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This paper present the elastic solutions of the disk made of functionally graded material (FGM) with 
variable thickness subjected to rotating load. The material properties are presented by combination of 
two sigmoid FGM (S-FGM) and disk thickness profile are assumed to be represented by power law 
distributions. Aluminum-ceramic-aluminum FG rotated disk is considered. Hollow disks are considered 
and the solutions for the stresses and displacements are given under appropriate boundary conditions. 
The results in metal-ceramic-metal FGMs are presented and compared with the known results in the 
literature. The solutions for S-FGM are compared with that of non FGM, and for variable thickness and 
for uniform thickness. The effects of the material grading index, n, and the geometry of the disk on the 
stress and displacement are investigated. It is found that a FG disk with concave thickness profile has 
smaller stresses and displacements compared with the concave or linear by variable thickness profile. 
The results in metal-ceramic or ceramic-metal and metal-ceramic-metal FGMs are compared. These 
results suggest that a rotating FG disk with metal-ceramic-metal can be more efficient than the one with 
ceramic-metal or metal-ceramic. 
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INTRODUCTION 

 
Functionally graded materials (FGMs) are defined as 
those materials in which the volume fraction of the two or 
more materials is varied, as a power-law, sigmoid or 
exponential distribution, continuously as a function of 
position along certain dimension(s) of the structure 
(Reddy, 2000; Suresh and Mortensen, 1998). These 
materials are mainly constructed to operate in high 
temperature environments.  

Rotating disks have many practical engineering appli-
cations such as in steam and gas turbine rotors, turbo 
generators, internal combustion engines, fly wheels, 
turbojet engines, reciprocating and centrifugal compressors 
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just to mention a few. Brake disk can be an example of 
solid rotating disk where only body force is involved. Solid 
disks can also be found in components such as cover 
plates of rotating components and idlers used in belt 
assemblies. 

In a turbine rotor, there is always a possibility that the 
heat from the external surface transmits to the shaft and 
from it to the bearings causing adverse effects on its 
function and efficiency. To deal with this situation and to 
prevent heat from being transferred to the shaft and 
bearings, the disk can be made of FGM with ceramic-rich 
at the outer surface and metal-rich at the inner surface. 
While the heat resistant property of the ceramic at the 
outer surface prevents heat from being transferred, the 
metal at the inner surface helps carry the stress for the 
transmission of torque from the disk to the shaft. 

The boundary conditions of the disk depend on the way 



 

 

 
 
 
the disk is attached to the shaft. For a disk connected 
rigidly to the shaft (by means of welding or shaft and rotor 
disk cast together), a fixed-free condition applies. On the 
other hand, for the disk connected to the shaft by means 
of splines where small axial movement is allowed, a free-
free condition applies. Flywheels and gear wheels are 
other examples of fixed-free conditions usually used for 
storing kinetic energy and transmitting mechanical power, 
respectively.  

In any of the mentioned applications, the performance 
of the component in terms of efficiency, service life and 
power transmission depends on the material, speed of 
rotation and operating conditions. Normally, a component 
can be fabricated using any metal. However, for some 
specific applications such as in aerospace engineering 
where the component’s weight and durability in high 
temperature environment are so crucial, the components 
need to be fabricated using special material such as a 
FGM. FGMs are usually made of a mixture of ceramic 
and metals. The ceramic constituent of the material 
provides the high temperature resistance due to its low 
thermal conductivity. The ductile metal constituent, on the 
other hand, prevents fracture caused by stress due to 
high temperature gradient in a very short period of time 
(Reddy et al., 1999). 

Fukui et al. (1993) considered a thick-walled FG tube 
under uniform thermal loading and investigated the effect 
of graded components on residual stresses. They further 
estimated the optimum composition gradient generated 
by compressive circumferential stress at the inner 
surface. Boussaa (2000) investigated the problem of 
optimizing the composition profile of a FG interlayer 
inserted between a metallic tube and a ceramic coating 
so as to alleviate the thermal stresses occurring at the 
metal–ceramic interface. Jabbari et al. (2003) presented 
the general theoretical analysis of two-dimensional 
steady-state thermal stresses for a hollow thick cylinder 
made of FGM. 

Horgan and Chan (1999) investigated the effects of 
material inhomogeneity on the response of linearly-elastic 
isotropic solid circular disks or cylinders rotating at 
constant angular velocity about its axis of symmetry. A 
special case of a body with Young’s modulus depending 
on the radial coordinate only and constant Poisson’s ratio 
was examined. For the case when the Young’s modulus 
had a power-law dependence on the radial coordinate, 
explicit exact solutions were obtained. 

