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A Mixed-model assembly line is widely employed to perform the assembly operation in industries and 
the time needed to release products to market is frequently considered by many researchers. However, 
providing an appropriate level of flexibility to meet customer demand variations is critical for 
companies survival in this competitive market. The problem of production planning in terms of 
sequencing various product model is studied here. A manufacturing system is presented to show the 
application of this problem.  A proposed multi-objective function is given to minimize the overall make-
span of a mixed-model assembly line, but with additional goals also considered, such as balancing the 
assembly line and minimizing the variation of completion time. We propose a solution aimed to solve 
the problem in successive stages. For each stage, a mathematical model formally describes the 
problem and the main difficulties faced are explained. Due to the high complexity of problem solving 
procedures by classical mathematic techniques, this paper presents a new approach of hybrid genetic 
algorithm-simulated annealing (GA-SA) implementation in order to meet the problem objectives. A 
proposed hybrid scheme is executed to overcome problem complexity and to meet the problem 
objectives. In order to check the efficiency of hybrid search techniques, a comparison is made between 
the results obtained by hybrid GA-SA and GA, and the comparison validates the effectiveness of the 
presented hybrid search technique. 
 
Key words: Genetic algorithm, hybrid GA-SA (genetic algorithm-simulated annealing), mixed-integer 
programming, meta-heuristic algorithm. 

 
 
INTRODUCTION 
 
One of the most important issues for companies is to 
release their products into the markets earlier than other 
competitors to take more market share and stabilize the 
company’s situation in the global competitive markets. 
Creating more profit enhance the company’s survival 
chance in the economic crisis period and improve the 
flexibility to respond to key business issues. Quick 
response manufacturing is an operation strategy which 
helps companies to stand against today’s challenges in 
the competitive markets by focusing and reducing the 
time  required   to   accomplish    various    manufacturing 
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Abbreviations: SDST, Sequence dependent setup time; 
MOSS, multi objective scatter search; PCB, printed circuit 
board; PCA, principal component analysis; PMX, partially 
mapped crossover; GA-SA, genetic algorithm-simulated 
annealing. 

activities (Stevenson, 2005). The flexible assembly lines 
provide special benefits for production and assembling 
industries by providing more level of flexibility in 
producing different types of product if it is well planned 
(Rehg, 1994). They also make industries more efficient to 
adjust the production requirements to the possible 
demand changes (Sule, 1997). Mixed-model assembly 
lines are kinds of manufacturing system that is 
appropriate and quickly respond to the customer’s 
variable demands. It can be measured as quick response 
manufacturing of the category which is used to produce 
different types of products without suffering from large 
inventory costs. In recent years, with the emergence of 
meta-heuristic algorithms, such as ant colony, tabu 
search, genetic algorithm, simulated annealing, have 
been employed to deal with scheduling problems. Many 
meta-heuristic algorithms were applied to overcome the 
complexity of mixed-model assembly lines problems. 
Simaria and Vilarinho (2009) attempts to develop an 
optimization algorithm for balancing  two-sided  assembly 



 
 
 
 
lines which are usually used in the automobile industry, 
more than one worker, are simultaneously working on the 
two sides of jobs.  

Kim et al. (1996) considered a new mixed-model 
assembly line with hybrid workstations type and 
sequence-dependent setup time. Their study focuses on 
optimizing three objectives such as minimizing the overall 
length of line, change over time and production rate 
variation. A new Immune algorithm was introduced by 
Zandieh et al. (2006) for scheduling a hybrid flow shop in 
which there is sequence dependent setup time (SDST) 
considerations within the problem. The actual data in real 
world’s problems is not strictly predetermined and has 
fuzzy nature of data. Sakawa and Kubota (2000) focused 
on the job shop scheduling with fuzzy processing time 
and fuzzy due date. Multi objective fuzzy job shop 
scheduling problems are formulated were it aims to 
maximize the minimum agreement index, average agree-
ment index and minimize the maximum fuzzy completion 
time. For this purpose, a Genetic algorithm was 
developed to meet the problem objectives. A new multi 
objective scatter search (MOSS) approach was proposed 
by Rahimi-Vahed et al. (2007) for sequencing problem in 
mixed model assembly line in JIT environment. As the 
entire objective functions are NP-hard, so obtaining the 
optimum solution in reasonable amount of time is not 
possible. Dynamic ideal point was proposed to overcome 
this problem.  

Gokcen and Erel (1997) attempted to develop a binary 
integer programming model for balancing the mixed-
model version of the assembly problems by considering 
the similarity of precedence relations between different 
products. The suggested method could avoid rapid 
increase in the number of decision variables within 
integer programming model so it would be able to cope 
with NP-hard nature of mixed-model assembly problems 
with larger number of variables. Sekar (2007) survey was 
done on the electronic industry which used printed circuit 
board (PCB) for mounting electronic components. He 
aimed to determine the required number of assembly line 
by principle component analysis (PCA). A binary integer 
programming model (IP) was proposed in previous 
research that tried to minimize the make-span of mixed-
model assembly lines by optimizing the job allocation on 
different lines and distributing tasks among workstations 
using binary integer programming.  

