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Human immunodeficiency virus 1 (HIV-1) drug resistance is a grave problem in highly active 
antiretroviral therapy (HAART) and neutral mutation is an important factor in the evolution of HIV-1. We 
consider the process of HIV-1 quasispecies transition in HAART to be transformation among three viral 
phenotypes: wild-type HIV-1, neutral-type HIV-1 and resistant-type HIV-1. A new model is proposed to 
study the transition dynamics of resistant-type HIV-1 induced by neutral mutation. The colonized time, 
the stable time and the stable size of the resistant species are simulated with the model. The results 
indicate that neutral mutation is closely related to the colonized pattern of resistant-type HIV-1 
quasispecies which may lead to important strategies for predicting or checking HIV-1 drug resistance. 
 
Key words: Human immunodeficiency virus -1, neutral mutation, drug resistance, highly active antiretroviral 
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INTRODUCTION 
 
As highly active antiretroviral therapy (HAART) has 
become widely adopted, the prognosis is greatly 
improved in human immunodeficiency virus 1 (HIV-1) 
positive patients. However, drug resistance became a 
new obstacle since the advent of HAART. The nature of 
drug resistance is mutation of amino acid sequence and 
thus appearance of new phenotype (Jacquescoley, 
2007), induced by nucleotide mutation in the region of 
polymerase and proteinase. In terms of viral ecology, the 
process of resistance is transition from the steady state of 
wild-type HIV-1 (before antiretroviral treatment) to the 
steady state of resistant-type HIV-1. Since the detection 
of drug-resistance genes is currently unavailable in most 
developing countries, researchers are looking for an easy 
and rapid way for predicting HIV-1 drug resistance in 
order to save human and material resources. Thus, it is 
important to study the transition mechanism of the steady 
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states of HIV-1 quasispecies in HAART.  
Many mathematical models have been proposed for a 

better understanding of the dynamics of HIV-1 drug 
resistance since 2000. Sevin et al. (2000) first 
investigated the relationship between drug-susceptibility 
phenotype and HIV-1 genotype by applying three different 
statistical methods---cluster analysis, recursive 
partitioning and linear discriminant analysis. Later, using 
a machine learning or regression approach, 
Beerenwinkel et al. (2002, 2003) obtained concise and 
easily interpretable models to predict drug resistance 
from sequence information. Then, two neural network 
models were constructed based on artificial intelligence 
(Wang et al., 2003). Furthermore, Wang et al. (2004) 
used standard stepwise linear regression to construct 
drug resistance models for seven protease inhibitors and 
ten reverse transcriptase inhibitors using data obtained 
from the Stanford HIV drug resistance database. 
However, these models show limitations in application 
such as high prediction error. Therefore, more biological 
information of drug resistance is needed for
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Figure 1. Illustration of the production function 
 
 
 
constructing practical models. 

During the course of a population adapting to its 
surroundings, the balance between the robustness and 
the evolvability of its genetic phenotype is a crucial factor. 
The robustness of genetic phenotype is the invariability of 
phenotype when the population is faced with a complex 
or disordered condition, and the evolvability of genetic 
phenotype is the adaptability of phenotype when the 
population is under selective pressure. Hu et al. (2009) 
believe that neutrality and variability are two aspects of 
evolvability in linear genetic programming. The former 
makes a system tolerant of mutations and provides a 
hidden staging ground for future phenotypic changes. 
The latter produces explorative variations with phenotypic 
improvements. Furthermore, Draghi et al. (2010) 
demonstrate that neutral diversity correlates with the 
adaptability of a population. When the phenotype 
neighbourhood is less than the fitness landscape, there is 
a non-monotonic relationship between the neutral 
mutation rate and the average adaptive time and the 
intermediate neutral mutation rate induces the shortest 
time of environmental adaptation. When the phenotype 
neighbourhood is equal to the fitness landscape, there is 
a monotonic increasing relationship between the neutral 
mutation rate and the adaptive time. These results 
indicate that the neutral mutation is an important factor in 
virus evolution, which can either impede or facilitate 
adaptation. Thus, it is necessary to combine the theory of 
neutral diversity with evolution of HIV-1 quasispecies in 
HAART. 

