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An analysis of heat transfer inside a semi porous two-dimensional rectangular open cavity was 
numerically examined. The open cavity consists of two vertical walls closed to the bottom by a uniform 
heat flux. One vertical wall is a porous wall and fluid inflows normal to it. The other wall transfers the 
same uniform heat flux to the cavity. The study shows how natural convection effects may improve the 
forced convection inside the open cavity. The main motivation for this research is its application for 
electronic equipment where the cooling devices used for the electronic equipment are frequently based 
on natural and forced convection and the equipment may reach dangerous limits of temperature 
reducing its efficiency. Governing equations are expressed in Cartesian Coordinates and numerically 
handled by a finite volume method.  Results of the maximum temperature are presented for both 
Reynolds and Grashof numbers at the heated wall and in the bottom. 
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INTRODUCTION 
 
The heat transfer in enclosures is studied for a variety of 
engineering applications. Results were presented in 
research surveys such as in Catton and Edwards (1976), 
Kakaç et al. (1987), and it became a main topic in con-
vective heat transfer textbooks (Bejan, 1994). Usually the 
enclosures are closed and natural convection is the only 
heat transfer mechanism. There are, however, several 
applications in passive solar heating, energy conserva-
tion in building and cooling of electronic equipment, 
where open cavities are used (Chan and Tien, 1985; 
Hess and Henze, 1984; Penot, 1982). Ramesh and 
Merzkirch (2001) presented a study combining laminar 
natural convection and surface radiation from side-vented 
open cavities with opening top; Gunes and Liakopoulos 
(2003) studied, by a spectral element method, the three-
dimensional free convection in a vertical channel with 
spatially periodic, flush-mounted heat sources; Korichi 
and Oufer (2005) presented a numerical study of convec-
tive heat transfer between a fluid and three obstacles 
placed  on  the  lower  and  upper  wall  of  a  rectangular 
channel. Cheng and Lin (2005) present an optimization 
method of thermoelectric coolers using genetic algori-
thms and Vasiliev (2006) presented a short review on the 
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micro and miniature heat pipes used as electronic com-
ponent coolers. Delgado-Buscalioni et al.(2001) presen-
ted a numerical and theoretical investigation on the natu-
ral convection in an inclined 2 and 3 D side-heated enclo-
sures for low Prandtl-number-fluid. Devices used to cool 
electronic equipment are frequently based on forced con-
vection (Sparrow et al, 1985). Altemani and Chaves 
(1988) presented a numerical study of heat transfer 
inside a semi porous two-dimensional rectangular open 
cavity for both local and average Nusselt numbers at the 
heated wall and for the isotherms and streamlines of the 
fluid flowing inside the open cavity. This paper continues 
that study and also investigates two vertical parallel 
plates opened at the top and closed at the bottom by a 
uniform heat flux, as indicated in Figure 1. One of the ver-
tical plates is porous and there is a normal forced fluid 
flowing through it. The opposite vertical plate supplies the 
same uniform heat flux to the cavity. In addition to the 
forced convection, the analysis considers the influence of 
natural convection effects. The maximum temperature is 
obtained for the uniformly heated plate and to the bottom 
for the parameters governing the heat transfer: Reynolds 
(Re) and Grashof (Gr) numbers. 
 
 
Analysis 
 

The  conservation  equations  of  mass,  momentum  and 
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Figure 1. Coordinate system and thermal 
boundary conditions of the open cavity. 

 
 
 
energy, as well as their boundary conditions, will be ex-
pressed for the system indicated in Figure 1. Due to the 
low velocities usually associated with permeable walls, 
the natural convection will be considered in the analysis. 
It is assumed that the flow is laminar and occurs under 
steady state conditions. 