This paper presented an approach to address the job 
allocation problem in high product mix shop floor area. A 
mixed-integer programming model is presented to 
formally describe the problem under study and the 
massive required calculations which make it impossible 
to be solved optimally. This paper is organized as follows: 
general descriptions of meta-heuristic methods and the 
importance of problem under study and the recent 
achievement in optimization techniques are reviewed in 
this section. Materials and methods focus on main 
characteristics of mixed shop floor environment. The 
proposed   mathematical   programming  model  for  problem 
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under study is described to interpret the mathematical 
equations. The complexity of problem under study is also 
discussed to presents the combinatorial complexity of this 
problem. In the next step, a proposed hybrid GA-SA 
mechanism is explained to clarify the implemented hybrid 
optimization framework. The obtained results of 
numerical example with both hybrid GA-SA and GA are 
illustrated in result section and the conclusion and future 
research of this study is presented in the last section. 
 
 
MATERIALS AND METHODS 
 

The problem under study includes specific number of mixed-model 
assembly lines in a shop floor environment where different types of 
jobs can be processed and each line consist of manual work-
stations in which each assembly station is capable of serving task 
of any jobs. Typically, a mixed model assembly line is equipped 
with flexible workstations which are capable of producing variety of 
product models similar in product characteristics, continuously and 
concurrently (Groover, 2001). A workstation in any line should be 
setup for the new materials requirement to be able to serve the new 
set of products. Each line is equipped with certain number of 
workstations. Each job consists of a number of tasks that should be 
done at workstations and has its own initial setup time when it’s the 
first job of the sequence. Change over time is required to change 
the settings from one job to another in the same line. The following 
assumptions were considered in this research: All the assembly 
lines performed assembly operation independently and each 
assembly line had its own work stations that are capable of serving 
any type of models. After the job allocation, jobs were not allowed 
to shift to other assembly lines. Task time was fixed and all tasks 
were kept at the workstation, once started, until completion. All the 
times involved in this model such as processing times, change over 
time, initial setup time and task times are deterministic. Figure 1 
show a diagram of problem under study and the engaged 
parameters within the problem area. 
 
 
Problem solving procedure 
 

In order to meet the objectives for the considered problem, the 
proposed solving procedure was composed of two successive 
stages as follows: 
 
(1) Assigning task to the workstations. 
(2) Allocating jobs to the assembly line.  
 
 
Mathematical model for task assignment 
 
The integer programming model was developed by Sekar (2007) for 
allocating tasks of a job between multiple workstations so that all 
the workstations have utmost equal processing time. This model is 
used for keeping the load balance between workstations which is 
represented as follows:  
  

                                                            (1) 
 
Subject to: 
  

 
                                              (2) 
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Figure 1. Model diagram of mixed-shop floor and the engaged parameter. 
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If a task of a job assign to  

  is a set of tasks {q∈Q} 

 is the set of jobs {i∈N} 

  is the set of workstations {w ∈W}  

 is he processing time for each task ‘q’ of job ‘i’ 

 is the processing time of wth station for ith job 

 
This mathematical model is formulated by the task distribution 

among workstations for all jobs by minimizing the value of  
which represents the difference in process time among 

workstations . This means all workstations have minimum 

difference in process time for a job. denotes the process  time 

of  W
th

  station for  L
th

  job in the system. There are no precedence 

relations between tasks as they can be served at any workstations. 
Constraints (2) ensures that each task for a job should be assigned 
to only one workstation on a line, and once a task is assigned to 
any workstation, it cannot be reassigned to other workstations. 
Constraint (3) guarantees that no workstation is left without task 
assignment and at least one task of a job is assigned to a 
workstation. Constraint (4) aims to dispense the tasks for all jobs to 
the workstations without making any limitation for task assignment 
between jobs. Constraint (5) gives the process time of each 
workstation for every job by summing all the times of the assigned 

task to that workstation. represents the difference in process 
time among work stations for every single job. Constraint (6) aims 
to compute the value of difference in process time at every work-

station for each job. Practically, the value of  should be greater 
than zero. Constraint (7) is used to ensure this objective. 
 