Many studies conducted on FGMs were related to the 
analysis of thermal stresses and deformations (Liew et 
al., 2003; Ootao and Tanigawa, 1999; Ootao and 
Tanigawa, 2004; Shahsiah and Eslami, 2003). Ruhi et al. 
(2005) presented a semi-analytical thermo elastic 
solution for finitely long thick-walled cylinders made of 
FGMs.  

Durodola and Attia (2000a, b) presented a finite 
element analysis for FG rotating disks using comercial 
software   package.   The  disks  were  modeled  as  non- 
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homogeneous orthotropic materials such as those 
obtained through non-uniform reinforcement of metal 
matrix by long fibers. They considered three types of 

gradation distributions of the Young’s modulus E  in the 
hoop direction relative to matrix material modulus. 
Kordkheili and Naghdabadi (2007) presented semi-
analytical thermo elastic solutions for hollow and solid 
rotating axisymmetric disks made of FGMs under plane 
stress condition. They compared their results with those 
of Durodola and Attia (2000a, b) under the centrifugal 
loading. 

Although many earlier studies on rotating disks 
(Tutuncu, 1995) have considered disks with uniform 
thickness, several authors have emphasized the 
importance of variable thickness in the rotating disks 
(Eraslan, 2003; Eraslan and Argeso, 2002; Guven, 1992; 
Reddy and Srinath, 1974). Recent studies (Eraslan and 
Orcan, 2002; Orcan and Eraslan, 2002) indicated that 
stresses in rotating disks (annular or solid) with variable 
thickness are much lower than those in a uniform-
thickness disk at the same angular velocity. Jahed at al. 
(2005) analyzed an inhomogeneous disk model with 
variable thickness to achieve minimum weight of disk. 
Using the variable material properties method, stresses 
were obtained for the disk under rotation and a steady 
temperature field. Bayat et al. (2008) analyzed the FG 
gear wheel with variable thickness using material 
properties as a single power-law FGM (P-FGM). 

To the best of authors’ knowledge, no work has been 
reported to date which concerns with the analysis of the 
combination of two sigmoid FG (S-FG) disks with variable 
thickness. This very fact motivates the present study. In 
this paper, a thin FG disk with variable thickness (Figure 
1) subjected to centrifugal loading due to constant 
angular velocity is considered. The thickness of the disk 
is assumed to be sufficiently small compared to its 
diameter and plane stress condition is applied. The 
symmetry with respect to the rotational axis and the mid-
plane is assumed. This work aims to investigate the 
effect of combination of two S-FGMs and property 
gradation and also the geometry of the disk on stresses 
and displacements in hollow disks under free-free and 
fixed-free boundary conditions. The non-dimensional 
stress and displacement components in the radial 
direction are given using semi-analytical method based 
on the form of the sigmoid distribution for the mechanical 
properties of the constituent components and hyperbolic 
distribution for the thickness profile. 

To implement the semi-analytical method in numerical 
studies, the radial domain of the disk is divided into some 
virtual sub-domains where, in each sub-domain, the 
mechanical property is assumed to be constant. This 
assumption yields the governing equilibrium equations in 
each sub-domain as ordinary differential equations with 
constant coefficients whose general solution can be 
written involving certain unknowns. These unknowns can 
be determined as solution of systems  of  linear  algebraic  
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Figure 1. Configuration of a thin disk with variable thickness. 

 
 
 
equations obtained by imposing the continuity conditions 
at the interface of the adjacent sub-domains together with 
global conditions. Increasing the number of sub-domains 
(divisions) in the radial direction increases the accuracy 
in the solution. 
 