The natural convection will be treated via the 
Boussinesq approximation, that is, density variations are 
accounted only when they contribute to buoyancy forces. 
In this problem, the buoyancy term is obtained from the y 
momentum equation terms representing the pressure and 
body forces: 
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The specific mass is related to the temperature according 
to the Boussinesq approximation: 
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The pressure is now expressed in terms of a modified 
pressure defined as 
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With eqs. (2) and (3), the term (1) can be expressed by 
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The second term in this expression relates the buoyancy 
forces to the temperature difference (T–Tp). According to 
this formulation, the specific mass will  be  assumed  con- 

 
 
 
 
stant and equal to pρ  in all equations, so that the 
subscript p may be deleted. It is also assumed that all 
other fluid properties are constant. Viscous dissipation 
and compression work are not considered in the analysis, 
according to the low velocities, moderate temperature 
difference and laminar flow conditions assumed. 

In order to obtain the conservation equations in dimen-
sionless form, the following variables were defined: 
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The equations expressing conservation of mass, x and y 
momentum and energy then become: 
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These equations are coupled and present two indepen-
dent parameters, Gr and Pr. The first is the modified 
Grashof number, defined by 
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and the second is the Prandtl number of the fluid.  

At the three solid boundaries of the open cavity, the 
velocity components are null, except the velocity of injec-
tion of the fluid (Up) at the porous wall. The thermal boun-
dary conditions comprise a uniform (reference) tempera-
ture at the porous wall and a specified heat flux at the 
heated vertical wall and in the bottom. Expressed in 
dimensionless terms, the boundary conditions become: 
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Figure 2. Maximum dimensionless temperature as a function of 
Grashof number for Re=1 and Re=100. 

 
 
 

 
 
Figure 3 . Maximum dimensionless temperature as a 
function of Reynolds number for Gr=0 and Gr=1x105. 

 
 
 
The dimensionless velocity component normal to the 

permeable wall (
ν

 D 
 u p ) is one parameter of this problem 

and it will designate the porous wall Reynolds number, 
Rep. The outflow boundary of the open cavity, at Y equal 
to H/D is just a virtual boundary defining the calculation 
domain. In order to obtain a solution, two conditions must 
be satisfied at this boundary. First, there must be no 
backflow of fluid and second, there must be no diffusion 
from outside into the calculation domain. The first condi-
tion was verified checking the velocity profiles of each 
result obtained and discarding those results when a 
backflow was observed. The second was satisfied impo-
sing artificially negligible partial derivatives of θ  and U in 
the vertical direction at the outflow boundary. The velocity 
component V was corrected at the outflow boundary in 
order to satisfy the conservation of mass in the whole do- 
main. 

The problem presents four independent parameters: 
H/D, Pr, Rep and Gr. For a fixed particular fluid, there are 
still three parameters governing the heat transfer: H/D, 
Rep and Gr.  In this paper, a single value, equal to 0.72, 
was assigned to the Prandtl number and H/D = 1.  

Chaves et al.            335 
 
 
 
METHODOLOGY 
 
Differential Eqs. (6) to (9) together with their boundary conditions 
(11), determine a coupled system involving the four variables U, V, 
P and θ . Equations were discretized using the control volume for-
mulation described in Patankar (1980) and the solution was obtain-
ed using the SIMPLE scheme. The convergence of the results was 
accepted when the relative change of the dependent variables were 
under 10-3.  

To solve the problem numerically, it integrates the Eqs. (1) to (3) 
related to u and v variables, already described in dimensionless 
cylindrical coordinates on a generic volume control. Integration is 
done following the volume control method formulation developed by 
Patankar (1980) where potential law schematic is taken, to calcu-
late the flux term through the limits of each internal control volume. 

Distinguished equations make a coupled system involving u, v 
and T variables. The numerical solution in this system is solved 
using simple schematic purposed by Patankar (1980). To solve this 
simultaneous mathematical equations that come from distinguish 
process, it uses line-to-line iterative method. 