 

Mathematical programming for job allocation 
 

Each assembly line represents the kind of flow shop system and 
the workstations representative of involved machines in the flow 
shop system. Each assembly line acts as flow line system in which 
the overall make-spam of system is determined by the longest 
completion of line so minimizing the completion time of all lines 
directly effect on overall make span of system. The proposed 
mixed-integer programming model is built based on flow shop 
model which is developed by Wagner (Pinedo, 2008) and it is 
expanded to consider the effect of initial setup time and sequential  
change over time for multiple lines. The mathematic formula is as 
follows: 
 

 

 
 
which is subject to: 



 
 
 
 

                                                                                                      (8) 
 

                                                                                               (9) 
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      (11) 
 

              (12) 
 

                     (13) 
 

                               (14) 
 

              (15) 
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                                            (17) 
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                                        (21) 
 
Where,  
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If job  is the  job in the sequence in line , 

 Ideal time on machine between the  and  

position in assembly line , 

 Waiting time of the job in the  position in between 

machine  and  in the  assembly line, 

 Number of workstations in assembly line, 

 Number of jobs in flow shop system, 

 Initial setup time for job  in the  position of job 
sequence, 

 Change over time between job  and , 

 Total idle time at the last workstation for  assembly line, 

Total setup time for  assembly line, 

Completion time for  assembly line, 

Processing time at the last workstation of  assembly 
line, 

Total absolute difference among completion time of assembly 

line  and the rest of lines, 

Total absolute difference among process time of line and 
rest of lines, m 

Total Process time for job , 

Total process time of  assembly line, 

Number of jobs allocated to  assembly line, 

Number of assembly line, 

Process time of job  at workstation , and 

Process time of job  at workstation  
 
The first term of objective function attempts to minimize the overall 
make-span of this system is by minimizing the longest completion 
time of lines. The second term of objective function attempts to 
balance workload among all assembly lines by considering all jobs’ 
process time for every single job. Minimizing the absolute value of 
total differences in process time of all assembly lines is the 
procedure that is used for achieving this goal. The third term of 
objective is used to minimize the variation of completion time 
among all assembly lines that has almost finishing time. 
 
 
Constraint explanation 
 
Minimizing the make span time in (Fm/Permu/Cmax) is associated 
with minimizing the total idle time on the last workstation. The 
second set of Equation (8) is used to obtain the minimum total idle 
time at the last workstation for every single assembly line. Equation 
(9) calculates the total setup time by summing the initial setup time 
and the change over time between the different jobs in sequence 

for each assembly line.  demonstrates the initial setup time for 

job  in the  k
th

  sequence. It is obvious that initial setup time, only 

for the first job of sequence has positive value and zero for the rest 

jobs.  Sik  =0; K=2,…,n-1. There are  jobs in this system and 

each line processes  number of jobs. Equation (10) determines 
the processing time at the last workstation for every assembly line. 
Generally in the simple flow shop system, the completion time is 
achieved by summing the process time and idle time on the last 
workstation of the corresponding line. Equation (11) calculates the 
total completion time for every single assembly line by adding job’s 
initial setup time and change over time to the flow time of the 
corresponding line. Equation (12) is used to determine the total 
absolute difference  of  completion  times  for  assembly  lines.  The 



1724            Sci. Res. Essays 
 
 
 

 
 
Figure 2. Problem solving procedure by meta-heuristic algorithm. 

 
 
 
second term of objective function aims to balance the assembly 
lines by distributing jobs among multiple lines in which all the lines 
have utmost equal process time. Equation (13) helps to find the 
difference in total process time for multiple lines by computing the 
absolute difference in total process time for lines. Equation (14) is 
used to attain the process time for every single line which is 
determined by summing all the jobs allocated to the assembly 

lines. denotes the total process time of  L
th

  assembly.  

The total process time for every single assembly line is attained 
by summing the process times of all the jobs allocated to that 
assembly line. Constraint (15) is used to dedicate all jobs to the 
available positions in which each job is placed at the unique 
position of that assembly line. Constraint (16) ensures that each job 
can be placed in only one of the available positions of sequence for 
each assembly line. Constraint (17) ensures that from all the 
available positions in the system, each job must be processed in 
only one of all available positions of sequences. The last set of 
constraints (18) show the inevitable relation between the idle time 
and waiting time in each assembly line. It represents the logical 
concept of variables involved in flow shop system. Equation (19) 
reveals that the waiting time for the first job in a sequence is always 
equal to zero for any assembly line. Equation (20) shows that the 
first workstation is always ready to process the first job of a 
sequence in any assembly line. Equation (21) illustrates that the 
initial setup time is only considered for the first job of sequence  and 

 
 
 
 
zero for the rest jobs. 
 
 
Combinatorial complexity for job allocation problem 

 
In this problem, the total number of permutations for task 
assignment can be computed as follows: 
 

                    (22)                           
 

 represents the total number of assembly stations and  kwc  

shows the number of tasks assigned to the  W
th

  workstation in  C
th

  

task assignment configuration. Nct  represents all the configurations 
of task assignment to the workstation so the total permutations of 
all tasks are obtained by summing the task permutations for all 
configurations. In the job allocation problem, the total number of 
permutations for job allocation way can be computed as follows: 
 

                                                   (23)                                                                                                
 

Where,  Nc  denotes a set of possible configurations of job allocation 

to the assembly lines and  N  represents the number of jobs in the 
system. It should be noted that the total permutations for this 
problem is obtained by summing the permutation for all possible 
configurations of job allocation. So, in order to solve the problems 

by mathematical methods, different values of input parameters  kl  
for different configurations of job allocation should be formulated. In 
this case, each set of equations only represents a specific con-
figuration of job allocation. In order to check all the configurations of 
job allocation, the proposed model should be formulated for several 
times and it requires huge amount of mathematical calculations and 
modeling which is quite time consuming and inefficient. Thus, 
problem with larger number of variables usually cannot be solved 
within a reasonable amount of time. The main objective of this 
research is to provide an evolutionary-based solving procedure to 
overcome the mathematical techniques limitations and find the 
solutions in an efficient way. 
 
