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The polynomial-based differential quadrature method (PDQM) and Fourier expansion-based differential 

quadrature method (FDQM) are examined to solve 2D Helmholtz problem expressing definition of many 

electromagnetic problems. PDQM and FDQM solution of the problems were calculated and compared, 

analytically. While grid node and wave number are steady, the PDQM and FDQM were applied to 2D 

Helmholtz problem for calculation and comparison. While the grid node is equal to 7 (N=M=7) and the 

wave number is equal to 1 (k=1), max  (maximum absolute error between the numerical result and the 

exact solution) for PDQM and max  for FDQM has been found as 2.758×10
-5

 and 2.921×10
-6

 respectively. 

Then wave number was increased in order to examine the effects of its variation to the accuracy, while 

grid node was kept in steady state. While grid node was steady and equal to 7 and the wave number was 

increased from 1 to 5, max  for FDQM has been found as 2.921×10
-6

, 7.995×10
-5

, 1.020×10
-4

, 0.1825 and 

1.779 respectively. It has been found that the FDQM is more suitable than PDQM for 2D Helmholtz 

problem having harmonics, and it has been observed that the wave number increases, the accuracy of 

FDQM results gradually decreases in the case of fixed mesh size and computational domain. 
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INTRODUCTION 
 
Helmholtz equation is the governing equation for many 
engineering problems such as waveguides in 
electromagnetic fields, vibration of membranes and water 
wave diffraction in offshore structure engineering (Shu 
and Chew, 1999). In addition, acoustic waves and 
microwaves can be simulated by the Helmholtz equation. 
The numerical solutions of the 2D Helmholtz problems 
can be obtained by several methods such as finite 
difference method and finite element method.  FDM  and 

FEM fall under the category of low order methods. The 
FDM is based on the Taylor series expansion while the 
FEM is based on the principle weighted residuals. Most 
numerical solutions of engineering problems can be 
obtained by the low order FDM instead of FEM which is 
using large number of grid points. In some applications, 
however, the numerical solutions of partial differential 
equation are required at only a few specified points in the 
physical domain.  To  achieve  an  acceptable  degree  of
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accuracy, FEM and FDM still require the use of a large 
number of grid points.  

A partial derivative of a function with respect to 
coordinate direction is expressed as a linear weighted 
sum of all the functional values at all mesh points along 
the direction. DQM is an efficient approach to solve the 
2D Helmholtz problem. There are two versions of DQM. 
One is noted as polynomial-based differential quadrature 
(PDQ) approach. The solution of PDE is approximated by 
a polynomial of high degree in PDQ approach. Civan and 
Sliepcevich (1983, 1984) extended and generalized the 
method of DQ and applied it to the Poisson equation and 
multidimensional problems. The FDQ approach was 
developed by Shu and Chew (1997) and Shu and Xue 
(1999). Shu, Chew and Xue have further developed some 
simple algebraic formulations to compute, such as the 
weighting coefficients of the first and second order 
derivatives in the DQ approach when the function or the 
solution of a PDE is approximated by a Fourier series 
expansion. Qinwei and Mazumder (2002) adapted DQM 
to model lossy uniform and non uniform transmission 
lines. Tang et al. (2005) applied DQM to analyse 
interconnects with frequency-dependent parameters. 
Tang and Mao (2008) applied the differential quadrature 
method (DQM) with Chebyshev-Gauss-Lobatto (CGL) 
sampling points for transient analysis of multiconductor 
transmission lines. Previous application of FDQM and 
PDQM showed that accurate numerical solutions can be 
obtained by using a considerably small number of grid 
points. In this study, PDQM and FDQM are applied to 
solve the 2D Helmholtz problem. The accuracy of PDQM 
and FDQM are validated by their application to the 2D 
Helmholtz problem, which have exact solution. 