In this paper inspired by Hu et al. (2009) and Draghi et 
al. (2010), we will propose a different mathematical model 
in terms of neutral diversity. The main purpose of our 
investigations is to find out the effect of neutral mutation 
in the process of drug resistance for HIV-1 positive 
patients in HAART and hope to quantize the colonized 
pattern of resistant-type HIV-1 quasispecies. Concretely, 
the colonized time, the stable time and the stable size of 
the resistant-type HIV-1 quasispecies are simulated with 

the model and the conditions under which the resistant-
type HIV-1 completely replace wild-type HIV-1 are 
obtained which is useful in evaluating different drug 
therapy regimens during HIV-1 infection. 
 
 
MATERIALS AND METHODS 

 
Although many intricate models have been developed to simulate 
HIV dynamics within individual patients (Lou et al., 2004; Li and Ma, 
2007; Cai and Li, 2009; Xiao, 2009; Li et al., 2011), the data 
obtained from the perturation experiments (such as those of drug 
therapy) may not support the models (Perelson and Nelson, 1999). 
The following simple model may be more proper to simulate HIV 
dynamics which is formulated by: 

 

dVVr
dt

dV
 )(  

 

Where )(Vr  is an undetermined function representing the rate of 

virus production, d  is the clearance rate constant and V  is the 

virus concentration. Clearly, 0)( Vr  if the virus is absent and it 

will gradually increase with the increase of the virus concentration. 
However, due to the limited number of the susceptible cells and the 

limitation of the immune response, )(Vr  will remain at a constant 

level when the virus concentration is sufficiently large. This means 

that )(Vr will grow in the following pattern (Figure 1). 

According to Kribs-Zaleta (2004, 2009), we take the following 
general saturation function 
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to mimic the production function of virus, where maxr  is the 

maxmum of the virus production rate. When 1n , )(Vr  is the 

Verhulst (Holling type II) function,  A   is  the  corresponding  half- 
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Figure 2. Model dynamics flow-chart. 

 
 
 

saturation concentration, that is 2/)( maxrAr  . Note that the 

production function )(Vr  saturates ever more sharply as n  

increases with the saturation approaching Holling type I as 

n . That is, n  forms an abstract sharpness measure; high 

values of n  imply that saturation occurs suddenly rather than 

gradually near the saturation point. For mathematical simplicity we 

consider only 1n . Therefore, HIV-1 dynamics within individual 

patients can be described as 
 

dV
VA

Vr

dt

dV



 max

                                                          (1) 

 

For Model 1, it is easy to know that there are two steady states, 

0* V  (unstable) and ddArV /)( max

*   (stable). 

Because of the meaning of biology, in the rest of this paper we 

assume that drA /max , that is, the half-saturation 

concentration is always less than the maximum viral load.  
Since virus mutation exists in HAART, according to Draghi et al. 

(2010), we think that there are three viral phenotypes: wild-type 
HIV-1, neutral-type HIV-1 and resistant-type HIV-1. Each virus may 
mutate and each mutation produces a unique genotype. Neutral-

type HIV-1 is the intermediate product between the wild-type and 
the resistant-type virus. Resistant-type HIV-1 must be generated 
from mutation of the neutral-type and there is transformation 
between the wild-type and the neutral-type. We assume that a 

mutation occurs with probability mp  (general mutation rate) and 

the transition probability from the neutral-type to the wild-type is 

np  (neutral mutation rate). Thus, the viral dynamics in HAART can 

be illustrated by Figure 2. Suppose that the dynamics of each type 
of HIV-1 follows Model 1. Based on Figure 2, we can formulate the 
model of HIV-1 mutation dynamics in HAART as the following 

system of equations: 
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          (2) 

 

Here, NW rr ,  and Rr  are the maximum production rate of wild-

type HIV-1, neutral-type HIV-1 and resistant-type HIV-1 respectively. 

NW AA ,  and RA  represent their corresponding half-saturation 

concentration. NW dd ,  and Rd  are their clearance rate constant. 

mp  and np  are the general mutation rate and neutral mutation 

rate. Because of the meaning of biology, all parameters are 
nonnegative constants. Since both the wild-type and the neutral-

type are susceptible to drug, we further assume that 

rrr NW  , AAA NW   and ddd NW   for 

simplicity. 
In the study of the transmission dynamics of resistant-type 

HIV-1, our focus is on the colonized pattern of resistant-type HIV-1 
quasispecies, including the colonized time, the stable time and the 
stable size of resistant species. Here the colonized time is defined 

as the time when 10RV , the stable time and the stable size are 

defined as the time and the size when RV  remains unchanged 
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Table 1. The sign of )('),(' 21 NW VV  . 