 
Meta-heuristic algorithm 
 
The solving procedure starts by finding the best task allocation in 
which it balances the workstations. Allocating tasks to the 
workstations which minimizes the total time difference between 
work stations is the purpose of the GA-1. It gives the workload for 
every single job at each workstation which is required to compute 
the make-span for each line. In next stage, hybrid GA-SA tries to 
allocate jobs to the assembly lines in order to minimize the multi 
objective functions for the considered problem. Assigning jobs to 
the assembly lines can be done in different configuration of job 
allocation. So, in order to find the best solution for this problem, 
hybrid GA-SA should run for all possible job allocation 
configurations. The entire solving procedure by meta-heuristic 
methods is shown in Figure 2. 

 
 
Genetic algorithm for task assignment problem (GA-1) 

 
Fitness function is used to evaluate the generated chromosomes to 
measure the optimality of solutions. The chromosome is a string of 

length  (number of tasks for job j) that    corresponds  to  the 



 
 
 
 

 
 
Figure 3. Chromosome of task for a job. 

 
 
 

number of tasks assign to  station in the  configuration. 
Figure 3 show a chromosome of tasks and also show how they are 
assigned to the workstations. A fitness function for task assignment 
problem is shown in Equation (24) where the main objective 
focuses on minimizing the absolute value of total differences in 
processing time among all possible workstations. The best value of 

 can be achieved while all stations are fully balanced so, in that 
case the objective is 100% met and while the absolute value of total 

difference in processing times increases,  tends to zero. In order 
to guaranty the best task allocation, all possible configurations of 
task allocation is required to be checked and minimum value of 
unbalanced time is selected as best tasks allocation configuration 
for that particular job. Controlling the balancing parameter for this 
problem is computed by the proposed fitness function which is 
given by 
 

                           
                                                                                                     (24)                                
 
Where  Tjw  is the total process time for a job j on the  W

th
  

workstation given by 

 

           (25) 

 
Where,  

is the processing time of  task in sequence of job , 

 is the total number of tasks required to complete a job, 

 is a set of possible configurations for task assignment to 
workstations, and 

 is the number of jobs assigned to the  workstation in 

 configuration. 

 
 
Hybrid GA-SA algorithm for job allocation problem 

 
Genetic algorithm and simulated annealing are categorized as 
global search heuristics techniques which are able to tackle the 
complexity of large size problems by finding near optimal solutions. 
SA evolution mechanism perform based on iterative process of 
modifying and examining in the neighborhood of current solution 
(local search) while GA handles set of potential solutions which are 
based on retaining and transferring the useful information during 
the generations  (Wang  and  Zheng,  2001).  The  hybrid  approach  
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combines both advantages of GA for global searches and the 
advantage of SA for local ones by using the respective advantages 
(Oysu and Bingul, 2009). An effective combination of GA and SA, 
hybrid GA-SA is developed to solve the scheduling problem.  

A chromosome of job is generated in a predetermined number of  
population and the cost evaluation for each chromosome is done in 
the next step. A proportion of the existing population is selected 
through a fitness-based process in each generation which is more 
likely to produce better solutions for the next generation. The next 
step is to generate a second generation of solutions from those 
selected through genetic operators. For this means, some 
chromosomes are randomly selected for reproduction operation. In 
order to distract the algorithm from reaching the premature 
convergence, mutation is randomly applied on few chromosomes. 
The best individual in each generation is selected for neighborhood 
search by SA. The neighborhood search is executed within the job 
chromosomes to increase the quality of obtained solution. When 
the simulated algorithm finishes, the enhanced chromosome is 
copied to the population for further evolution through exploring 
other potential solutions. This process will be continued until the 
stopping criteria are met. The proposed hybrid GA-SA is shown in 
Figure 4. 

