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A large number of variables and multivariate analyses are required to study complexity. Network 
analysis is also a valuable complex systems analysis tool. Recently techniques were developed where 
correlation matrixes are presented as networks, known as correlation graphs. These have been used 
mainly to study structures in time series data, often in the financial stock markets, and correlation 
graphs have not been widely adopted. The aim of this paper is to demonstrate correlation graphs as a 
general research tool by using intuitively understandable data. Correlation graphs of human body 
shape dimensions were generated and noise reducing techniques are demonstrated. The results 
support the underlying structures of human biology and gender is distinguished with an accuracy of 
89%. Weight plays a vital role and height is more influential in males than in females. With age, males 
and females become more alike. The potential application of the correlation graphing methodology 
appears extensive.  
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INTRODUCTION 
 
Complexity in nature, society and science is often 
associated with a large number of relatively independent 
processes or entities. At the same time a certain degree 
of feedback and correlation between entities exist and the 
system as a whole exhibits behaviour at an aggregated 
level, which cannot be explained by merely studying the 
individual parts (Newman, 2011). It is therefore not 
surprising that a large number of variables over the entire 
system are measured when complex systems are studied 
(Simeonov et al., 2003; Singh et al., 2004). 
Consequently, there is a need to (a) make sense of these 
large datasets, (b) detect and quantify aggregated 
system structures, and (c) understand the smaller 
elements inside the system. 

Multivariate analysis is a well established statistical 
discipline and many different techniques exist to detect, 
display and analyse predictability relationships between 
variables. These include covariate analyses (Slot et al., 
2010), multivariate regression (Clark and Harper, 2008), 
canonical and principal component analysis (Bulluck et 
al., 2002; Zhang et al., 2005), discriminant analysis 
(Zhang et al., 2006; Ferris et al., 2008), hierarchical 
cluster analysis, such as dendrograms (Gil et al., 2008; 
Ye and Wright, 2010; Yuan et al., 2008) and self-
organising maps (Ballabio et al., 2013). 

One of the most well-established empirical methods to 
study linear relationships between different variables is 
the century old Pearson  Correlation  Coefficient  (r),  and
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hence the Pearson’s Correlation Matrix when more than 
two variables are simultaneously considered. Ke et al. 
(2012) note rightfully that “(Pearson’s Correlation 
Coefficient) is shown to be one of the most desirable 
correlation measures for its ability to capture the 
departure of two variables from independence”. All the 
tools mentioned above remain to some extent limited 
when depicting a large dataset that may contain 
hundreds of variables and that exhibits complex 
behaviour at an aggregated level.  

Graph Theory, or network analyses, is a well-
established discipline and has become a valuable tool to 
make sense of large interconnected systems, such as the 
internet (Cuomo et al., 2012), ecosystems (Larsen et al., 
2012) and time series data (Mantegna, 1999). Often a 
data matrix can be depicted in graph form and a 
multitude of potentially valuable descriptors, such as 
betweenness and planarity (Newman, 2011) exist from 
which aggregated information pertaining to the graph 
topology could be extracted. In recent years statistical 
physicists have developed valuable techniques whereby 
a correlation matrix is presented as a network and where 
vertexes (nodes) depict individual variables and edges 
(lines) depict the correlation strength between variables 
(Heimo, 2008; Onnela, 2004, 2003).

 
Costa et al.

 
(2011) 

identify correlation mapping as one of six categories in 
the network analysis arena, but in the literature to date, 
correlation graphs have been used almost exclusively to 
study the structure in time series data and often with a 
strong focus on the financial stock markets (e.g. 
Yoshikawa et al., 2012). Surprisingly, most correlation 
graph literature to date has been primarily published in 
statistical-physics journals with little adoption of this 
potentially powerful methodology into other scientific 
disciplines. Bezuidenhout et al. (2012) used correlation 
graphs to study soil health and compared the 
methodology to Principle Component Analysis. 

