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In the scope of this study, concrete samples planned to be used as load-bearing concrete were pro-
duced by using pumice aggregate and silica fume. Cement was replaced by silica fume, as the mineral 
additive, by 5 and 10% of its weight. First of all, fresh concrete properties of the produced samples were 
evaluated. Then, compressive strength tests were conducted on the 28th and 90th days. In addition, pull-
out tests were carried out on cubic samples of 150 mm3 on the 90th day so as to detect the reinforcing 
steel-concrete bond strength. The data obtained at the end of the tests were used as input to the Artifi-
cial Neural Networks (ANN) method to predict bond strength values. Bond strength values predicted via 
the ANN method were found to be close to the bond strength values obtained via tests. In conclusion, it 
can be quite beneficial to predict the bond strength of normal and lightweight concrete via the ANN me-
thod by using a high number of parameters as input. Thus, it will be possible to detect the reinforcing 
steel-concrete bond strength in a faster and reliable manner and by doing less laboratory work.   
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INTRODUCTION  
 
The low density of lightweight aggregate concrete made 
with pumice aggregates results in a reduction in the wei-
ght of the structures and the foundations and in consider-
able savings in thermal and sound insulation (Topcu, 
1997; Mor, 1992).  

Lightweight concrete (LWC) has also been employed 
more recently to make structural elements, in particular in 
the field of precast concrete structures. Maintaining an 
adequate strength level, LWC, with respect to normal 
weight concrete, among other things permits a reduction 
in the horizontal inertia actions on structures in seismic 
regions, exerts a favourable effect on the foundations of 
buildings supported by soil having low bearing capacity, 
and facilitates the carriage of precast concrete elements 
(Campione et al., 2005). For long-span bridges, the live 
load is a minor part of the total load and a reduction in 
density is translated into reductions in not only mass, but 
also in section size (Chandra and Berntsson, 2002; 
Popovics, 1992). When structural LWC is proportioned 
with cement paste binder amounts similar to those re-
quired for normal aggregate concretes, the shrinkage of 
LWC is generally, but not always, slightly greater than 
that of NWC due to the lower aggregate stiffness (Holm 
and Bremner, 2000). 

Silica fume used as an admixture in a concrete mix has 

significant effects on the properties of the resulting mate-
rial. These effects pertain to the strength, modulus, ducti-
lity, abrasion resistance, and air void content, shrinkage, 
bonding strength with reinforcing steel, permeability, che-
mical attack resistance, alkali-silica reactivity reduction, 
and corrosion resistance of embedded steel reinforce-
ment. In addition, silica fume addition degrades the work-
ability of the mix (Xu and Chung, 2000).  
 
 

Previous studies via ANN   
 

Yeh (1998), Kasperkiewics (1995), Lai and Serra (1997) 
and Lee (2003) applied a different predicting method bas-
ed on NNs for predicting properties of conventional con-
crete and high performance concretes.  

Dias and Pooliyadda (2001) used back propagation 
neural networks to predict the strength and slump of rea-
dy mixed concrete and high strength concrete, in which 
chemical admixtures and/or mineral additives were used. 
According to the authors, the neural network models also 
performed better than the multiple regression ones, espe-
cially in reducing the scatter of predictions. 

Oztas et al. (2006) studied with the NN for developing a 
methodology for predicting compressive strength of HSC 
with suitable workability. They arranged to the  data  used 



 

 
 
 
 
in NN model in a format of seven input parameters that 
cover the water-to-binder ratio, water content, fine aggre-
gate ratio, fly ash content, air entraining agent content, 
and silica fume replacement. The proposed NN model 
predicts the compressive strength and slump value of 
HSCs. 

Baykasoglu et al. (2004) used the soft computing tech-
niques which were gene expression programming and 
neural networks, for predicting the 28 day compressive 
strength of Portland composite cement. Besides, they 
used the stepwise regression analysis to have an idea 
about the predictive power of the soft computing techni-
ques in comparison to classical statistical approach. 
Baykasoglu et al. (2004) reported that the results obtain-
ed from the computational tests showed that GEP was a 
promising technique for the prediction of cement strength.  