 
GRADATION RELATION 
 

In this study, the property variation P of the material in the 
FG disk along the radial direction is assumed to be the 
following form (Chi and Chung, 2006): 
 

1 1 1 2 1( ) ( ) (1 ( )) ;P r g r P g r P r r r               (1a) 

 

2 1 2 2 2( ) ( ) (1 ( )) ;P r g r P g r P r r r                (1b)       
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Here, 1P  and 2P  are the corresponding properties of  

materials 1 and 2 of the disk; 1r and 
2r  are the radius that  

there exist full materials 1 and 2, respectively; 0n   is 

the volume fraction  exponent (also called grading index 

in this paper); ( )g r  is power low function; r is the mean 

radius of 1r and 
2r . In this study, the Poisson’s ratio   is 

assumed to be constant and the elastic modulus E  and 
the density   are assumed to vary according to the 

gradation relations (1), for example, the assumed form for 

the modulus of elasticity E is: 
 

1 1 1 2 1( ) ( ) (1 ( )) ;E r g r E g r E r r r               (2a) 

 

2 1 2 2 2( ) ( ) (1 ( )) ;E r g r E g r E r r r               (2b) 

 
By using Equations 1 and considering two types of S-

FGMs, first aluminum-ceramic between ir (inner radius of 

the disk) and 
2

o ir r
(

or is outer radius of disk); second 

ceramic-aluminum between 
2

o ir r
and 

or . The variation 

of non-dimensional modulus of elasticity,

c

E

E
, with non-

dimensional radial distance,

or

r
, is shown in Figure 2. 

The thickness-profile h  of the disk is assumed to vary 

radially according to the following form: 

 

( ) 1

m

o

o

r
h r h

q r

  
   
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            (3a) 
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Figure 2. Variation of the non-dimensional elastic modulus versus non-dimensional radius. 
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Figure 3. Variation of non-dimensional thickness versus non-dimensional radius. 

 
 
 
Here, q  and m  are geometric parameters such 

that 0 1, 0q m   ; oh is the thickness at the axis of 

the disk. A uniform thickness disk can be obtained by 

setting 0,q m  . A linearly decreasing 

thickness can be obtained for 1m  . The profile is 

concave if 1m   and it is convex if 1m   . Different 

forms of the thickness profiles are shown in Figure 3.  
For a future reference, another important parameter 

that is, the ratio of the weight of the double S-FG 

disk,W , and the weight of all-ceramic disk of same 

size, CerW , denoted by W / CerW can be defined as: 
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with Cer denoting the density of the all-ceramic disk. 

/ CerW W  will be used to compare the weights of FG disks 

with the weight of all-ceramic disk in the following 
sections. 
 
 

THEORETICAL FORMULATION AND EQUILIBRIUM 
EQUATIONS  
 

Consider a hollow axial symmetric FG disk with variable 

thickness with inner radius ir  and outer radius
or , as 

shown in Figure 1. The disk rotates at an angular 
velocity .  The problem is assumed to be plane stress. 

Due to the axial symmetry assumptions in geometry and 

loading, cylindrical coordinate system ( , , )r z is used. 

The inner and outer surfaces of the FG disk are assumed 

to be metal-rich and at radius r ceramic-rich is assumed. 
Between these two surfaces, the material properties vary 
according to Equations 1.  

It may be mentioned that although a metal-rich at the 
inner and outer surfaces and full-ceramic at mid way 
between inner and outer surfaces, material gradient has 
been considered for all the disks in this paper. The 
method of solution that has been followed is independent 
of such a gradient and may be applied to other gradients 
as well. However, several applications considered in this 
paper such as an FG gear wheel mounted on a shaft-
support justify consideration of metal-rich inner and outer 
surface of the disks. Also, for an FG gear wheel mounted 
on shaft-support ductility plays an important role and thus 
the metal dominated inner and outer surface of the disk is 
further justified. 
 
 

Strains and displacement field 
 

Using the infinitesimal theory of elasticity and the 
rotational symmetry, the strain-displacement relations 
are: 
 

r

du

dr
                                     (4a) 

 
 
 
 

 
u

r
                              (4b) 

 
Where u is the radial displacement. Also, the linear 

constitutive elastic equations in the cylindrical coordinate 
are used in the form of: 
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Where E is the modulus of elasticity and  is the 

Poisson’s ratio. 
 
 

Equilibrium equations 
 

For a rotating disk, if 
1U is the total strain energy of the 

body and 1V is the total potential energy of external force, 

then the total energy   can be represented as: 
 

1 1U V                          (6) 

 

The principle of minimum total potential energy states: 
 

1 1( ) 0U V                                       (7) 

 

And this yield 
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                                                                                       (8) 
 

Here, V  represents the total volume of disk. For the 

body force, the potential energy of applied load is given 
by: 
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Substituting for 1U and 1V  form Equations 8 and 9 into 

Equation 7, and integrating once, one gets 
 

2 2( ( ) ) ( ) ( ) ( ) 0r

d
h r r h r h r r r
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                 (10) 

 
The equilibrium equation is obtained, the results is the 
same as Reddy and Srinath (1974) and yields the Navier 
equation for the radial displacement as follows: 
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Here, for brevity, symbols rh , 
rE and 

r have been used 

for the functions ( )h r , ( )E r and ( )r
, 

respectively. In 

Equation 11, the displacement u  is a function of r only 

due to axial symmetry and plane stress condition.   
 