The aim of this paper is to demonstrate the potential 
value of correlation graphs in science by analysing a 
familiar data set, while showing how this methodology 
can be used to unpack some of the complexities of a real 
world system. The correlation graph methodology is 
relatively simple compared to other multivariate 
techniques and is supported by a strong visualisation 
component. The data that were used in this study are 
familiar and readers will be able to intuitively relate to the 
findings. This paper makes a number of contributions; (a) 
unlike most other related studies, this research focuses 
on non-time series related data, (b) for the first time the 
dataset was normalised and transposed to produce a 
new correlation graph projection, and (c) we also 
introduce two novice techniques to address redundancy, 
namely maximum two (MAX2) and minimum delta (min 

). 

 
 
 
 
METHODOLOGY 
 
In a paper that focuses on statistics education, Heinz et al. (2003) 
present a dataset of 24 body shape attributes for 247 men and 260 
women. The dataset (T), which is a 24 × 507 matrix is described in 
Table 1 and has been made available on the internet (Heinz et al., 
2003). Measurements are explained in more detail by Heinz et al. 
(2003). Each of the variables (T1, 2,..24) was normalised to possess a 
mean of zero and a standard deviation of one. Normalisation does 
not affect the correlation coefficient (r) between variables. The data 

were used to calculate a 24  24 Pearson correlation matrix 
between variables. Because variables were normalised, the data 
matrix can be transposed (T’) and a 507 × 507 Pearson correlation 
matrix between individual persons (T’1, 2..507) can also be calculated. 

Gómez et al. (2009) promote the use of the unsigned value of the 
correlation coefficient |r| to determine the degree of predictability 
between two variables. This approach applies well to the 24 × 24 
body shape variable correlation matrix where even a strong inverse 
correlation still implies a strong relationship between two variables. 
However, in the 507 × 507 correlation matrix between individual 
persons, a strong inverse correlation between two persons would 
imply that these subjects are quite different from each other, 
compared to a strong positive correlation. The unsigned 24 × 24 
and signed 507 × 507 correlation matrixes were subsequently 
represented by correlation graphs with 24 and 507 vertexes, 
respectively. All vertexes were connected by edges where the 
weight of an edge between two particular vertexes depicts the 
strength of the respective correlation value between the two 
variables. These networks have 276 and 128,271 weighted edges, 
respectively. 

Heimo et al. (2008) and Souma et al. (2009) note that the 
correlation matrix could be used to determine the underlying 
network structure of a complex system, but due to the relatively 
large number of edges, it also contains a certain degree of 
redundancy that needs to be removed. Gómez et al. (2009) discuss 
techniques to remove the edges that represent relatively weak 
correlations between variable pairs without losing valuable 
structural information. Several techniques exist to reduce the 
number of edges in a correlation graph. Gómez et al. (2009) 
removed all edges with weights below a certain threshold value 
(e.g. r<0.3). In this case the proportion (p) of correlation coefficients 
that are included in the graph is not specified, and the specific 
threshold value that was chosen could be perceived as a subjective 
decision. In contrast, the Pareto principle may suggest that only the 
highest 20% (p=0.2) of correlation coefficients should be included in 
the graph (Bezuidenhout et al., 2012). While this technique may be 
appropriate in systems where there is an exponential decline in 
correlation strengths, it is also likely to fail in many applications. 
Figure 1, for example, illustrates a case where the strength of 
correlation coefficients does not decline logarithmically. A maximum 
spanning tree (MST) approach is more sophisticated (Mantegna, 
1999) and will remove all the redundancy without disconnecting any 
vertexes from the network, while simultaneously retaining the 
strongest overall correlation structure. 

