
  

        (12) 

 
Where C is the covariance matrix. The value of C will be updated in 
each step as given by equation (13): 

 

                        (13) 

 
Initial value of matrix C determines influence of initial parameter 
estimations (priori information) to the identification process. RLS 
with adaptive directional forgetting will overcome the disadvantage 
of pure recursive least square method in an absence of signal 
weighting. In this method, the forgetting coefficient is changed with 
respect to changes of input and output (Bobal and Chalupa, 2008). 
From equation (12), the following equations are derived: 



 
 
 
 

              (14) 
 

Where                           (15)                                                               

 
Matrix C is updated in each step according to equation (16): 
 

                       (16) 
 

Where                  (17) 

Forgetting coefficient is updated as follows: 
 

        (18) 
 

Where       (19) 
 

           (20) 

         (21) 
 
 
Online QFT-based Self-tuning Controller 
 
The controller is an online QFT-based controller. Based on the 
structure of the previously obtained QFT-based controller, the 
online self-tuning controller is designed. Pole placement algebraic 
method with integrated QFT constraints is used to determine the 
optimal values of the controller’s parameters that give the desired 
response and meet the QFT constraints/specifications. The 
controller in equation (6) is converted into discrete using zoh and 
after simplifying: 
 

 
 
Pole placement algorithm works based on achieving desired pre-set 
poles of the characteristic polynomials (Bobal et al., 2005). Pole 
placement is chosen because this algorithm has been established 
to achieve globally stabilised system for Type-1 system with 
arbitrary zero which is the same case for grain dryer plant model 
(Zhang, 1993; Zhang and Evans, 1987). The dynamic behaviour of 
the closed-loop third order process is similar to the second order 
continuous system. It was found that the best configuration of ζ and 
ω for the grain dryer system is 4.55 and 1.25 respectively. This 
configuration gives the desired percentage of overshoot = 20% and 
settling time = 6 sampling events. The characteristic equation of the 
closed-loop grain drying system is given by equation (22). 

 

 
 
Equation (22) is solved by comparing coefficient of the same power. 
Matlab Polynomial Toolbox has been used to solve this equation. 
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After the controllers parameters are obtained, a decision need to be 
made. Only set of controller’s parameters that satisfy the QFT 
constraints will be accepted. This added robustness criterion makes 
the controller robust and adaptive. The controller is now called 
online QFT-based self-tuning controller.  Alternatively, the design 
procedures of the proposed controller are shown in the flowchart of 
Figure 7. 
 
 
RESULTS 
 

In the first test, repetitive step signals between 0.17 to 
0.14 were inserted to the input of the grain dryer. The 
plant is operated under nominal condition. As shown in 
Figure 8, the proposed online QFT-based self-tuning 
controller successfully tracks the moisture content 
reference signal.  The transient response has large 
percentage overshoot and settling time at the beginning 
of the response but the response gradually improved. 
The overshoot diminished and settling time reduced 
significantly after the third pulse. The response is stable 
with no steady state error and low control signal (between 
0.3V to 2V). Figure 9 shows six estimated model 
parameters changing as the reference signal are 
changed. 

When a step input disturbance of magnitude 0.1 was 
applied, the proposed online QFT-based self-tuning 
controller successfully attenuates the effect of input 
disturbance. As shown in Figure 10, the efficiency of the 
adaptive control is proven as the control signal produced 
is very low, ranging from 0.3 to 1.6. 

Step output disturbance of magnitude 0.01 
(approximately 7%) was applied at sampling event = 300. 
From the results shown in Figure 11, the response 
produced by QFT-based self-tuning controller is very 
robust towards step output disturbance. 