 
BOUNDARY CONDITIONS  
 
Hollow disk free-free  
 
The following traction conditions on the inner and outer 
surfaces of the rotating hollow disk must be satisfied. 
 

0r      ir r   

0r      
or r                               (12)      

 
 
Hollow disk fixed-free 
 

0u       ir r   

0r     
or r                               (13)  

 
 
NON-DIMENSIONAL FORM 
 
Navier Equation 11 and the boundary conditions given by 
Equations 12 and 13 can be written in non-dimensional 
form using the following set of variables: 
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The non-dimensional form of Equation 4 is then given by: 
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Non-dimensional boundary conditions 
 
Hollow disk free-free 
 
For this case, the boundary conditions of Equation 12 
reduce to 
 

2
0

1

R
R

E dU U

dR R
 



 
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iR R  0R                       

1R                                                         (17) 
 
 
Hollow disk fixed-free 
 
Boundary conditions of Equation 13 turn out to be 
 

0U       iR R  

0R     1R                         (18) 

 
It may be noted that the study of Equation 15 in non-
dimensional form makes the absolute values of 
properties and the loading speed unimportant. 
 
 
ELASTIC SOLUTION 
 
A closed-form solution of Equation 15 with variable 
coefficients seems to be difficult, if not impossible, to 
obtain. The method of analysis is the same as describe in 
Bayat et al. (2008). However, for completeness of the 
present paper, the method is also presented here. 
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Figure 4. Dividing radial domain into some finite sub-domains. 

 
 
 

Hence, in this study a semi-analytical solution of 
Equation 15 is attempted. In this method, a disk is divided 

into some virtual sub-domains (say q ), with 
( )kt denoting 

the radial-width of the 
thk sub-domain as shown in Figure 

4. Evaluating the coefficients of Equation 15 at
( )kR R , 

the mean radius of the 
thk division, an ordinary differential 

equation with constant coefficients is obtained which is 

valid in 
thk sub-domain. That is: 
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kR R R R
R R R R

dH dE
c E H H E

dR dR R
 

 

    

 

( ) ( )

( ) 2 ( ) 2

4 (1 ) ( )k k

k k

R R
c H R   .                    (20) 

 
Using the mentioned technique, Equation 15 with variable 
Coefficients  is  changed  into  a  system  of  q   ordinary  

differential equations with constant coefficients with 
q being the number of virtual sub-domains.  

The solution for Equation 19 can be written in the form 
of: 
 

( )
( ) ( ) ( ) ( ) ( ) 4

1 1 2 2 ( )

3

exp( ) exp( )
k

k k k k k

k

c
U X R X R

c
    ,        (21) 

 

Where  
( )

1

kX  and 
( )

2

kX  are unknown constants for 
thk  

sub-domain and 
 

 
2

( ) ( ) ( ) ( )

2 2 3 1( ) ( )

1 2 ( )

1

4
,

2

k k k k

k k

k

c c c c

c
 

 
   

 
Also, the solution of Equation 21 is valid for 
 

( ) ( )
( ) ( )

2 2

k k
k kt t

R R R     .             (22) 

 

Where 
( )kR  and 

( )kt are the mean radius and the radial-

width of the 
thk sub-domain, respectively. The unknowns 

( )

1

kX  and 
( )

2

kX  can be determined by applying the 

necessary conditions between each two adjacent sub-
domains. For this purpose, the continuity of the radial 

displacement U  as well as radial stress R  is imposed 

at the interfaces of the adjacent sub-domains. The 
continuity conditions at interfaces are given by: 
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Table 1. Different cases of thickness profiles. 
 

Variable 
1m   0,q m   1m   1m   

Case(a)  Case (b) Case (c) Case (d) 

Thickness profile (Equation 3a) Parabolic concave Constant thickness Parabolic convex Linear 
 
 
 

Table 2. Variation of non-dimensional weight with grading index n  and thickness profile. 
 