We now present two more objective approaches to potentially 
remove redundant edges from the correlation graph. First, we 
include only the two highest correlation coefficients per variable. 
This was named the MAX2 correlation graph. Secondly, we sort the 
correlation coefficients from the highest to the lowest and plot them 
against p, as presented in Figure 1. In searching for the fewest 
number of correlation coefficients that would describe the largest 
number of important relationships in the system, we calculate the 

Euclidean distance () between each data point and the origin of 
the graph. The closest data point to the  origin  (as  depicted  by  an
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Table 1. Body shape variables that were used in this study (Heinz et al., 2003). 
 

Abbreviation Description 

Biacr Biacromial diameter (width between shoulder joints) 

Biili Biiliac diameter (breadth of pelvis)  

Bitro Bitrochanteric diameter (width between top of legs below hip joints) 

ChestDe Chest depth between spine and sternum at nipple level* 

ChestDi Chest diameter at nipple level* 

Elbow Elbow diameter, sum of two elbows 

WristDi Wrist diameter, sum of two wrists 

KneeDi Knee diameter, sum of two knees 

AnkleDi Ankle diameter, sum of two ankles 

Shoul Shoulder girth over deltoid muscles 

ChestGi Chest girth*(males at the nipple line; females just above breast tissue) 

Waist Waist girth, narrowest part below rib cage, average between contracted and relaxed  

Navel Navel (or "Abdominal") girth at umbilicus and iliac crest, iliac crest as a landmark 

Hip g Hip girth at level of bitrochanteric diameter 

Thigh Thigh girth below gluteal fold 

Bicep Bicep girth, flexed, average between right and left girths 

Forea Forearm girth, extended, palm up 

KneeGi Knee girth over patella, slightly flexed position 

Calf  Calf maximum girth 

AnkleGi Ankle minimum girth 

WristGi Wrist minimum girth 

Age Age  

Weigh Weight  

Heigh Height  
 

*measurement performed at mid-expiration; average between right and left. 
 
 
 
arrow in Figure 1) represents the minimum  threshold (min-) and 
all the correlation coefficients to the left of this point are included in 
the correlation graph. It can be argued that diminishing returns 

apply if correlation coefficients to the right of min- were to be 
included in the correlation graph. In this case variables that have an 
overall low correlation with all other variables may be completely 
disconnected from the network, likewise, well correlated variables 

will have a high degree of connectivity. The min- value presents an 
opportunity to potentially quantify and compare the nature of 

different correlating systems. A relatively low min- value will, for 
example, imply that only a few correlation coefficients are sufficient 
to describe a system, which may suggest that the system may be 

inherently simple compared to a system with a higher min- value. 
The correlation graphs that were generated above can now be 

plotted and subjected to the well-established Kamada-Kawai 
energising algorithm (Kamada and Kawai, 1989). This algorithm 
determines an equilibrium position for each vertex based on the 
weights and connectivity of its edges. It produces a visual map of 
the system that can be interpreted with relative ease. The Pajek 
networking software (De Nooy et al., 2012) was used to perform 
these tasks. A wide range of additional topological analytical 
techniques are available (Newman, 2011) to further help unpack 
the nature of the system. There is a significant research opportunity 
to relate different topological features of a correlation graph to the 
nature and complexity of the real system represented. 

RESULTS 

 
Table 2 reflects the Pearson correlation matrix between 
24 different body measurements. The correlation 
coefficients are graphically represented in Figure 1 and it 
is evident that the overall correlation structure between 
variables is relatively strong. There are no strong inverse 
correlations present in the data. This supports a sizing 
phenomenon where, overall, larger people have larger 
measurements in almost all attributes. Seventeen of the 
24 variables correlated strongly with at least one other 

variable in the dataset (r0.80). The Age variable has the 
lowest degree of correlation. All these trends were also 
confirmed by Principal Component Analyses. 

Figure 2 illustrates a maximum spanning tree (MST) of 
the 507 samples based on the strongest overall 
correlation structure. Yellow and blue vertexes depict 
males and females, respectively. Darker edges depict 
higher correlation values. The size of each vertex reflects 
the age of the particular person. Displayed images (a)-(q) 
of different body shapes were taken from  Baek  and  Lee
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Figure 1. Correlation coefficients (r) from a 24  24 human body shape correlation matrix 
sorted and plotted against their rank number and expressed as a fraction (p). 