Uncertainty test was performed to reveal the 
improvement of the transient performance produced by 
online QFT-based controller compared to the standard 
QFT-based controller. In this uncertainty test, the grain 
dryer plant model was tested with three stages of 
uncertainty ranges, i.e. 5%, 20% and 50% parameters 
variation. The parameters variation occurred at sampling 
event = 300. From the test result shown in Figure 12, 
online QFT-based controller produced slower settling 
time and higher percentage overshoot due to adaptation 
process. As proven in adaptation test (Figure 8), the 
transient response improved gradually as number of 
sampling event increases. However, both standard and 
online QFT-based controllers reacted quickly towards the 
plant change. Both of them produced small control signal. 
Nevertheless, when larger plant change or uncertainty 
occurred (20% parameters variation), the online QFT-
based self-tuning controller adapted better towards the 
plant change. Referring to Figure 13, it can be seen that 
the online QFT-based self-tuning controller has smaller 
percentage of overshoot and shorter settling time 
compared to the standard QFT-based controller. The 
performance of online QFT-based self-tuning controller is  
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Figure 7. Flow chart of design procedure of the proposed online QFT-based self-
tuning controller 
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Figure 7. Flow chart of design procedure of the proposed online QFT-based self-
tuning controller. 

 
 
 
further improved when 50% parameters variation is 
considered. When the plant experiences very large 
parameters variation, the online QFT-based self-tuning 
controller slowly reduced the grain moisture content to 
the desired level. This effect is shown in Figure 14.  
Unlike online QFT based self-tuning controller, the offline 
controller produced undesirable response. The transient 

response characteristics based on the uncertainty test 
are summarised in Table 2. 
 
 
DISCUSSION 
 
The ability of the proposed online QFT-based controller 
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Figure 8. a) The response of the grain dryer control system for nominal plant with QFT-based Self-tuning 
controller. b) Error signal c) control signal. 
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Figure 9. Estimated grain dryer model parameters; a1, a2, a3, b1, b2 and b3. 
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Figure 10. Response of the grain dryer control system with QFT-based self tuning controller towards step input 
disturbance. a) grain moisture content at output b) control signal. 
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Figure 11. Response of the grain dryer control system with QFT-based self tuning controller towards output 
disturbance. a) grain moisture content at output b) control signal. 

 
 
 
to adapt from initial to desired grain moisture content has 
been proven. The transient response has been improved 
where the percentage of overshoot and settling time are 
gradually reduced throughout the adaptation process. 
From the test results, the proposed controller is found 
very robust towards input and output disturbances, as 
well as parameters variation. Nevertheless, the plant is 
more affected to output disturbance because output 
disturbance has direct effect to the grain dryer final 
moisture content. The control signal produced is also 
very small. 

Compared to standard or offline QFT-based controller, 
online QFT-based controller has the advantage when 
dealing with larger parameters variation. This is proven 

when 20% and 50% parameters variation occurred on the 
plant. Undesirable results obtained by the standard QFT-
based controller because the parameters variation 
exceeds the defined uncertainty range. On the other 
hand, online QFT-based controller still produces good 
result. Robust stability, input and output disturbance are 
guaranteed as the QFT constraints are checked at every 
sampling event.    
 
 
Conclusions 
 
In this paper, an online QFT-based self-tuning controller 
for a grain dryer plant was successfully designed and 
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Figure 12. Performance comparisons between offline and online self-tuning QFT-based controllers towards 5% 
parameters variation a) grain moisture content at output b) control signal. 
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Figure 13. Performance comparisons between offline and online self-tuning QFT-based controllers towards 20% 
parameters variation a) grain moisture content at output b) control signal. 



Mansor et al.          6533 
 
 
 

0 50 100 150 200 250 300 350 400 450 500
0.1

0.12

0.14

0.16

0.18

0.2

0.22

number of sampling event

m
oi

st
ur

e 
co

nt
en

t

 

 

QFT

QFT-ST

ref

0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

number of sampling event

U

 

 

QFT-ST

QFT

 

a) 

b) 

 
 

Figure 14. Performance comparisons between offline and online self-tuning QFT-based controllers towards 
maximum 50% parameters variation a) grain moisture content at output b) control signal. 

 
 
 

Table 2. Summary of transient responses of offline and online QFT. 
 