The ANN-based model was developed by Lee (2003) 
for predicting the concrete strength development. Accord-
ing to conclusions of the study, ANN-based model was 
predicted well than traditional maturity method within the 
cylinder test data used in this study. Modular neural net-
works were more suitable rather than single one for pre-
dictting the concrete strength. Multiple architectures com-
posed of five ANNs solved the problem occurred in single 
one. 

Pala et al. (2005) focused on studying the effects of fly 
ash and silica fume replacement content on the strength 
of concrete cured for a long term period of time by using 
neural networks (NNs). The NN model arranged was 
composed of eight input parameters that cover the fly ash 
replacement ratio (FA), silica fume replacement ratio 
(SF), and total cementitious material, fine aggregate, co-
arse aggregate, water content, high rate water reducing 
agent and age of samples and an output parameter that 
is compressive strength (fc). The authors explained that 
NNs have strong potential as a feasible tool for evalua-
tion of the effect of cementitious material on the compres-
sive strength of concrete.  

In other study performed as the experimental analysis, 
two steel beams with eight distributed surface-bonded 
electrical strain gauges and an accelerometer mounted at 
the tip were used to obtain modal parameters such as re-
sonant frequencies and strain mode shapes. The authors 
applied the trained feed-forward back propagation ANNs 
by using the data obtained from the experimental dam-
age case (Sahin and Shenoi, 2003).  

In the study performed by Kelesoglu et al. (2005), the 
thickness of the insulation material was fixed by using a 
multi-layer feed-forward artificial neural network. A back 
propagation training algorithm was used in training of the 
network. A brick wall for the structural component was 
considered and whether or not this wall needed insulation 
was analyzed and min thickness of this material was de-
termined by ANN. The results obtained from the network 
were determined compared with the numerical result and 
it was seen the results sensitive enough.  

In a study by Ozsoy and Firat (2004) conducted, it was 
struggled to estimate the horizontal  displacement  values 
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depend on various parameters by artificial neural net-
works. The authors have defined that the feed forward ar-
tificial neural network gives the best results in the studies 
of estimation. In the NN model constructed by the rese-
archers, height of structure, height of floor, slab thickness 
and weight of structures were used as input parameters 
and the displacement which occured in structure was 
used as output parameter. As a result of this study, they 
were reported that lateral displacements can be predicted 
by using artificial neural networks.  

A neural network-based concrete mix optimization me-
thodology is proposed and is verified to be a promising 
tool for mix optimization in the study conducted by Yeh 
(1998).  

Peng et al. (2002) studied the feasibility of using a neu-
ral network as an adaptive synthesizer as well as a pre-
dicttor to meet such a requirement. The authors reported 
that the predictions given by the cascade-correlation al-
gorithm were in good agreement with the test results in 
both steady and unsteady states. Besides, it has the po-
tential of becoming an effective tool in the prediction of 

durability problems.  
Kim et al. (2004) applied neural network-based system 

identification techniques to predict the compressive stre-
ngth of concrete based on concrete mix proportions. They 
developed, trained, and tested the back-propagation neu-
ral networks using actual data sets of concrete mix pro-
portions provided by two ready-mixed concrete compa-
nies. According to this study, the neural network techni-
ques are effective in estimating the compressive strength 
of concrete based on the mix proportions. Some studies 
have been conducted on the relationship between 
concrete strength and the chloride in concrete structures. 
 
 

Artificial neural network  
 

A first wave of interest in neural networks (also known as 
'connectionist models' or 'parallel distributed processing') 
emerged after the introduction of simplified neurons by 
McCulloch and Pitts in 1943. These neurons were pre-
sented as models of biological neurons and as con-
ceptual components for circuits that could perform com-
putational tasks. When Minsky and Papert published their 
book Perceptions in 1969. They showed the deficiencies 
of perception models, most neural network funding was 
redirected and researchers left the field. Only a few 
researchers continued their efforts, most notably Teuv O. 
Kohonen, Stephen Grossberg, James Anderson and 
Kunihiko Fukushima. The interest in neural networks re-
emerged only after some important theoretical results 
were attained in the early eighties (most notably the dis-
covery of error back-propagation) and new hardware 
developments increased the process-ing capacities 
(Krose and Smagt, 1996). 