 
 
 
(2012), courtesy of Elsevier Publishers, and were 
matched with specific persons in the dataset as indicated 
by alphabetical symbols. 

The MST reveals a strong underlying structure of 
similarities between groups of people. Although Age was 
identified as a relatively weak predictor in the correlation 
matrix (Table 2), it appears to drive a significant degree 
of clustering within the MST. Ninety-two of the 506 edges 
in Figure 2 interconnect people who fall within the oldest 
age quartile. The binomial probability for this occurrence 
is lower than 0.0000001%. Certain human shape 
categories seem to be almost exclusively reserved for 
older people. Older females cluster around F1, while 
older males cluster around two shape categories (M1 and 
M2). The shape images (e) and (f) display two male 
profiles that exclusively belong to older persons in this 
dataset. Likewise, images (m) and (n) are female profiles 
that are more associated with younger individuals. 

There are several methods available to partition a 
graph based  on  clustering  algorithms  (De Nooy  et  al., 

2012) in order to identify more uniform sub-groups within 
the dataset. A red line in Figure 2 indicates where the 
MST was split into two groups. This was done by 
seperating the network at the vertex with the highest 
betweenness value. The two sub-groups, named M and 
F, contain predominantly males and females, 
respectively. Statistics of these two groups are provided 
in Table 3. The MST differentiates between males and 
females with an accuracy of 88.95%.  

Figure 3(a) and (b) illustrate the min- correlation 
graphs for body measurements for the M and F groups, 
respectively. Vertex colours depict different body areas. 
Statistics for these graphs are presented in Table 4. In 
general a large number of body measurements correlate 
strongly, which is confirmed by the density of edges in 
Figures 3(a) and (b). This makes it more difficult to draw 

conclusions from the min- correlation graphs. Although it 

is not depicted in this paper, the equivalent min- graph 

of the 507  507 correlation matrix produced more 

clusters and sub-structures.  The  min- value  of  0.70  in
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Table 2. Pearson correlation matrix between human body dimension variables. 
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Biacr 1.00                        

Biili 0.31 1.00                       

Bitro 0.49 0.67 1.00                      

ChestDe 0.58 0.36 0.47 1.00                     

ChestDi 0.77 0.33 0.52 0.67 1.00                    

Elbow 0.77 0.32 0.53 0.67 0.76 1.00                   

WristDi 0.72 0.28 0.47 0.61 0.73 0.84 1.00                  

KneeDi 0.64 0.44 0.61 0.55 0.66 0.73 0.71 1.00                 

AnkleDi 0.66 0.37 0.50 0.60 0.67 0.82 0.77 0.72 1.00                

Shoul 0.79 0.28 0.48 0.74 0.87 0.82 0.78 0.68 0.69 1.00               

ChestGi 0.72 0.33 0.49 0.81 0.87 0.80 0.77 0.65 0.71 0.93 1.00              

Waist 0.64 0.43 0.57 0.80 0.79 0.69 0.68 0.62 0.64 0.82 0.88 1.00             

Navel 0.31 0.58 0.62 0.62 0.50 0.44 0.40 0.47 0.44 0.52 0.62 0.75 1.00            

Hip g 0.34 0.56 0.75 0.56 0.52 0.44 0.42 0.58 0.41 0.53 0.58 0.69 0.83 1.00           

Thigh 0.12 0.41 0.53 0.36 0.31 0.21 0.19 0.43 0.19 0.32 0.36 0.42 0.60 0.83 1.00          

Bicep 0.70 0.30 0.48 0.73 0.79 0.80 0.76 0.68 0.69 0.90 0.91 0.80 0.56 0.56 0.41 1.00         