Generally, the appropriate fitness function closely associates with 
mathematical objective function which is capable of computing the 
cost for each chromosome quickly. As can be seen from Figure 5, 

the chromosome is a string of length N where  Klc; l=1,2,…,L 

represents the number of jobs assigns to the  L
th

 assembly line in 

the  C
th

  configuration so for finding optimum solution to this 

problem, different configuration of fitness function computing should 
be done. Total objective value is computed by summing the value 
of make-span time, process time difference and completion time 
difference. The proposed fitness function is given by 
 
 

                                                     (26) 

 
Where, 
 

                                                    (27) 

 

                                                        (28) 

 

                                            (29) 

 
 
Initial population 

 
The population in both GA-1 and hybrid GA-SA are fixed during all 
generations and it is determined base on complexity of the 
problems to provide required diversity for initial population. The 
population size for GA-1 is set to 30 in each generation. The 

complexity of job allocation problem is increasing by   order. So 
a larger population is required to provide more diversity of potential 
solutions and discourages premature convergence to local 
optimums. The population size for hybrid algorithm is set to 80 
which are fixed in each generation. Total number of generation is 
used as a stopping criterion for both GA-1 and hybrid GA-SA 
programs. GA-1 is terminated when it reaches 100 generations and 
the genetic part of hybrid heuristic requires more iteration  to  obtain  
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Figure 4. Hybrid GA-SA algorithm. 

 
 
 

 

 
 
Figure 5. A Chromosome of jobs. 

 
 
 
the potential solutions, so the algorithm terminates at 300 
generations. 
 
 
Tournament selection 

 
Tournament selection is a very popular strategy that aims to imitate 
natural competition of specious (Michalewicz, 1996). The tourna-
ment selection works in a way that two individuals are randomly 
selected from the mating pool. The individual with the highest 
fitness value is selected as the winner of the tournament and the 
selection process continues by selecting a new tournament group 
randomly until all the individuals are selected. Finally, the winner of 
each competition is copied to the worst chromosomes (Eiben and 
Smith, 2003). 
 
 
Crossover  

 
Crossover is a genetic operator that combines sets of information 
from   different   chromosomes   and   generates  new   offspring   to 

capture both individual’s information (Ariffin et al., 2004).  It is 
probable that superior parents may produce better offspring. 
Partially Mapped Crossover (PMX) is employed as crossover 
operator in both GA-1 and hybrid GA-SA algorithms while GA-1 
attempts to find the best task distribution whereas hybrid GA-SA 
aims to find the best sequence of jobs within each line. The 
crossover rate is set based on the initial population size for each 
program in order to increase the algorithm efficiency. Meanwhile, a 
population size of 30 with an 80% crossover rate is applied for GA-
1. For the hybrid GA-SA algorithm, a 50% crossover rate is 
considered appropriate, which is able to find a good solution in a 
reasonable amount of time (Grefenstette, 1986). Meanwhile, 
population size of 30 with 80% crossover rate is applied for (GA-1). 
For hybrid GA-SA algorithm, 50% crossover rate is considered 
appropriate which is able to find good solution in a reasonable 
amount of time (Grefenstette, 1986). 
 
 
Mutation 
 

Mutation operator aims  to  provide  a  means  to  prevent  algorithm 
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Table 1. All configurations of task assignment to the two workstations for seven tasks. 
 

Configuration Number of tasks assigned to W1 Number of tasks assigned to W2 

 K1c K2c = Q – K1c 

1 4 3 

2 5 2 

3 6 1 
 
 
 

Table 2. Different configurations of Job allocation to the lines. 
 

Number of jobs assigned to Line 1 Number of jobs assigned to Line 2 Number of jobs assigned to Line 3 

K1c K2c K3c = N – K1c – K2c 
 
 
 
from rapid convergence or premature convergence and drive 
algorithm to search for further feasible problem space to escape 
from local optimum, this means swap mutation is elected as 
mutation operator. The Mutation probability is set to 0.02 in both 
GA-1 and genetic programming of hybrid algorithms which is a 
typical value for Genetic algorithm (Leu et al., 1994). 
 
 
Neighborhood search 
 

In hybrid algorithm, the best obtained solution in each genetic 
algorithm generation is transferred to SA in order to improve the 
quality of solution through neighborhood search to produce a 
solution close to the current solution in search space, by randomly 
swapping the positions of two elements in a chromosome. Thus, a 
new solution is produced (Leung et al., 2001). 
 
 
Cooling scheduling  
 
In simulated annealing algorithm, worse moves might be accepted 
based on current temperature to avoid algorithm to stick in a local 
optimum and the acceptance probability for worse moves, 
decreasing as the algorithm proceeds to the freezing point. The 
exponential cooling scheduling is shown as an appropriate 
performance in simulated annealing algorithm as it’s able to com-
promise between fast schedule and also the ability to reach lower 
energy state (Wang and Zheng, 2001). The exponential cooling 

schedule is given by   where   is the 
temperature decrease rate. The initial experiment was demon-
strated to us that the initial temperature of 30 is suitable to explore 
the potential solutions by neighborhood movement. Freezing point 
is set at 1 and the temperature is decreasing by factor of 0.05  

. 
 
 

Elitism 
 
Elitism is usually used to prevent the loss of the current fittest 
member of the population due to crossover or mutation operators or 
neighborhood search and keep the best solution through the entire 
hybrid search process (Haupt and Haupt, 1998).   
 