 

Offline QFT  Online QFT-Self-tuning 

5% 

variation 

20% 

variation 

50% 

variation 

 5% 

variation 

20% 

variation 

50% 

variation 

Settling time 2 29.7 96  4 18.5 36.5 

Percentage overshoot - 9.286% 25%  - 4.571% 0.929% 

Steady state error 0 0 0  0 0 0 

 
 
 
validated. It has several advantages over standard QFT 
design especially when the parameters’ variations are 
large and exceed the defined uncertainty range. An 
online QFT-based controller produced smaller 
percentage overshoot and shorter settling time than 
standard QFT-based controller when the grain dryer plant 
experienced larger parameters’ variations. The 
controller’s design is done online; instantaneously it 
avoids dependency of human skill in loop shaping. 
Therefore, when plant uncertainty range is suddenly 
changed, no redesign of controller is required as in 
standard QFT-based controller. Adding QFT constraints 
into the self-tuning algorithm ensures the robustness of 

self-tuning controller (robust stability, input and output 
disturbances). 
 
 
REFERENCES 

 
Atthajariyakul S, Leephakpreeda T (2006). Fluidized bed paddy drying 

in optimal conditions via adaptive fuzzy logic. J. Food Eng., 75: 104-
114. 

Bobal V, Bohm J, Fessl J,  Machacek J (2005). Advanced Textbook in 
Control and Signal Processing. M. J. Grimble & M. A. Johnson (Eds.) 

Bobal V, Chalupa P (2008). Self-tuning Controllers Simulink Library. 
Zlin: Thomas Bata University. 

Borghesani C, Chait Y, Yaniv O (1999). QFT frequency domain control 
design toolbox; for use with MATLAB: Terasoft, Inc. 



6534            Sci. Res. Essays 
 
 
 
Chang JY, Chen YM, Tsai TT (1991). Robot control design by 

quantitative feedback theory. Proceedings of The Fifth International 
Conference on Advanced Robotics. Robots Unstruct. Environ., 1: 
437-442. 

Desanj DS, Grimble MJ (1998). Design of a marine autopilot using 
quantitative feedback theory. Proceed. Am. Control Conf., 1: 384-
388. 

Doyle J, Francis B, Tannenbaum A (1990). Feedback Control Theory: 
Macmillan Publication Company. 

Hemmati R, Shirvani SM, Abdollahi, M (2010). Comparison of robust 
and intelligent based power system stabilizers. Sci. Res. Essays., 
5(17): 2564-2573. 

Ljung L (2008). System Identification Toolbox 7 User's Guide: copyright 
The Mathworks, Inc. 

Liu Q, Bakker-Arkema FW (2001). Automatic control of crossflow grain 
dryer, Part 1: Development of a process model. J. Agric. Eng. Res., 
80: 81-86. 

Noor SBM, Ali HI, Marhaban MH. (2011). Design of combined robust 
controller for a pneumatic servo actuator system with uncertainty. Sci. 
Res. Essays., 6(4): 949-965. 

Nybrant TG (1988). Modelling and adaptive control of continuous grain 
driers. J. Agric. Eng. Res., 40: 165-173. 

Shams S, Farahani S, Hemati R, Nikzad M (2010). Robust 
decentralized load frequency control in multi-area electric power 
system using quantitative feedback theory. Sci. Res. Essays., 5(20): 
3082-3094. 

 
 
 

 

 
 
 
 
Sheldon SN, Rasmussen, SJ (1994). Development and First Successful 

Flight Test of a QFT Flight Control System. Proceedings of the IEEE 
National, Aerospac Electron. Conf., 1: 629-636. 

Sen MDL (2006). Robust stable pole-placement adaptive control of 
linear systems with multiestimation. Appl Math. Computat., 172: 
1145-1174. 

Triplett B, Morgansen K (2006). Abbreviated zero hold for formation 
control in the presence of communication and sensing delays. 
Proceed. 2006 Am. Control Conf. 6081-6087. 

Wang X, Feng G (2009). Performance analysis of RLS linearly 
constrained constant modulus algorithm for multiuser detection. 
Signal Process., 89(2): 181-186. 

Whitfield RD (1988). Control of a mixed-flow drier part 2: test of the 
control algorithm. J. Agric. Eng. Res., 41(4): 289-299. 

Zhang C (1993). Discrete time saturation constrainted adaptive pole 
assignment control. IEEE Trans. Autom. Control, 38: 1250-1254. 

Zhang C, Evans RJ (1987). Adaptive pole-assignment subject to 
saturation constraints. Int. J. Control, 46(4): 1391-1398. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