Forea 0.75 0.29 0.48 0.72 0.81 0.86 0.81 0.72 0.74 0.89 0.89 0.78 0.49 0.51 0.35 0.94 1.00        

KneeGi 0.51 0.47 0.62 0.56 0.59 0.59 0.58 0.73 0.54 0.62 0.61 0.66 0.61 0.73 0.64 0.62 0.66 1.00       

Calf  0.51 0.41 0.59 0.55 0.60 0.58 0.58 0.69 0.54 0.63 0.61 0.63 0.52 0.67 0.63 0.64 0.67 0.80 1.00      

AnkleGi 0.60 0.34 0.54 0.59 0.64 0.66 0.65 0.65 0.68 0.68 0.67 0.66 0.52 0.58 0.42 0.67 0.71 0.74 0.76 1.00     

WristGi 0.77 0.26 0.48 0.68 0.76 0.85 0.86 0.73 0.76 0.84 0.82 0.73 0.44 0.46 0.24 0.85 0.90 0.64 0.65 0.75 1.00    

Age 0.09 0.25 0.27 0.32 0.19 0.20 0.21 0.17 0.24 0.18 0.25 0.37 0.42 0.23 -.02 0.18 0.15 0.12 0.11 0.14 0.19 1.00   

Weigh 0.73 0.50 0.67 0.80 0.83 0.80 0.76 0.77 0.73 0.88 0.90 0.90 0.71 0.76 0.56 0.87 0.87 0.80 0.77 0.76 0.82 0.21 1.00  

Heigh 0.75 0.38 0.49 0.55 0.63 0.74 0.68 0.59 0.69 0.67 0.62 0.55 0.31 0.34 0.12 0.59 0.66 0.53 0.45 0.57 0.69 0.07 0.72 1.00 

 
 
 
the F Group compared to 0.59 in the M group 
suggests that body shapes of persons in the F 
group are more proportional and predictable. In 
contrast, the M Group contains more noise and 
depicts a wider  variety  of  relationships  between 

body measurements. In most cases variables that 
describe the same body area (e.g. yellow torso 
vertexes) cluster together. It is, however, 
interesting to note that the diameter of limb joints, 
such as the elbow, wrist and knee, often  correlate 

better with each other compared to other limb 
measurements in the same body region. In both 
cases the centrality and degree of the Weigh 
variable proposes that a large number of body 
measurements are  strongly  regulated  by  weight 
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Figure 2. A maximum spanning tree of correlation coefficients between 507 people based on 24 body shape 
measurements. Images of body shapes were used from Baek and Lee (29) with permission from Elsevier 
Publishers. 

 
 
 

Table 3. Basic statistics of the M Group and F Group derived 
from the MST of 507 people. 
 

Group No. of males No. of females Total 

M Group 226 35 261 

F Group 21 225 246 

Total 247 260 507 
 
 
 

breaking out into a separate network. The M Group, in 
particular is interesting. Upper limb measurements 
correlate with the upper torso, while the lower torso 
measurements correlate with age.  Intuitively  this  makes 

sense because males who develop their upper limbs are 
likely to also develop the features of their upper torso. 
The knee and ankle diameters remain interesting since 
they continue to correlate better with joints in the upper 
limbs, rather than with other lower limb features. This 
suggests that the diameter of joints in the limbs, in both 
the M and F Groups, are probably more related to 
genetics than to lifestyle and age. 
 
 
DISCUSSION 
 
Body  shapes  of  males  and  females  can  normally   be
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Figure 3. Correlation graphs of the (a) M Group and (b) F Group after redundant edges were removed by using the min- 
approach. 

 
 
 

Table 4. Statistical attributes of data and correlation graphs presented in this paper. 
 