 
 
DIFFERENTIAL QUADRATURE METHOD (DQM) 

 
DQM is a numerical discrimination technique for the approximation 

of derivatives. The integral dxxf
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Where nwww ,...,, 21  are the weighting coefficients, 

nfff ,...,, 21 are the functional values at the discrete points. It is 

called the integral quadrature and integral quadrature uses all the 
functional values in the whole integral domain to approximate an 
integral over a finite interval. 

The method of differential quadrature approximates the partial 
derivative of a function with respect to a space variable at a given 
discrete point as weighted linear sum of function values at all the 
discrete points in the domain of that variable. The first and second 

order derivatives of )(xf at a point ix  are approximated by 
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Where, 1,2,3,....i N , ija  and ijb  represent the weighting 

coefficient, )( jxf  represents the functional value at a grid 

point jx , N is the number of grid points in the whole domain. 

Equations 2 and 3 are called DQ. 2 and 3 are similar equations but 
they use different weighting coefficients. The key procedure in DQ 
approximation is to determine the weighting coefficients.

 
 
 
POLYNOMIAL BASED DIFFERENTIAL QUADRATURE METHOD 
(PDQM) 

 
PDQM determine the weighting coefficients in the DQ 
approximation when the solution of the PDE is approximated by a 
polynomial of high degree. Weighting coefficients can be efficiently 
computed by some explicit formulations. One of the approaches to 
determine the weighting coefficients of first and second order 
derivatives is Quan and Chang (1989a, b) approach. Quan and 
Chang use the Lagrange interpolation polynomials and then derived 
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FOURIER EXPANSION BASED DIFFERENTIAL QUADRATURE 
METHOD (FDQM) 

 
A way of computation of weighting function is the difference 

between PDQM and FDQM. It is supposed that )(xf is 

approximated by a Fourier series expansion of the form given in 
Equation 8. 
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It is easy to show that )(xf  in Equation 8 constitutes a (N+1) 

dimensional linear vector space 1NV . Two typical sets of base 

vectors in 1NV  are 
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We use the above two sets of base vectors to derive explicit 
formulations to compute the weighting coefficients of the first, 
second and third order derivatives. 
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Equations 12a and 12b are used to compute the diagonal weighting 
coefficients. Finally, we obtain: 
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The two dimensional Helmholtz equation can then be written as: 
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Application of the DQM to discrete the derivative in Helmholtz 
Equation leads to: 
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Where N and M are the number of grid points in the x and y 

directions respectively, 
)2(

ikW  and 
)2(

jkW are the weighting 

coefficients of the second order derivatives with respect to x and y. 

)2(

ikW  and 
)2(

jkW are computed by Equations 6 and 7 for PDQM, 

while 
)2(

ikW  and 
)2(

jkW  are computed by Equations 11, 12a, 12b, 

13 and 14 for the FDQ approach. In this study, both PDQM and 
FDQM use the  
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Figure 1. 2D Helmholtz problem. 

 
 
 
following Chebyshev-Gauss-Lobatto (Shu and Richards, 1992) 

point distribution as in Equations 17 and 18. xLX 0 , 

yLY 0  
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),( yxf  is supposed to be expressed as in Equation 19 
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When the Dirichlet boundary condition of  =0 is imposed on the 

boundary as seen in Figure 1, the problem has an exact solution as 

yx L

yk

L

xk 
 sinsin . Lx and Ly are taken as , the 

number of grid points used in the x and y directions is taken the 
same and is noted N, M, respectively. The accuracy of numerical 

results for this problem is measured by  . 

( , )ij exact i jx y     where ij  is the numerical solution at 

the mesh points ),( ji yx , and ( , )exact i jx y  is the exact solution 

at the same mesh point.
 
  and k are respectively the potential and 

the wave number defined in the two dimensional domain. Weighting 
coefficients of the first and second order derivatives are computed 
for the PDQM and FDQM. 

 



 
 
 

Table 1.   of PDQM for N=M=5. 