 

Conditions Results 
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respectively. Thus, starting from the wild-type population in steady 
state, we take the initial conditions as an environmental shift time, 

that is
  

 

0)0()0(,)0( 0  RNWW VVVV               (3) 

 
 
RESULTS 

 
Standard and simple arguments show that solution of 
system (2) under initial conditions (3) always exists, and 
stay positive and bounded. 

 
 
Existence and stability of equilibria 
 

Because RV  appears only in the third equation of Model 

2, we can reduce the system as follows: 
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For (4), the extinct equilibrium )0,0('

0 E  always exists. 

In order to find possible nonnegative equilibria, we let 

0),(,0),( 21  NWNW VVFVVF , and obtain: 
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where mmm prBppdB /,/)( 21  . Note that:
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After calculation, we obtain the sign of 

)('),(' 21 NW VV  , which is listed in Table 1. 

Furthermore, let 
 

.)0(

,)0(

21'

22

21'

11

A

BAB
k

Ap

BAB
k

n











 

 

According to Table 1, when 12 / BBA  , there is a unique 

extinct equilibrium )0,0('

0 E  in system (4) if 21 /1 kk   

(Figure 3A); otherwise, there is a coexisting equilibrium 

),( **'

NW VVE   besides the extinct equilibrium 
'

0E  

(Figure 3B). When 12 / BBA  , 
'

0E  and 
'

E  always exist 

(Figure 3C). To formulate the global stability of 
'

0E  and 

'

E , we need the following lemma. 

 
 
Lemma 
 
There is no limit cycle in system (4). 
 

Proof: Take a Dulac function )/(1 NWVrVD  . We have: 
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Figure 3. An illustration for the plane phase diagram of system (4). A) 
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which is negative because NW VV ,  stay positive. This  

means there is no limit cycle for (4) in the positive cone 
based on the Bendixson-Dulac theorem.  

The combination of Lemma and the plane phase 
diagram (Figure 3) of system (4) yields the following 
results. 
 
 
Theorem 1 
 
For system (4), the following results are true: 
 

(i) The unique extinct equilibrium 
'

0E  is globally 

asymptotical stable if AAdrpm /)(   and 

2)/)(( mmn AprApAdp   (case A); 

(ii) 
'

0E  is unstable and 
'

E  is globally asymptotical stable 

if AAdrpm /)(   and 

2)/)(( mmn AprApAdp   (case B) or 

AAdrpm /)(   (case C). 

Now, for Model 2, we can obtain the following results. 

 
 
Theorem 2 

 
For system (2), the following results are true: 

 

(i) The trivial steady state )0,0,0(0 E  always exists 

and is unstable; 
(ii) There is a unique boundary equilibrium 

)/)(,0,0( RRRRR dAdrE   and it is globally 

asymptotical stable if AAdrpm /)(   and 

2)/)(( mmn AprApAdp   (case A); 

(iii) RE  is unstable, and a unique positive equilibrium 

),,( ***

RNW VVVE   appears and is globally asymptotical 

stable if AAdrpm /)(   and 

2)/)(( mmn AprApAdp   (case B) or 

AAdrpm /)(   (case C). 

 

Proof: The existence of 0E  is clear. The Jacobian matrix 

of system (2) evaluated at 0E  is given by 
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Note: /R R RA r d . We have / 0R R Rr A d   and thus 

0E  is always unstable based on the Routh-Hurwitz 

criterion.  

When AAdrpm /)(   and 

2)/)(( mmn AprApAdp  , Theorem  1  shows  that  



 
 
 
 

0)( tVN  as t . Using Markus theorem (Hsu et 

al., 1978), we know the limit equation of the third 
equation of Model 2 is 
 

R R R
R R
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dV r V
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as t . Based on this limit equation, combining 

Theorem 1 and the result that 
0E  is always unstable, we 

can conclude that equilibrium 
RE  is globally asymptotical 

stable in this case.  

When AAdrpm /)(   and 

2)/)(( mmn AprApAdp   or AAdrpm /)(  , 

Theorem 1 shows that 
*)( NN VtV   as t . Using 

Markus theorem (Hsu et al., 1978) again, we know the 
limit equation of the third equation of Model 2 is 
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as t . For this limit equation, it is clearly to obtain a 

positive steady state 
*

RV  exists and is stable. Thus, E  

appears and is globally asymptotical stable in these 
cases. The proof is completed. 