According to Zurada (1992), artificial neural systems or 
neural networks are physical cellular systems which can 
acquire, store and utilize experiential knowledge. 

An Artificial  Neural  Network  (ANN)  is  an  information 
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Figure 1. A simple artificial neuron (Sinanoglu, 2006). 

 
 
 

processing paradigm that is inspired by the way biological 
nervous systems such as the brain and process informa-
tion. Much is still unknown about how the brain trains it-
self to process information, so theories abound. In the hu-
man brain, a typical neuron collects signals from others 
through a host of fine structures called dendrites. The 
neuron sends out spikes of electrical activity through a 
long, thin stand known as an axon which splits into thou-
sands of branches.  

At the end of each branch, a structure called a synapse 
converts the activity from the axon into electrical effects 
that inhibit or excite activity from the axon into electrical 
effects that inhibit or excite activity in the connected neu-
rones. When a neuron receives excitatory input that is su-
fficiently large compared with its inhibitory input, it sends 
a spike of electrical activity down its axon. Learning oc- 
curs by changing the effectiveness of the synapses so 
that the influence of one neuron on another changes. It is 
composed of a large number of neuron elements working 
in unison to solve specific problems. ANNs, like people, 
learn by example. An ANN is configured for a specific 
application, such as pattern recognition or data classify-
cation, through a learning process. Learning in biological 
systems involves adjust-ments to the synaptic connec-
tions that exist between the neurones.  

The neuron has two modes of operation: the training 
mode and the using mode. In the training mode, the 
neuron can be trained to fire (or not), for particular input 
patterns. Most NNs have some sort of "training" rule 
whereby the weights of connections are adjusted on the 
basis of data. If trained carefully, NNs may exhibit some 
capability for generalization beyond the training data, that 
is, to produce approximately correct results for new cases 
that were not  used  for  training  (Fausett,  1994;  Civalek 
and Ulker, 2004). 

A trained neural network can be thought of as an "ex-
pert" in the category of information it has been given to 
analyse. This expert can then be used to provide project-
ions given new situations of interest and answer "what if" 
questions (Civalek and Ulker, 2004; Aleksander and 
Morton, 1995). A simple artificial neuron is shown in 
Figure 1. 
 
 
The back-propagation algorithm 
 

Among several architectures and paradigms, the back- 
propagation network is one of the simplest and most app-
licable networks being used in performing higher level hu-
man task such as diagnosis, classification, decision mak-
ing, planning and scheduling (Sohabhon and Spethen, 
1999). Back-propagation can be considered a generaliza-
tion of the delta rule for onlinear activation functions and 
multilayer networks. 

In a back-propagation neural network, the learning algo- 
rithm has two phases. First, a training input pattern is pre-
sented to the network input layer. The network propaga-
tes the input pattern from layer to layer until the output 
pattern is generated by the output layer. If this pattern is 
different from the desired output, an error is calculated 
and then propagated backward through the network from 
the output layer to the input layer. The weights are modi-
fied as the error is propagated (Jung and Wang, 2008). 
Figure 2 shows single-layer back- propagation network 
algorithms. 

The learning procedure involves the presentation of a 
set of pairs of input and output patterns. The system first 
uses the input vector to produce its own output vector 
and then compares this with the desired output, or  target 
vector. If there is no difference, no learning takes place. 
Otherwise, the weights are changed to reduce the diffe-



 

 
 
 
 

   
Figure 2. A single-layer back-propagation network algorithm. 
 
 
 

rence. In this case, with no hidden units, this generates 
the standard delta rule. The delta rule for changing wei-
ghts following presentation of an input/output pair p is 
given by equation (1): 
 