 

 
X1 X2 X3 X4 X5 

0 0.46 1.57 2.68 3.14 

Y1 0 0 0 0 0 0 

Y2 0.46 0 0.0012 0.0036 0.0012 0 

Y3 1.57 0 0.0036 0.0102 0.0036 0 

Y4 2.68 0 0.0012 0.0036 0.0012 0 

Y5 3.14 0 0 0 0 0 
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Figure 2.   of PDQM for N=M=5. 

 
 
 

RESULTS AND DISCUSSION 
 
Proposed problem suggests Lx and Ly are π, and number 
of grid points used in the x and y directions are the same. 
Finally, the function f(x,y) can be written as in Equation 
20. 
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When the Dirichlet boundary condition of 0  is 

imposed on the boundary, the problem has an exact 
solution as in Equation 21. 
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Table 1 contains Xi and Yj which were obtained by 
Chebyshev-Gauss-Lobatto point distribution for 

 yx LL   computational   domain   in   the   case  of  
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Table 2.   of FDQM for N=M=5 (x1.0e-004). 

 

 X1 X2 X3 X4 X5 

0 0.46 1.57 2.68 3.14 

Y1 0 0 0 0 0 0 

Y2 0.46 0 0.0616 0.1087 0.0543 0 

Y3 1.57 0 0.1087 0.1770 0.0922 0 

Y4 2.68 0 0.0543 0.0922 0.0470 0 

Y5 3.14 0 0 0 0 0 

 
 
 

0

1

2

3

4

0

1

2

3

4
0

0.5

1

1.5

2

x 10
-5

X points in

Chebyshev-Gauss-Lobatto

point distribution

X: 1.57

Y: 1.57

Z: 1.77e-005

Y points in

Chebyshev-Gauss-Lobatto

point distribution




 
 

Figure 3.   of FDQM N=M=5. 

 

 
 

N=M=5, grid node. Figure 2 shows that maximum error 

( max ) has been obtained as 1.02×10
-2

 by using PDQM. 

Table 2 contains Xi and Yj which were obtained by 
Chebyshev-Gauss-Lobatto point distribution for 

 yx LL computational domain in the case of 

N=M=5, grid node. Figure 3 shows that maximum error 

( max ) has been obtained as 1.77×10
-5

 by using FDQM. 

Table 3 contains Xi and Yj which were obtained by 
Chebyshev-Gauss-Lobatto point distribution for 

 yx LL computational domain in the case of 

N=M=7, grid node. Figure 4 shows that maximum error 

( max ) has been obtained as 2.758×10
-5

 by using 

PDQM. 
Table 4 contains Xi and Yj which were obtained by 

Chebyshev-Gauss-Lobatto point distribution for 

 yx LL computational domain in the case of 

N=M=7, grid node. Figure 5 shows that maximum error 

(
max ) has been obtained as 2.921×10

-6
 by using FDQM.  
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Figure 4.   of PDQM for N=M=7. 
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Figure 5.   of FDQM for N=M=7. 

 
 
 

Table 5 brings in understanding that FDQ approach is 
more suitable than other methods for 2D Helmholtz type 
problems having harmonic behavior in the case of similar 
mesh size usage. 
 
 

 
 

Table 6 shows the maximum absolute error 
 

between the numerical results and the exact solution for 
k=1, 2, 3, 4, 5. It can be observed from Table 6 that for a 
fixed mesh size and computational domain, as the wave 
number is increased, the accuracy of FDQM results 
gradually decrease. 

This study, the wave number (k), problem solution 

regions 
x yL L   , and xi, yi from calculations by 

Chebyshev-Gauss-Lobatto point distribution, and the 

results relation to   have been evaluated and given as 

detailed in Table and graphics. This study has not only 

focused on 
max , the present study includes more 

numerical details which is valuable for the readers. 