As initial step it is considered the following first approximation u = 
v = 0 (stagnated fluid) and T = 0 for all domain. In each process, 
there was a need for updating u, v and T values and u and v equa-
tions were solved three times for each iteration. To reach T values it 
was solved only once by iteration. Such process was widely useful 
in cases where Gr and Re are high, that causes stronger convetion 
streams. The acceptance standard of a solution as converged is 
based on the maximum mistake possible inside the whole calcula-
tions range. The obtained results convergence was accepted when 
relative changes in the dependent variables were below 1.0x10-5. 
 
 
RESULTS AND DISCUSSION 
 

The maximum dimensionless temperature �max is shown 
on Figure 2 as function of the modified Grashof number 
for Reynolds number equal to 1 and 100. Considering the 
range of the modified Grashof number analyzed the 
maximum temperature is shown and as Gr is the ratio of 
buoyancy forces to viscous forces it can be seen that the 
influence of forced convection is dominant for Gr until 1 x 
104. After this value, Tmax increases abruptly, caused by 
influence of the buoyancy effects. 

The maximum dimensionless temperature �max is 
shown in Figure 3 as function of the Reynolds number for 
the modified Grashof number equals to 0 and 100,000. It 
is noticed that the behavior of the curve is affected by Gr. 
For Gr equals 100,000 buoyancy forces are bigger than 
viscous forces and it increases the cooler effect because 
the convective forces increase. Considering the range of 
the Reynolds number  analyzed  the  maximum  tempera- 
ture as shown, Tmax decreases with the Reynolds num-
ber. The influence of forced convection is dominant after 
Reynolds equal to 100. The effects of natural convection 
in the maximum temperature are shown in Figures 4 and 
5. Figure 4 shows the effects of the forced  convection  
and Figure 5 shows a larger penetration into the tem-
perature in the upper part of the cavity when Grashof 
increases imposed by natural convection effects. 
 
 
Conclusions 
 

This study can be applied in many  industrial  applications 
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Figure 4. Dimensionless temperature field for Re = 10 and Gr = 0. 

 
 
 

 
 
Figure 5.  Dimensionless temperature field for Re=10 and Gr=1x105. 

 
 
 
such as solar heating, energy conservation in buildings, 
refrigeration of electronic equipment and other systems 
where heat transfer occurs by force or free convection. 
So, for cooling purposes, the results obtained show that 

the forced convection inside the semiporous open cavity 
studied may be greatly enhanced by natural convection 
effects. When Gr is small enough, just forced convection 
controls the  heat  transfer.  When  Gr  increases,  natural 



 
 
 
 
convection effects may become dominant and then the 
electronic equipment may reach a dangerous limit tempe-
rature. This study allowed identifying the biggest tempe-
rature regions when the system is submitted to combined 
and free convection, making possible to apply control 
actions, avoiding thermal damages to the devices that 
work with this cooling process. It concludes that the 
buoyancy term is fundamental when dealing with forced 
convection cooling. 
 
 

Nomenclature: g, gravitational acceleration m.s-1; 
y
 p 

∂
∂

, 

pressure gradient in y direction Pa.m-1; Gr, Grashof 
number; D, width of the open cavity m; H, height of the 
open cavity m; p, pressure Pa; p*, modified pressure Pa; 
P, dimensionless pressure; Pr, Prandtl number; q, 
surface heat flux W; Re, porous wall Reynolds number; 
T, temperature K; Tp, temperature of the fluid inlet at the 
porous wall K; x, Cartesian coordinate m; y, Cartesian 
coordinate m; U, dimensionless velocity in x direction; V, 
dimensionless velocity in y direction. 
 
Greek symbols: β , coefficient of thermal expansion K-1; 

2∇ , laplace operator in Cartesian coordinates; �, specific 
mass kg.m-3; pρ , specific mass of the fluid at the porous 

wall kg.m-3; ν , kinematics viscosity m2.s-1; θ , 
dimensionless temperature; wθ , dimensionless heated 
wall temperature. 
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