( ) pipjpipjpjjip iiotw ηδη =−=∆             (1) 
 

where tpj is the target input for the jth component of the 
output pattern for pattern p,opj is the jth element of the ac-
tual output pattern produced by the presentation of input 
pattern p, ipi is the value of the ith element of the input pa-

ttern, pjpjpj ot −=δ , and �pwji is the change to be made 

to the from the ith to the jth unit following presentation of 
pattern p. There are many ways of deriving the delta rule. 
In this network, the input units are the bottom layer and 
the output units are the top layer. There can be many 
layers of hidden units in between, but every unit must 
send its output to higher layers than its own and must 
receive its input from lower layers than its own. Gi-ven an 
input vector, the output vector is computed by a forward 
pass that computes the activity levels in the earlier layers. 
The back-propagation algorithm performs the steepest 
descent on a surface in a weight space whose height at 
any point in weight space is equal to the error measure. 
In order to show the algorithm, let 
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be the measure of the error on input/output pattern p and 
let E = �Ep  be the overall measure of the error. Here, it 
defines the weighted sum of the output of the previous 
layer,  
 

�=
i

pijipj ownet                                                   (3) 
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as the state of the unit.  
 

opj = fj (netpj)                (4) 
 

uses the sigmoid function, which is non-decreasing and 
the differentiable function. To implement a gradient des-
cent in E, we should make the weight changes according 
to: 
 

pipjjip ow ηδ=∆                (5) 
 

Just as in the standard delta rule. In this equation wji (t) is 
the weight, � is a gain term which is called learning rate 
and �pj is an error term of unit j. The interesting result is 
that there is a simple recursive computation of this �’s 
that can be implemented by propagating an error signal 
backward through the network.  

If the unit j is an output unit, then the error signal (�pj) is 
given by: 
 

�pj=(tpj-opj) )( pj
ı
j netf                                                       (6) 

 

Take as the activation function fj  the ‘sigmoid’ function,  
 

jpjnetpi
e

o θ+−+
= )(1

1
               (7)  

 

Where �j is abias similar in function to a threshold. The 
sigmoid function performs a sort of ‘soft’ threshold that is 
rounded (and differentiable) compared with other transfer 
functions (Judith, 1990). If unit j is a hidden unit, the �pj 

can be computed by 
 

�=
k

kjpkpj
ı
jpj wnetf δδ )(                          (8) 

 

The error signal for an output unit can be written as: 
 

�pj = (tpj-opj )opj(1- opj)                     (9) 
 

The error signal for a hidden unit determined recursively 
in terms of error signals of the units to which it directly 
connects and the weights of those connections. For the 
sigmoid activation function (Rumelhart et al., 1986; 
Fukuda and Shibata, 1992): 
 

�=
k

kjpkpj wδδ  )o -(1o pjpj              (9)  

 
 

Learning rate and momentum 
 

The learning procedure requires that the change in wei-
ght is proportional to wE p ∂∂ / . True gradient descent re-
quires that infinitesimal steps are taken. The constant of 
proportionality is the learning rate. For practical purposes 
we choose a learning rate that is as large as possible 
without leading to oscillation. One way to avoid oscillation 
at large is to make the change in weight dependent of the  
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past weight change by adding a momentum term:  
 

)()()1( nwonw jipipjjk ∆+=+∆ αδη            (10) 
 

Where n indexes the presentation number and � is a con-
stant which determines the effect of the previous weight 
change (Rumelhart et al., 1986; Fukuda and Shibata, 
1992). 
 
 

Bond strength and development length 
 

The bond feature between reinforcing bar-concrete is one 
of most important properties in reinforced concrete struc-
tures. Steel-concrete bond is the combination of adhe-
sion, friction and support of the ribs in deformed steel. 
The adhesion mechanism is the first property activated 
by the load. Adhesion is partly microscopic interlock of 
paste into imperfections of the steel surface and partly a 
possible chemical interaction between surfaces.  

The two other mechanisms, friction and rib support, go 
into action when adhesion fails and some relative move-
ment begins between concrete and steel. Then, this time 
significant slip may be observed, as well as the formation 
and growth of cracks. There is little knowledge on the 
mechanical interaction (“bond”) between reinforcing bars 
and natural lightweight aggregate con-crete as pumice 
etc. Some studies were performed in terms of bond stre-
ngth between reinforcing bars and concrete with artificial 
lightweight aggregate (Mor, 1992; Cox et al., 2000; Chent 
et al., 2004)  

Field performance has demonstrated satisfactory per-
formance LDC with strength levels of 20 to 35 MPa with 
respect to bond and development length. Because of the 
lower particle strength, LDC have lower bond splitting 
capacities and a lower post-elastic strain capacity than 
NDC. Unless tensile splitting strengths are specified, ACI 
318 requires the development lengths for low-density 
concrete to be increased by a factor of 1.3 over the len-
gths required for normal-density concrete (Holm and 
Bremner, 2000). 