 

RESULTS AND DISCUSSION 
 
In this paper a numerical example is used to verify the 
efficiency of a proposed  hybrid  algorithm  by  comparing 

the obtained result by a simple genetic algorithm. The 
experiment is carried out on one set of problem tests 
(Sekar, 2007). The first step of the proposed procedure is 
to compute the best task assignment for every single job. 
Hybrid GA-SA attempts to determine the best job 
allocation configuration and the optimum sequence of 
assigned jobs to each line that meet all the considered 
objectives in the problem. The total number of the jobs in 
the system is thirteen with maximum seven tasks per job. 
Three assembly lines are selected to process thirteen 
jobs and each line equipped with two workstations. 
Several configurations of task assignment and job 
allocation in both problems are available. The GA-1 starts 
from first job and attempts to assign tasks to the 
workstations. All possible configurations for task assign-
ment are displayed in Tables 1 and 2. For example the 
first configuration illustrates that four tasks are assigned 
to the first workstation and the rest of three are assigned 
to the second workstation.  
 
Example: mK1=5,K2=5,K3=3 represents that 5, 5 and 3 
jobs are allocated to the line1, 2 and 3 respectively. By 
this means fourteen different configurations of job 
allocation are available for thirteen jobs and three lines so 
each configuration is considered as a new problem which 
is solved by hybrid GA-SA.  
 

 

Input data in numerical example 
 

The hybrid GA-SA algorithm and simulated annealing are 
coded in MATLAB 7.1 and run on a 1.66 GHz core2 CPU 
computer. The data used in this research are represents 
in the following tables. Task time for every single job is 
shown in Table 3. Table 4 includes the initial setup time 
and change over time matrix for all involved jobs. 

Table 5 illustrates the task assignment to workstations 
that is obtained at the end of the first stage. The first 
column represents the number of jobs in the system. The 
second and third columns show the workload of each 
workstation for each job. The workload difference 
between two workstations  for  each  job  is  shown in  the  
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Table 3. GA-1, Input: Task processing times. 
 

Jobs\Tasks 1 2 3 4 5 6 7 Process time 

job 1 12.3 35.53 34.85 4.78 6.15 19.13 16.4 129 

job 2 22.95 11.05 0 5.95 7.65 11.9 13.6 73 

job 3 15.15 65.65 28.62 11.78 30.3 70.7 26.93 249 

job 4 12.6 9.1 17.85 4.9 3.15 4.9 8.4 61 

job 5 22.8 82.33 43.07 35.47 22.8 0 40.53 247 

job 6 56.7 27.3 35.7 44.1 18.9 58.8 33.6 275 

job 7 37.8 81.9 35.7 29.4 18.9 58.8 0 263 

job 8 30.6 22.1 28.9 17.85 7.65 0 27.2 134 

job 9 11.25 27.08 14.17 11.67 7.5 5.83 10 88 

job 10 58.95 56.77 111.35 15.28 39.3 61.13 34.93 378 

job 11 34.2 49.4 21.53 35.47 22.8 35.47 10.13 209 

job 12 27.45 39.65 34.57 21.35 18.3 42.7 24.4 208 

job 13 36.45 35.1 45.9 28.35 12.15 37.8 10.8 207 
 
 
 
Table 4. GA-SA Input: Initial setup time and change over time of Jobs. 

 

Job/Job j 1 j 2 J 3 j4 j5 j 6 j 7 j 8 j 9 j 10 j 11 j 12 j13 Initial setup time 

j 1 0 10 9 8 10 11 12 11 9 7 13 5 14 25 

j 2 10 0 12 16 17 8 6 15 13 7 10 9 16 30 

j 3 9 12 0 19 7 16 12 14 13 18 19 20 12 32 

j 4 8 16 19 0 13 18 11 8 19 16 11 7 5 22 

j 5 10 17 7 13 0 17 15 20 12 19 13 16 8 35 

j 6 11 8 16 18 17 0 9 10 8 6 10 11 17 33 

j 7 12 6 12 11 15 9 0 6 15 13 12 10 19 35 

j 8 11 15 14 8 20 10 6 0 5 16 11 18 10 39 

j 9 9 13 13 19 12 8 15 5 0 14 14 5 7 33 

j 10 7 7 18 16 19 6 13 16 14 0 11 13 9 29 

j 11 13 10 19 11 13 10 12 11 14 11 0 6 14 37 

j12 5 9 20 7 16 11 10 18 5 13 6 0 6 28 

j 13 14 16 12 5 8 17 19 10 7 9 14 6 0 36 

 
 
 

Table 5. GA-1 output: Workload for every single job at workstations. 