Correlation Graph n Edges min- Vertex with the highest degrees 

MST : 507 persons 507 506 0.35  

min-: M Group 24 138 0.59 Weigh (22 edges) 

min-: F Group 24 84 0.70 Weigh (16 edges) 

MAX2: M Group 24 37  Weigh (9 edges) 

MAX2: F Group 24 41  Weigh (11 edges) 

MAX2: M Group (Weigh excluded) 23 29  Elbow, Shoul (5 edges) 

MAX2: F Group (Weigh excluded) 23 28  Elbow, ChestGi, Navel (4 edges) 

 
 
 
distinguished with ease. Weight plays a vital role in 
shaping body measurements and height is more 
influential in males compared to females. Older males 
and females often become more alike and this is often 
associated with changes in the lower torso. Males have 
an increased ability to change their upper torso and 
upper limbs disproportionally to the rest of their bodies. 
Generally the attributes that describe the shape of the 
torso and those that describe the limbs are better 
correlated among each other  compared  to  across  body 

regions. The diameter of joints in a person’s limbs (e.g. 
elbows, knees and ankles) are genetically determined 
and are less dependent on lifestyle, weight and age. 
Intuitively, the results that were generated in this paper 
appear correct. However, in an unfamiliar dataset, these 
patterns could easily go undetected when a conventional 
correlation matrix, multiple regression analysis or 
Principal Component Analysis is applied. 

This paper demonstrates how a correlation graph in 
conjunction with  the  maximum  spanning  tree  algorithm
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Figure 4. Correlation graphs of the (a) M Group and (b) F Group after the weight vertex and redundant edges were removed by 
using the MAX2 approach. 

 
 
 
could manage to separate males from females based on 
body shape attributes with an accuracy of 89%. In 
addition, the role of age on body shape, which is 
generally a poorly correlated variable when conventional 
techniques are used, was confirmed with an exceptional 
high confidence level. The correlation graphs have 
revealed underlying linear structures in human body 
shape dynamics with relative ease. 

Although relatively confined to date, the potential 
applications of the correlation graphing methodology 
appears extensive. This paper demonstrates one of the 
first applications of correlation graphs in non-time series 
related data outside an economic context. Also, to the 
authors’ knowledge this is the first paper that presents a 
correlation graph based on a transposed normalised data 
set in order to project individual entities in the sample 
relative   to  each   other.  This  graph,  supported  by  the 

maximum spanning tree revealed exceptional capabilities 
to surface valuable relationships between entities. 
Unfortunately the correlation coefficient detects linear 
trends only and future research may be required to 
incorporate non-linear trends between variables into the 
correlation graph. This paper demonstrates how 
categorical data (such as male vs. female, old versus 
young) can become part of a correlation graph through 
respective vertex colouring and subsequent statistical 
analyses. Correlation graphs have strong capabilities to 
help sub-divide a system into smaller clusters of 
elements that are more integrated and uniform in their 
responses. This kind of analysis, to the authors’ 
knowledge, has not been demonstrated in the literature 
before and in this paper we have made a concerted effort 
to present the methodologies in a relatively simple and 
generalised fashion to stimulate adoption  across  various 



 
 
 
 
 
 
disciplines. 

The MAX2 and min- techniques are novice, objective 
and powerful algorithms to remove redundancy and can 
be used to (a) help quantify the degree of complexity of a 
system, (b) reveal the dominant factors that regulate the 
system, and (c) reveal the more subtle factors that may 
silently in the background play an important role in 
regulating a system.  

In addition to being a powerful multivariate analyses 
methodology, the visual strength and intuitive 
understanding of correlation graphs may be valuable 
when scientists interface with society, especially when 
relatively complex systems need to be understood. 
People are generally familiar to visually enhanced maps 
and trees and intuitively understand graphs that 
represent relationships between different parts of a 
system. This does not only create an interfacing 
opportunity between scientists and society, but also holds 
potential to be a powerful teaching aid. Research is also 
needed to further link conventional graph theory 
descriptive parameters, such as the network’s diameter, 
planarity and degree distribution to properties of the real 
systems that are under investigation. 
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