In one study, Yerlici et al. (1995) examined the bond 
behaviors of high-strength concretes (HSC) with mineral 
additives. The results of the said study showed that re-
quired anchorage lengths of HSCs were shorter than 
those of normal-strength concretes (NSCs) and that cra-
ck widths of HSCs were smaller than those of NSCs.  

In the scope of the study “Bond Strength of HSC Ele-
ments” conducted by Yerlici and Ozturan (2000), single-
reinforced and double-reinforced concrete elements were 
subjected to eccentric, single-load pull-out bond tests. It 
was observed that the increase in compressive strength 
of concrete, the thickness of concrete cover and the amount 
of body reinforcement resulted in an increase in the bond 
strength while the increase in the reinforcement diameter 
resulted in a decrease in the same. Moreover, bond frac- 
ture was detected to be sudden and brittle in HSC elem-
ents.  

Depending on the amount  of  the  additive,  silica  fume  

 
 
 
 
(SF) can increase reinforcement bond by 3 - 5 times in 
lightweight aggregate concretes (Robins and Austin, 1986; 
Bürge, 1983). The studies about the reinforcement- concrete 
bond properties of lightweight concretes showed that 
these concretes showed sufficient site performance and 
that the bond strength of lightweight aggregate concretes 
was lower than that of gravel-sand concretes for the 
same compressive strength when flat and round reinfor-
cements were used. In addition, the anchorage strength 
of the ribbed reinforcements was found to be generally 
the same as that of normal-density concretes (Slate, 
1986). 

Since it decreases sweating and turns cement paste 
into a harder and stronger structure, SF increases the 
bond between the concrete and the reinforcement. This 
positive effect can be observed more clearly at additive 
rates above 20%. Some studies have been conducted on 
the relationship between concrete strength and the chlo-
ride in concrete structures (Khayat, 1992). 

The actual compressive strength of concrete is unkno-
wn during the early life of the structure. Also, the concrete 
market is generally very competitive and it turns out that 
concrete companies have only restricted budgets to 
spend in mix-design, although from this fundamental st-
age comes a great deal of consequences for the site ope-
rations and for the structure to be built (Oztas et al., 
2006).   

Tanyildizi (2007) made a study to determine the fuzzy 
logic prediction model of the reinforcement-concrete bond 
strength of lightweight concrete prepared by using three 
different mixtures kept under different cure conditions. 
Concrete samples were produced by using three different 
mixtures: control concrete prepared by using only Port-
land cement, produced by mixing cement with fly ash (in 
an amount corresponding to 15% of the weight of the ce-
ment) and a serial produced by mixing cement with silica 
fume (in an amount corresponding to 10% of the weight 
of the cement). The concrete samples were subjected to 
compressive strength and bond strength tests. At the end 
of the study, it was suggested that the fuzzy logic method 
could be used in the prediction of the bond strength of 
lightweight concrete.  
 
 

Research significance 
 

For design purposes, the tensile strength of concrete is 
assumed to be zero. Generally, the bond between steel 
and concrete is related to the quality of the concrete and 
the bond strength is approximately proportional to the 
compressive strength of the concrete (Gani, 1997). Con-
crete is, on the other hand, a heterogeneous material 
made up of cement, mortar and aggregates. Its mecha-
nical properties scatter more widely and cannot be defi-
ned easily.  

For the convenience of analysis and design, however, 
concrete is often considered a homogeneous material in 
the macroscopic sense. Many mathematical models of 
the mechanical behavior of concrete  are  currently  being  



 

 
 
 
 
used in the analysis of reinforced concrete structures. For 
many years, researchers have proposed various methods 
for predicting concrete strength (Snell et al., 1989; 
Popovics, 1998). 