 
 
CONCLUSIONS 

 
This study presents the application of PDQM and FDQM 
to solve 2D Helmholtz problem. As seen in Table 5, while 
the grid node is equal to 5 (N=M=5) and the wave number 

is equal to 1 (k=1), max  for PDQM and max  for 

FDQM have been found as 1.02×10
-2

 and 1.77×10
-5

, 
respectively. FDQM predicts results which is 576 times 
better than PDQM for grid nodes of N=M=5. For the grid 

node of N=M=7 and the wave number k=1, max  for 

PDQM and max  for FDQM have been obtained as 

2.758×10
-5

 and 2.921×10
-6

, respectively. For this state, 
FDQM predicts results which is about 9 times better then 
PDQM for grid nodes of N=M=7. 

For the computational domain of xL = yL   and the 

wave number k=1 with N=M=7, max for FDQM equals 

to 2.921×10
-6 

as
 
demonstrated in Table 6. While the wave 

number k varies between 1 and 5, and mesh size and 

computational domain are fixed, max  for FDQM has 

been found as 1.7792. FDQM for k=5 predicts 60,000 
times better results than FDQM for k=1. This study has 

not only focused on max ; it can be concluded that the 

FDQM obtains more accurate numerical results than the 
PDQM. For a fixed mesh size and computational domain, 
increased wave number results in decreasing accuracy of 
FDQM. This method can be beneficial for numeric 
solutions of Helmholtz based problems such as acoustic 
waves and microwaves. 
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Table 3.   of PDQM for N=M=7 (1.0e-004*). 

 

 
X1 X2 X3 X4 X5 X6 X7 

0 0.21 0.78 1.57 2.35 2.93 3.14 

Y1 0 0 0 0 0 0 0 0 

Y2 0.21 0 0.0566 0.1366 0.1196 0.1306 0.0468 0 

Y3 0.78 0 0.1366 0.2758 0.1411 0.2558 0.1033 0 

Y4 1.57 0 0.1196 0.1411 0.1526 0.1128 0.0725 0 

Y5 2.35 0 0.1306 0.2558 0.1128 0.2358 0.0974 0 

Y6 2.93 0 0.0468 0.1033 0.0725 0.0974 0.0369 0 

Y7 3.14 0 0 0 0 0 0 0 
 
 
 

Table 4.   of FDQM for N=M=7 (1.0e-005*). 

 

 
X1 X2 X3 X4 X5 X6 X7 

0 0.21 0.78 1.57 2.35 2.93 3.14 

Y1 0 0 0 0 0 0 0 0 

Y2 0.21 0 0.1151 0.2332 0.2921 0.1856 0.0098 0 

Y3 0.78 0 0.2332 0.2595 0.2397 0.0987 0.1235 0 

Y4 1.57 0 0.2921 0.2397 0.1591 0.0123 0.2122 0 

Y5 2.35 0 0.1856 0.0987 0.0123 0.0621 0.1710 0 

Y6 2.93 0 0.0098 0.1235 0.2122 0.1710 0.0956 0 

Y7 3.14 0 0 0 0 0 0 0 
 
 
 

Table 5. Comparison of  max  for the 2D Helmholtz problem 

(
max max ( , )ij exact i jx y     ). 

 

Grids N=M=5 N=M=7 

PDQM (Lx=Ly= and k=1) 1.02×10
-2

 2.758×10
-5

 

FDQM (Lx=Ly= and k=1) 1.77×10
-5

 2.921×10
-6

 
 

 

 

Table 6. Comparison of  max  for the 2D Helmholtz problem. 

 

Grids N=M=7 

FDQM ( xL = yL = and k=1) 2.921×10
-6

 

FDQM ( xL = yL = and k=2) 7.995×10
-5

 

FDQM ( xL = yL = and k=3) 1.020×10
-4

 

FDQM ( xL = yL = and k=4) 1.825×10
-1

 

FDQM ( xL = yL = and k=5) 1.7792 
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