 

Job 
Workload at 

workstation 1 
Workload at 

workstation 2 
Unbalanced 

time 

Task distribution 

Workstation 1 Workstation 2 

1 64.91 64.23 0.68 6     5     3     4 1     7     2 

2 36.55 36.55 0 6     4     5     2 1     3     7 

3 124.56 124.57 0.01 1     6     4     7 2     3     5 

4 30.45 30.47 0.02 7     4     6     5 2      3    1 

5 124.14 122.86 1.28 1     5     4     3 6     7     2 

6 136.5 138.6 2.1 1     7     5     2 6     3     4 

7 132.3 130.2 2.1 6     7     1     3 5     2     4 

8 67.15 67.15 0 5     3     1     6 4     7     2 

9 43.34 44.16 0.82 7     3     4     5 1     6     2 

10 189.95 187.76 2.19 5     2     7     1 3     4     6 

11 103.87 105.13 1.26 5     7     6     4 3     1     2 

12 103.7 104.72 1.02 5     2     4     7 1     6     3 

13 103.95 102.6 1.35 5     7     3     2 6     4     1 
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Table 6. Job allocation results for all configurations of job allocation. 
 

Configuration of 
job allocation 

Make-span 
Process time 

difference 
Completion time  

difference 
Total objective 

Objective 
difference 

Hybrid GA Hybrid GA Hybrid GA Hybrid GA [Hybrid – GA] 

K1 = 11, k2 =1, k3 = 1153.32 1153.32 3186 3186 1690.44 1690.44 6029.76 6029.76 0 

K1 = 10, k2 =2, k3 = 1015.8 1015.8 2454 2454 1218.18 1218.18 4687.98 4687.98 0 

K1 = 9, k2 =2, k3 = 882.92 883.52 1636 1636 863.04 864.24 3381.96 3383.8 1.84 

K1 = 9, k2 =3, k3 = 884.92 884.34 1956 1956 956.42 955.26 3797.34 3795.6 -1.74 

K1 = 8, k2 =3, k3 = 730.74 730.39 912 912 355.06 354.36 1997.8 1996.7 -1.1 

K1 = 8, k2 =4, k3 = 730.39 733.04 1462 1462 647.36 652.66 2839.75 2847.7 7.95 

K1 = 7, k2 =3, k3 = 649.17 649.17 230 230 108.4 108.4 987.57 987.57 0 

K1 = 7, k2 =4, k3 = 663.02 666.82 572 572 219.62 227.22 1454.64 1466 11.36 

K1 = 7, k2 =5, k3 = 734.15 664.8 1390 1390 654.88 654.88 2779.03 2779.03 0 

K1 = 6, k2 =5, k3 = 649.17 649.17 44 36 4.5 27.48 697.67 712.65 14.98 

K1 = 6, k2 =5, k3 = 656.41 655.97 576 588 206.4 205.52 1438.81 1449.5 10.69 

K1 = 6, k2 =6, k3 = 734.81 740.06 1390 1388 656.2 666.7 2781.01 2794 .8  13.79 

K1 = 5, k2 =4, k3 = 654.37 654.37 10 10 30.48 30.48 694.85 694.85 0 

K1 = 5, k2 =5, k3 = 656.48 656.48 24 24 6.46 6.46 686.94 686.94 0 

 
 
 

 
 
Figure 6. Total objective difference between hybrid algorithm and Genetic algorithm. 

 
 
 
fourth column which is inevitable for some jobs. Finally 
the fifth column illustrates the task distribution between 
workstations. The process time for every single job at 
both workstations obtained by GA-1 is used as an input 
for hybrid GA-SA for computing the final completion time 
of assembly lines. The obtained results for all 
configurations of job allocation with both hybrid GA-SA 
and Genetic Algorithm for all the individual sub-objectives 
are shown in Table 6.  Figure 6 represents a total 
objective comparison between hybrid GA-SA and GA, 
which reveals that the hybrid algorithm provides superior 
performance to GA as it reaches better solutions in most 
of the configurations of job allocation. By comparing the 
total objective values between all configurations of job 
allocation, the minimum value of total objective function is 
achieved in k1=5, k2=5, and k3=3 as both hybrid GA-SA 
and GA reach the same solution in all objectives. Table 7 
reveals the job sequence  in  each  line  that  provides  an 

optimum solution in which all lines have almost the same 
make-span and completion times. As can be seen from 
Table 7, the longest completion time determines the 
overall make-span of the system. The maximum 
difference between all completion times is only 3.23 time 
units (t.u), which clearly shows that all lines have almost 
the same completion time. The maximum difference 
between total process times in each line is 12 t.u, which 
reveals that all lines are closely balanced. A comparison 
between all configurations of job allocation for all 
objectives is shown in Figure 7. The comparison of 
obtained results revealed that the hybrid GA-SA 
algorithm produced relatively better results than the GA. 
 
 
Conclusion 
 
In this paper,  a  hybrid  GA-SA  procedure  is  applied  to  
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Table 7. GA-SA Output: Best Job sequence is obtained by K1 = 5, k2 =5, k3 = 3. 
 

Line  Line 1 Line 2 Line 3 M B C Objective 

Completion time 656.48 653.25 654.88 656.48 6.46   

Process time 841 846 834   24 686.94 

Job sequence 1 9 4 6 12 8 5 2 1 7 10 13 3  

 
 
 

 
 
Figure 7. Total objective comparison for all configurations of job allocation. 