Such traditional prediction models have been develop-
ed with a fixed equation form based on a limited number 
of data and parameters. If new data are quite different 
from original data, then the model should update not only 
its coefficients but also its equation form. Artificial Neural 
Network (ANN) does not need such a specific equation 
form. Instead, it needs sufficient input-output data. Also, it 
can continuously re-train the new data, so that it can con-
veniently adapt to new data (Lee, 2003). 

Therefore, silica fume proportion and 28th and 90th day 
compressive strength data were used with the aim of pre-
dicting the bond strength between the “pumice aggregate 
lightweight concrete including silica fume and super plas-
ticizer” and “reinforcing steel” via the artificial neural net-
works approach, which can be used without need for ma-
thematical modeling and which produces values quite 
close to experimental values. Taking into consideration 
the importance of the bond strength in designing reinfor-
ced concrete structures, this method will greatly facilitate 
practical predictions of bond strength by using compres-
sive strength values. The present study is the first study 
using the artificial neural networks (ANN) method in pre-
dictting bond strength. 
 
 
EXPERIMENTAL DETAILS 
 
Materials 
 
Pumice aggregates obtained from Isparta province, Turkey, were 
utilized to prepare structural lightweight concrete specimens. The 
aggregates were used after washing and sieving. The particle size 
ranged as 0 - 4 mm, 4 - 8 mm and 8 - 16 mm. Grain size distribution 
curve of the pumice aggregate used was provided that complied 
with border curves to the requirements of ASTM C 330. The specific 
gravity factors of pumice aggregate were obtained to determine 
concrete mixture proportion according to ACI 211 as 2.09, 1.75 and 
1.50 kg/dm3 respectively.  

The bulk density was around 0.650, 0.738 and 0.893 kg/dm3 res-
pectively. Specific gravity of pumice was 2.47. The water absorption 
rate of pumice was 12, 19 and 42% on the grain interval of 8-16 
mm, 4-8 mm and 0-4 mm respectively. The porosity of pumice was 
29, 70 and 68% respectively on the same grain interval. 
An ASTM Type I Ordinary Portland Cement (OPC), having a 28 day 
compressive strength of 42.5 N/mm2 (MPa) was used in this study. 
Its specific gravity and Blaine specific surface area were 3.15 
kg/dm3 and 3350 cm2/g respectively. Initial and final setting times of 
the cement were 150 and 196 min. respectively. The 7 day and 28 
day compressive strengths of PC were 41.3 and 51.2 MPa respec-
tively. The required cement dosages which had been found to ob-
tain C 20 were determined in a previous study. Silica fume (SF) 
used in concrete production was obtained from Antalya Electro 
Ferro-Chrome Company in Turkey. The regular tap water was used 
in the whole tests. The nominal diameter of rebar was 14 mm. For 
the mechanical characterization of six steel bar specimens tensile 
tests were carried out using the tensile testing machine according 
to ASTM A615M. For the reinforcing bars yielding stress fy and 
ultimate stress ft values of 104 and 679  MPa respectively were re-
corded. 

Sancak            261 
 
 
 

Testing details 
 
“The compressive strength test specimens were 100 mm cubes as 
per ASTM C 192. The used pullout specimens were modified ASTM 
C 234 specimens. The reinforcing bars have diameter of 14 mm 
instead of no.6 (19mm) bars specified in ASTM C234. The pro-
duced concrete was placed in standard cube (150 x 150 x 150 mm) 
moulds. The mix proportions and some fresh properties of the light-
weight concrete specimens are shown (Table 1).”  
 
 
Prediction of bond strength of lightweight concrete via the 
ANN method  
 
Forty-eight tests were conducted to determine via the ANN method 
the effects of silica fume and the age of the concrete on the bond 
strength of reinforced lightweight concrete. The neural network 
developed in the scope of the present study consisted of 3 neurons 
(variables) in the input layer and 1 neuron in the output layer. Since 
minimum error percentage was achieved, 2 hidden layers com-
posed of 4 and 3 neurons were used in the network design. The 
developed ANN model is presented in figure 3. 