Thickness profile 
(Equation 2) Cases 

Values of weight ratio, / cW W , (Equation 3b) 

Full-metal n = 1 n = 5.0 
Full-metal, full-ceramic, 

full-metal 
Full-ceramic 

a)  Parabolic concave 0.4737 1194/1580 = 0.7559 1207/1580 = 0.7641 1209/1580 = 0.7652 1 

b)  Uniform 0.4737 2016/2736 = 0.7368 2016/2736 = 0.7368 2016/2736 = 0.7368 1 

c)  Parabolic convex 0.4737 684/909 = 0.7525 690/909 = 0.7591 692/909 = 0.7613 1 

d)  Linear 0.4737 659/851 = 0.7444 673/851 = 0.7908 675/851 = 0.7932 1 
 
 
 

 

( ) ( 1)
( ) ( 1)

2 2

( ) ( 1)
( ) ( 1)

2 2

( ) ( )

( ) ( )

k kt t
k k

k kt t
k k

k k

R R R R

k k

R R
R R R R

U U

 


  


  

 

 




                          (23) 

 
These conditions together with the global boundary 
conditions of Equation 17 or Equation 18  yield a set of 

linear algebraic equations in 
( )

1

kX  and
( )

2

kX . Solving 

these equations for 
( )

1

kX  and
( )

2

kX  and substituting them 

in Equation 21, the displacement component,U , is 

determined in each sub-domain. Increasing the number 
of divisions improves the accuracy of the results. 
 
 

NUMERICAL RESULTS 
 

For numerical illustration of the elastic solutions of this 
study, it is assumed that all the disks considered have the 
same volume. The same volume of the disks can be 

achieved by suitably choosing the value of oh . It can be 

noted that the results obtained in this study are based on 
the non-dimensional formulation and thus are 

independent from the absolute value of oh .  

Two cases namely hollow disk free-free, hollow disk 
fixed-free are considered. The analysis is conducted 
using aluminum as the inner-surface metal and Zirconia 
as outer-surface ceramic the same as that considered by 
Bayat et al. (2008). The material properties are: 
 

Al Cer

3 3
Al Cer

E 70.0GPa , E 151.0GPa

2700.0kg / m , 5700.0kg / m , 0.3  

 

  

      (24) 

 

A hollow disk with 5o iR R  or a solid disk rotating at  

constant angular velocity is considered here. Different 
cases for the thickness profiles used in numerical 
illustrations are shown in Table 1. 

The following four sets of parameter values for m  

(each set representing a particular case of Table 1) are 
considered. 
 

: 0.30, 1.4a q m 
 

 

: 0.0,b q m 
 

 

: 0.4, 0.55c q m   

 

: 1.0d m                         (25) 

 

The elastic deformation of disk with variable thickness 
due to rotation is determined. The effect of grading index, 

n , and variable thickness on the non-dimensional weight 

of the hallow disk is shown in Table 2. It can be seen that 
all-ceramic disks are the heaviest whereas full-metal disk 
is the lightest. The weight of FG disk is in between the all-
ceramic and all-metal values.  

For the values chosen for q and m  as given in 

Equation 25, each thickness profile of the disk has 70% 
thickness reduction at the outer surface. The effect of 
thickness profile on the weight can be shown by 
comparing the weight values for the same value of 
grading index n . It can be noted both numerators and 

denominators are changed, by considering the 
numerators: it is seen that hollow FG disk with linear 
thickness profile has smaller weight compared to that 
with other thickness profiles; Figure 3 may be referred to 
for more details. To show the effect of grading index n  on 

the weight, disks with the same thickness profile are 
considered. It is noticed that the weights of FG disks lie in  
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Figure 5. Variation of 
R  versus R for free-free hollow disk in the FG disk with variable thickness for different values 

of the geometric parameters q and m . 
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Figure 6. Variation of 
R  versus R for free-free hollow disk in the disk with concave thickness profile for different 

values of the grading index n . 

 
 
 

between 0.4737 and 1, where
2700

0.4737
5700

m

c




  . In 

this study, the density of ceramic is greater than the 
density of aluminum. It can be noted that for materials 

such that 1m

c




 , the weight of FG disk can be made 

even lighter than the full-metal disk.  

It may be mentioned here that the method of solution 
considered in this study is general in nature and is not 
limited to gradients considered in this study only but can 
be applied to other gradients as well. 
 
 
Hollow disk (Free-free) 
 
Figures 5 and 6 show the  non-dimensional  radial  stress  
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Figure 7. Variation of U versus R for free-free hollow disk in the FG disk with variable thickness for different values of 

the geometric parameters q and m . 