 
 
 

tackle the complexity of sequencing problems in parallel 
mixed-model assembly lines. For solving such problems 
by mathematical methods, the proposed mixed-integer 
model should be formulated for several configurations of 
job allocations, which is quite time consuming and 
inefficient. A hybrid GA-SA is implemented to overcome 
the massive search space needed for optimizing the 
multi-objective function. The solving procedure starts by 
finding the best task allocation based on the processing 
time of the tasks that balance the workstations by simple 
GA-1. Allocating tasks to the workstations to minimize the 
total time difference between workstations is the purpose 
of the GA-1. In the next stage, hybrid GA-SA attempts to 
allocate jobs to the assembly lines in order to minimize 
the multi-objective functions. In order to check the 
efficiency of the proposed search algorithm, a genetic 
algorithm is also applied and the obtained results from 
both meta-heuristic methods are compared. The compa-
risons with the single GA and hybrid GA-SA approaches 
prove that the hybrid approach can result in more 
satisfactory results. 
 However, future work should implement a systematic 
solving procedure for a larger number of configurations of 
job allocation. In such problems with additional input 
parameters, more configurations of  job  allocation  would 

be available so that a systematic and intelligent solving 
procedure could be developed to tackle the problem with 
higher degrees of complexity. 
 
 
REFERENCES 
 
Eiben AE, Smith JE (2003). Introduction to evolutionary computing. 

springer. 
Gokcen H, Erel E (1997). A goal programming approach to mixed-

model assembly line balancing problem. Int. J. Product. Econ.. 48(2): 
177-185. 

Grefenstette JJ (1986). Optimization of control parameters for genetic 
algorithms. IEEE Transactions on Systems, Man and Cybernetics, 
16(1): 122-128. 

Groover MP (2001). Automation, production systems, and computer-
integrated manufacturing. London : Prentice Hall ; Prentice-Hall 
International, Upper Saddle River, N.J., xv, p. 856. 

Haupt RL, Haupt SE (1998). Practical genetic algorithms. Wiley New 
York. 

Kim YK, Hyun CJ, Kim Y (1996). Sequencing in mixed model assembly 
lines: A genetic algorithm approach. Comput. Operat. Res., 23(12): 
1131-1145. 

Leu YY, Matheson LA, Rees LP (1994). Assembly Line Balancing Using 
Genetic Algorithms with Heuristic-Generated Initial Populations and 
Multiple Evaluation Criteria*. Decision Sci., 25(4): 581-606. 

Leung TW, Yung CH, Troutt MD (2001). Applications of genetic search 
and simulated annealing to the two-dimensional non-guillotine cutting 
stock problem. Comput. Ind. Eng., 40(3): 201-214. 

Michalewicz Z (1996). Genetic algorithms+ data structures= evolution 



 
 
 
 

programs. Springer. 
Mohd Ariffin MKA, Sims ND, Worden K (2004). Genetic optimization of 

machine tool paths. Adaptive computing in design and manufacturing 
VI, pp. 125-135. 

Oysu C, Bingul Z (2009). Application of heuristic and hybrid-GASA 
algorithms to tool-path optimization problem for minimizing airtime 
during machining. Eng. Appl. Artif. Intel., 22(3): 389-396. 

Pinedo ML (2008). Scheduling: theory, algorithms and systems. 
Springer. 

Rahimi-Vahed AR, Rabbani M, Tavakkoli-Moghaddam R, Torabi SA, 
Jolai  F (2007). A multi-objective scatter search for a mixed-model 
assembly line sequencing problem. Adv. Eng. Inf., 21(1): 85-99. 

Rehg JA (1994). Computer-integrated manufacturing. Prentice Hall. 
Sakawa M, Kubota R (2000). Fuzzy programming for multiobjective job 

shop scheduling with fuzzy processing time and fuzzy duedate 
through genetic algorithms. Europ. J. Operat. Res., 120(2): 393-407. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Norozi          1731 
 
 
 
Sekar V (2007). Minimizing the make-span in a high-product mix shop-

floor using integer programming. M.S. Thesis, State University of 
New York at Binghamton, United States -- New York. 

Simaria AS, Vilarinho PM (2009). 2-ANTBAL: An ant colony 
optimisation algorithm for balancing two-sided assembly lines. 
Comput. Industr. Eng., 56(2): 489-506. 

Stevenson William J (2005). Operation Management. McGraw-Hill 
international edition, p. 38. 

Sule DR (1997). Industrial scheduling. PWS Pub. Co Boston. 
Wang L, Zheng DZ (2001). An effective hybrid optimization strategy for 

job-shop scheduling problems. Comput. Operat. Res.,28(6): 585-596. 
Zandieh M, Fatemi Ghomi SMT, Moattar Husseini SM (2006). An 

immune algorithm approach to hybrid flow shops scheduling with 
sequence-dependent setup times. Appl. Math.  Comput., 180(1): 111-
127. 

 
 
 
 
 