Silica fume proportion (in terms of weight and expressed in %) 
and compressive strength values obtained on the 28th and 90th days 
were used as input to the model. Bond strength was predicted in 
the output layer. The test process was started after the values used 
for training purposes were compared with the values in the ANN 
model. In the testing phase, data were input to the model in order to 
predict bond strength values. The Easy NN-Plus program using the 
back propagation artificial neural network model was preferred in 
the study. The results were detected at a 1.6% error rate. 
 
 
FINDINGS AND DISCUSSION  
 
The relationship between compressive strength and 
bond strength  
 

Results obtained from compressive strength tests and 
bond strength tests were analyzed via regression anal-
ysis to find any relationship between the two variables. 
This process aimed at testing the accuracy of the bond 
strength values obtained via the artificial neural networks 
method and determining the usability of artificial neural 
networks to this end. 

Regression analysis was made to examine the rela-
tionship between the results of the compressive strength 
test conducted on the 28th day and the bond strength 
results obtained via ANN (Figure 4). The determination 
coefficient shows that there is a strong relationship (R2 = 
0.937). The regression curve of the relationship between 
the experimental bond strength value obtained on the 
90th day and the experimental compressive strength 
value obtained on the 28th day and the related deter-
mination coefficient are presented in Figure 5 (R2 = 
0.9453). 

The relationship between experimental compressive 
strength and experimental bond strength was found not 
to be quite different from the relationship of the experimen-
tal compressive strength and the bond strength obtained 
via ANN (R2 = 0.937 and R2 = 0.9453). In light of this 
data, it can be suggested that ANN can reliably predict 
the value of the reinforcement-concrete bond strength of 
lightweight concrete.  These  values  remained  within the  
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Table 1. Mix proportions (for 1/m3) and some fresh properties of the SLWAC. 
 

Aggregate (kg) Concrete Cement 
(kg) 

Water 
(kg) 

w/c 
0 - 4 
mm 

4 - 8 
mm 

8 - 16 
mm 

SF 
(kg) 

Slump 
(cm) 

Fresh unit 
weight (kg/m3) 

L - 0  430 199 0.46 730 550 52 --- 8.4 1809 
L – 5 408.5 202 0.49 729 549 52 21.50 7.2 1792 

L – 10 387 202 0.52 729 549 52 43 6.8 1772 
 
 
 

 
 
Figure 3. ANN model developed to predict bond strength by using compressive 
strength values.  

 
 
 

 
 
Figure 4. The relationship between the compressive strength values obtained on the 
28th day and the bond strength predicted by ANN. 

 
 
 

range of the determination coefficients found in previous 
studies which used ANN to predict the compressive 
strength of normal and high-strength concretes by using 
mixture parameters as inputs (R2 = 0.615 - 0.99) (Yeh, 
1998; Kasperkiewics et al., 1995; Lee, 2003; Dias et al., 
2001; Pala et al., 2005). In another study, the determi-
nation coefficient between the reinforcement-concrete 
bond strength value obtained on the 28th day and 
compressive strength value (R2 value) was  calculated as 

0.77 (Tanyildizi, 2007).  
In addition, the same analysis was also made between 

compressive strength values obtained on the 90th day 
and the bond strength predicted by ANN. The resulting 
graphic is presented in figure 6. 

The relationship between the values obtained from the 
tests conducted on the 90th day to determine reinforce-
ment-concrete bond strength and the values obtained from 
the compressive strength  tests  conducted on the date is 
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Figure 5. The relationship between the compressive strength value obtained on 
the 28th day and experimental bond strength. 

 
 
 

 
 
Figure 6. The relationship between compressive strength values obtained on 
the 90th day and bond strength values predicted by ANN. 
 

 
 

same date is presented in Figure 7. 
A quite high correlation was detected between these 

values. The determination coefficient between experi- 
mental  bond  strength  and  compressive  strength  was 
calculated to be R2 = 0.9601. The correlation between 
bond strength values predicted by ANN and compressive 
pressure values obtained on the 90th day was found to be 
considerably high (R2 = 0.9571). Bond strength values 
predicted via ANN and the bond strength values obtained 
experimentally run parallel with each other. ANN proved 
to be a very useful tool in the prediction of bond strength 
values. 