  
 
 
and radial displacement, respectively for different values 
of the geometric parameters q , m  and the grading 

index n . 

In Figure 5, the effect of thickness profile on the radial 
stress is shown by fixing the value of the grading index, in 

this case 0.8n  and considering different thickness 

profiles as shown in Figure 2. It is seen that hollow FG 
disks with uniform-thickness have smaller radial stresses 
compared to those with variable thickness. FG disk with 
concave thickness profile is seen to have smaller stress 
for the chosen values of the geometric parameters 
q and m in comparison to other variable thickness 

profiles. Figure 6 shows the effect of grading index n  on 

the stress distributions. It can be seen that the maximum 
of non-dimensional radial stresses are highest for full-
ceramic disk and lowest for full-metal disk and the 
maximum value of the radial stress for different S-FG 
disks occur in between. It is noticed that close to the 
inner surface for the specific values of the grading index 

n ( 0.8n ), the radial stresses for combination of two S-

FG disks may not lie in between the stresses for full-
ceramic and full-metal disks but toward the outer surface,  
the stresses for S-FG disks can be lie in between.  

The variation of the radial displacement with radius is 
shown in Figures 7 and 8. Figure 7 shows the effect of 
the thickness profile on the radial displacement for the 

same value of the grading index 0.8n  and for different 

thickness profiles. It is observed that the radial 

displacement for the S-FG disk with concave profile 
thickness is smallest in comparison with other thickness 
profiles that is, linear or convex. Figure 8 shows the effect 
of grading index, n , on the radial displacement for all the 

disks with the same concave thickness profile as shown 
in Figure 2 but having different grading index. As 
expected, the radial displacement values for full-metal 
(Aluminum) disk are greater than those for full-ceramic 
(Zirconia) disk due to higher modulus of elasticity of the 
latter. It is noticed that close to the outer surface the 
radial displacements for S-FG disks lie in between the 
stresses for full-ceramic and full-metal disks but toward 
the inner surface, for the specific values of the grading 

index n  ( 2.0n ) the displacements for S-FG disks can 

be even larger than the radial displacement for full-metal 
disk. It is worth mentioning that near to full metal surface, 
inner or outer; the radial displacement varies by, 
increasing or decreasing, the radius, respectively.   

The results of Figures 5 to 8 can be summarized to 
conclude that, for the same value of grading index, n , the 

hollow S-FG disk with concave thickness profile is better 
than those with other variable thickness profiles. This 
result is similar to the one reported by Eraslan (2003). 
 
 
Hollow disk (Fixed-free) 
 
The stress distributions for S-FG disk with variable 
thickness mounted on a rigid shaft for  different  values of  
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Figure 8. Variation of U versus R for free-free hollow disk in the disk with concave thickness profile for different values of 

the grading index n . 
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Figure 9. Variation of R  versus R for fixed-free hollow disk in the FG disk with variable thickness for different values of 

the geometric parameters q and m . 

 
 
 

the geometric parameters q , m  and the grading index n  

are shown in Figures 9 and 10.  
It  is  shown  in  Figure  9  that  for   the  same  value  of  

grading index n ( 0.8n ) the maximum value of the 

radial stress, for each thickness profile from four 
cases ( )a , ( )b , ( )c and ( )d , occurs at the inner  surface  
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Figure 10. Variation of 
R  versus R for fixed-free hollow disk in the disk with concave thickness profile for different values of 

the grading index n . 

 
 
 
and each of them is greater than its corresponding value 
with free-free condition shown in Figure 5. Here again a 
concave disk is found to have maximum radial stress 
smaller than other disks with variable thickness. It can 
also be seen that mounted S-FG disks with uniform-
thickness have smaller radial stresses compared to those 
with variable thickness. Figure 10 shows the effect of 
grading index n  (Figure 4) on the radial stress 

distributions for S-FG disk with concave thickness profile 
mounted on a rigid shaft. It is noticed from all the cases 
considered for different n that for the specific value of the 

grading index 0.8n , the radial stress is smaller than 

that of full metal disk. Taking into account the boundary 
condition, this phenomenon can be explained by the 
presence of interactive effects between stiffness and the 
centrifugal force due to constant angular velocity of the 
disk. Figure 2 may be referred to for more details. It is 

seen near to full-ceramic surface ( / 0.6or r  ), the radial 

stress is constant. 
The variation of radial displacements with radius in 

disks having same grading 0.8n  but different 

thickness profiles (Figure 2) is shown in Figure 11. It is 
observed that the radial displacement in S-FG disk with 
concave thickness profile is smaller compared with disks 
with linear or convex profiles. It is also observed that if 
the value of n  is kept fixed, in the present example, at 

0.8n then the FG disks with uniform constant 

thickness have smaller radial displacements than the disk 
with variable thickness. It is shown from Figure 12 that 
the full-ceramic or full-metal mounted disks have smaller 
or bigger displacements compared to S-FG disks. 