 
 
Numerical simulations 
 
In this subsection, we will use numerical simulations to 
verify the afore-mentioned analytical results and explore 
the colonized pattern of resistant-type HIV-1 quasispecies 

with respect to different values of nm pp ,  including the 

colonized time, the stable time and the stable size of 
resistant species. First, we select the following 
dimensionless parameter values: 
 

.08.0,1.0,100,200,100  RNWRNWRNW dddAAArrr    (5) 

 

Based on Theorem 2, we take 02.0,5.0  nm pp  and 

then the conditions of case A are satisfied. Thus, 
resistant-type HIV-1 will completely replace wild-type HIV-

1 which is illustrated in Figure 4A. Take 2.0np . If 

5.0mp  or 3.0mp , then the conditions of case B 

or C are satisfied. This means that all HIV-1 quasispecies 
will tend to a coexisting steady state which is illustrated in 
Figure 4B or C. 

Next, when the neutral mutation rate np  is changed  
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from 01.0  to 99.0 , we will study the colonized pattern of 

resistant-type HIV-1 under different general mutation rate 

( 5.0mp in Figure 5A and 3.0mp  in Figure 5B).  

The first panel of Figure 5A and B shows that there is a 
convex line for the stable size of resistant species in the 
main which means that the intermediate neutral mutation 
rate corresponds to the largest stable size of resistant 
species despite the value of the general mutation rate. 
However, the small general mutation rate corresponds to 
the early peak for the neutral mutation rate. Since the 
conditions of case A in Theorem 2 are satisfied when the 
neutral mutation rate is sufficiently small, there is a fixed 
stable size in the first panel of Figure 5A which also 
verifies the analytical result. The second panel of Figure 
5A and B indicates that there is a different pattern for the 
stable time of the resistant species. When the general 
mutation rate is large, the stable time of the resistant 
species increases if the conditions of case A are satisfied. 
After that, it first decreases and then increases as the 
neutral mutation rate increases in the main. Otherwise, 
when the general mutation rate is small, the stable time 
of the resistant species increases constantly as the 
neutral mutation rate increases in the main though 
fluctuations and ladders appear. The third panel of Figure 
5A and B shows that the colonized time of the resistant 
species increases slowly when the neutral mutation rate 
is small and then increases fast when the neutral 
mutation rate is large despite the value of the general 
mutation rate. 
 
 

DISCUSSION 
 
Note that the complexity of HIV-1 drug resistance in 
HAART. We introduce a novel mathematical model to 
study the transition dynamics of resistant-type HIV-1 
induced by neutral mutation. Based on the theoretical 
analysis and numerical simulations, we find the following 
predictive conclusions: 1) From Theorem 2, we know that 
resistant-type HIV-1 will completely replace wild-type HIV-
1 if the general mutation rate is sufficiently large 

( AAdrpm /)(  ) and the neutral mutation rate is 

sufficiently small (
2)/)(( mmn AprApAdp  ). 

Otherwise, all types of HIV-1 will coexist within the host. 
Thus, once mutation occurs, the resistant-type will 
certainly colonize in patients and the general mutation 
rate and neutral mutation rate will affect the pattern of 
colonization. 2) From Figure 5 we can conclude that the 
balance between the robustness and the evolvability of 
the genetic phenotype of HIV-1 is a crucial factor for 
invasive mutant species to adapt to its surroundings. The 
neutral mutation rate is closely related to the colonized 
time, the stable time and the stable size of resistant HIV-1 
species which can either impede or facilitate adaptation. 
These results coincide with the main results in Draghi et 
al. (2010). 
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Figure 4. Numerical solutions of Model 2. Here, A) 02.0,5.0  nm pp , B) 2.0,5.0  nm pp , C) 

2.0,3.0  nm pp  and other parameters are listed in (5). The initial conditions are 

)0,0,800())0(),0(),0(( RNW VVV . 

 
 
 

 
 

Figure 5. Illustration of the colonized pattern of resistant-type HIV-1. Here, 5.0mp  in (A), 3.0mp  in (B) and 

other parameters are the same as in Figure 4.  

 
 

 

 
 

 



 
 
 
 
Since mathematical models can at best approximate the 
behavior of real biological systems, the results presented 
here extend those findings to virulence evolution of HIV-1 
in its hosts and maybe it is useful to allow clinician to 
make more accurate and reliable inferences in HAART. 
However, since there is no experimental data at present, 
the parameter values in our simulations are artificial. This 
is what we shall do in future work to overcome the 
limitaton. 
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