Since linear regression was preferred for the statistical 
analysis done in this study, the coefficient R2 = 0.9601 
was produced via the equation 

8469.0)(2122.0 += ckb fτ . Comparison of the 
experimental results with related studies in the existing 
literature showed that the study conducted by Yerlici and 
Ozturan (2000) suggested the following equation to 
determine  the  relationship between  bond  strength  and  

compressive strength in high-strength concrete elements:  
 

78.0)(44.0 ckb f=τ  
 
The equation obtained in this study can be expressed as 

an exponential function as
714.0)(63.0 ckb f=τ . 

Thus, the determination coefficient of this equation turns 
out to be R2 = 0.9395. 

In another study, the highest mean bond strength value 

was calculated as ckb f38.1max =τ  (Robins and 

Austin, 1986). Yerlici and Ozturan (2000) stated that the 
bond strength value produced by their equation remained 
within the limits specified in the 1990 CEB/FIB 
Specifications Model: 

ckb f0.2max =τ  for good 

anchorage conditions and 1.0 ckf  for all other anchorage 

conditions for the normal-strength concretes. The equa-
tion of the present study stayed within the limits stipulated  
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Figure 7. The relationship between the compressive strength values and bond 
strength values obtained on the 90th day. 

 
 
 

Table 2. Experimental and predicted results via ANN. 
 
Sample 
Code 

 

SF rate 
(%) 

Compressive 
Strength at 28th 

day (MPa) 

Compressive 
Strength at 90th 

day (MPa) 

Predicted Bond 
strength via 
ANN (MPa) 

Experimental 
bond strength 

(MPa) 

L-0 0 19.92 20.23 5.03 5.16 
L-0 0 24.5 24.79 6.03 6.12 

L-0 0 22.61 23.95 5.89 5.86 

L-0 0 27.53 27.93 6.58 6.32 

L-0 0 25.61 26.22 6.38 6.39 

L-5 5 20.34 21.30 5.54 5.51 

L-5 5 24.06 25.97 6.17 6.17 

L-5 5 25.91 26.70 6.53 6.29 

L-5 5 27.51 28.73 7.20 6.85 

L-5 5 27.34 28.51 6.73 6.63 

L-10 10 22.02 22.28 5.74 5.70 

L-10 10 25.69 26.51 6.53 6.33 

L-10 10 31.48 32.16 7.76 7.42 

L-10 10 27.89 28.63 6.97 6.85 

L-10 10 25.1 26.25 6.40 6.46 
 
 
 
in the specifications as well. Table 2 presents the testing 
results and predicted results via ANN. The relationship 
between the values predicted via the model and the 
experimental results is presented in figure 8.  

It was found that there was a high correlation  bet-ween 
the experimental bond strengths and the bond strengths 
predicted by ANN (r = 0.9861; R2 = 0.9725). Bond 
strength predictions made via ANN for the pumice 
aggregate light weight concrete were found to be similar 
to the experimental bond strength results. Accordingly, 
useful findings can be obtained via ANN analysis of the 
experimental bond strengths by using more parameters.  

Thus, ANN can not be suggested as an alternative for 
experimental studies. However, it can be stated that ANN 
can be used successfully in the prediction of bond 
strength.  
 
 
Conclusion 
 

The results obtained in this study are as follows:  
 

i) Bond strength tests conducted on pumice aggregate 
light weight concretes can be successfully predicted via 
ANN by using more parameters.  



 

 
 
 
 

 
 
Figure 8. The relationship between the values predicted via 
the model and the experimental bond strength test results. 

 
 
 
ii) Bond strength value is an important datum for 
calculations related to reinforced concrete structures and 
can be predicted via ANN in a short time. 
iii) A similar study should be conducted by using a higher 
number of parameters and tests for the normal aggregate 
concretes. 
iv) Since normal aggregate concrete is widely used, it is 
likely that ANN could be used to predict its bond strength 
as well. 

Normal aggregate concrete and particularly light weight 
aggregate concrete, do not exhibit a linear relationship 
with the loads applied to them due to their brittle micro-
structure. Therefore, analytical formulas remain insuffi-
cient in modeling the general behavior of these con-
cretes. On the other hand, thanks to improvements in 
ANN, it is regarded as an appropriate tool for the 
prediction of concrete behavior. 
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