 
 
Comparison between metal-ceramic, metal-ceramic-
metal and ceramic-metal 

 
For a future investigation, another comparison between 
non-dimensional displacement for one S-FGM (metal-
ceramic or ceramic-metal) and two types of S-FGM 
(metal-ceramic-metal) are shown in Figure 13.  

The variation of the radial displacement with radius is 
shown in Figure 13. It shows the effect of combination 
two S-FG disks on the radial displacement for the same 

value of the grading index 1.0n  and for concave 

thickness profiles. It is observed that the maximum radial 
displacement for the two S-FG disks with concave profile 
thickness is smallest in comparison with one S-FG disk 
(meta-ceramic or ceramic-metal). As expected, the radial 
displacement values for metal-ceramic disk are greater 
than those for ceramic-metal and metal-ceramic-metal. It 
is noticed that close to the inner surface the radial 
displacements for S-FG disks (ceramic-metal) is smaller 
than metal-ceramic-metal disk but toward the outer 
surface the displacements for combination of two S-FG 
disks can be  even  smaller  than the radial  displacement  
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Figure 11. Variation of U versus R for fixed-free hollow disk in the FG disk with variable thickness for different 

values of the geometric parameters q and m . 
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Figure 12. Variation of U versus R for fixed-free hollow disk in the disk with concave thickness profile for different 

values of the grading index n . 

  
 
 
for one S-FG disk.  
 
 
CONCLUSIONS 
 
An analysis of FG rotating disks with variable thickness is  

presented. Combinations of two S-FGMs with hyperbolic 
thickness profile type are considered. Elastic radial 
stresses and radial displacements for the hollow disks 
with both free-free and fixed-free boundary conditions are 
obtained. The effects of the grading index, n, and 
geometry of the disk based on different thickness profiles  
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Figure 13. Variation of U versus R for fixed-free hollow disk in the disk with concave thickness profile for different type of 

S-FGM. 

  
 
 
on the stresses and the radial displacements are 
investigated. Numerical results are presented for the S-
FG disk using aluminum as the inner and outer surface-
metal and Zirconia at mean radius of disk. These results 
are compared with those for rotating disks with uniform 
thickness. 

Some salient conclusions of this study can be 
summarized as follows: 
 
1) For the same grading index, n , linear thickness profile 

is the lightest disk followed by convex,  concave and 
constant, respectively.  
2) The combination of two S-FG disks with concave 
thickness profile has smaller stresses than with linear or 
convex thickness profile while the same grading is 
considered for all the disks.  
3) For each of thickness profiles, the radial stress in S-FG 
disks increases with increase in n by certain radius, after 
that certain radius the radial stress in S-FG disks 
decrease with increase in n. Furthermore, for some 

specific values n ( 0.8n ) the radial stress in S-FG 

disks are smaller than those in pure material disks. 
4) For a given pair of materials, there is a particular 
volume fraction that maximizes a specific mechanical 
response under centrifugal loading due to constant 
angular velocity. In other words, free-free or mounted FG 
disks can have larger radial displacement than full-metal 
near to the inner surface for some specific grading while 
maximum values of radial displacements in S-FG disks 
with variable thickness are smaller than the maximum 
values for homogenized disks.  

5) Hollow rotating FG disks with uniform-thickness profile 
have smaller stresses and displacements compared to 
those with parabolic convergent.  
6) Maximum radial displacement for fixed-free rotating 
disk in combination of two S-FG disks is smaller than 
those in one S-FG disks. 
 
From the semi-analytical results for combination of two S-
FG disks given in this study, it can be suggested that an 
efficient and optimal design of the FG disk calls for a 
variable section being thicker at the hub and tapering 
down to a smaller thickness toward the periphery. And 
also the combination of two S-FG disks can be more 
effective in comparison with one S-FG disk. 
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