
Scientific Research and Essays Vol. 7(5), pp. 560-572, 9 February, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.491
ISSN 1992-2248 ©2012 Academic Journals

Full Length Research Paper

ESU-GOO: The join order algorithm for optimizing small
join queries

Areerat Trongratsameethong* and Jarernsri L. Mitrpanont

Faculty of Information and Communication Technology, Mahidol University, Bangkok, Thailand.

Accepted 30 January, 2012

The near exhaustive search algorithm named ESU-GOO was proposed to optimize small join queries. It
optimizes the join query time which consists of both the time to generate join query results and the time
to search the join order solution, whereas methods such as exhaustive search and greedy algorithm
optimizes only one of them. The ESU-GOO integrates Greedy Operator Ordering (GOO) to Exhaustive
Search with join graph Update (ESU). GOO is applied to produce the initial solution in the polynomial
time and its solution was used as the starting route for ESU. ESU was applied to generate a good join
order solution. In the experiments, the join graphs with 4 to 12 nodes were simulated on the basis of the
table relationship of the TPC-H database benchmark. ESU-GOO was compared with ESU optimizing the
time to generate join query results and GOO optimizing the time to search the join order solution. The
experiment showed that the execution time of ESU-GOO on average is 7 times faster than ESU and the
ESU-GOO finds 65% of optimal join order solutions. Of all the experiments, the time that ESU-GOO, ESU
and GOO use the least join query time are 60, 14 and 26%, respectively.

Key words: Database, query optimization, join order optimization algorithm, near exhaustive search algorithm.

INTRODUCTION

A join operation is one of the most time consuming
operations in query processing and optimization process
in Database Management System (DBMS). Therefore,
one major problem with a query optimizer is to generate a
good join order. There are two major costs in generating
join query results: (i) the cost used by the join order
algorithm to search a good join order called join order
algorithm cost and (ii) the cost to generate join query
results according to the n-1 join sequences of the join
order solution called join operation cost, where n is the
number of relations in a query. Three groups of join order
optimization algorithms have been proposed: dynamic
programming (Selinger et al., 1979), randomized
algorithm (Yanis and Eugene, 1987; Yanis and
Younkyung, 1990; Hongbin and Yiwen, 2007; Najmeh et
al., 2010), and greedy algorithm (Fegaras, 1998; Pryscila
et al., 2007). The dynamic programming or a near

*Corresponding author. E-mail:
g4637948@student.mahidol.ac.th.

exhaustive search algorithm explores all possible
equivalent join order routes and searches for an optimal
join order solution. Dynamic programming optimizes the
join operation cost but ignores the join order algorithm
cost because of the exponential size of search space.
The dynamic programming is applicable for small join
queries. On the other hand, the randomized algorithm
and greedy algorithm are designed to reduce the size of
search space so that the join order algorithm cost is
optimized, but they cannot guarantee optimality of the
join operation cost because not all search space is
explored. Thus, the randomized algorithm and greedy
algorithm are practical for large join queries.

In this paper, the join order algorithm named ESU-GOO
is proposed to improve a whole join query cost which is a
summation of join order algorithm cost and join operation
cost. The ESU-GOO combines the merits of Exhaustive
Search with join graph Update (ESU) algorithm (Areerat
and Jarernsri, 2009) and Greedy Operator Ordering
(GOO) algorithm (Fegaras, 1998). GOO that is designed
to optimize join order algorithm cost is first executed and
the join order solution from GOO is used as a base

solution. ESU that can always find optimal join order
solutions is later performed to generate equivalent join
order routes starting with the same starting route of the
base solution, and the join order route having an
estimated minimum join operation cost is selected to be a
join order solution. This is to reduce search space size
but still preserve the good quality of join order solution.
Furthermore, the stopping criterion is designed to speed
up the ESU-GOO algorithm as follows. The join operation
cost of the base solution is used as an initial threshold in
the stopping criterion to eliminate the equivalent join
order routes having the cumulative value of join operation
costs greater than or equal to the join operation cost of
the base solution. Later on, the threshold is replaced with
the join operation cost of join order route being generated
if its join operation cost is less than the threshold.
Consequently, the cost used by the ESU-GOO is reduced
and the cost for generating join query results is still
preserved. Although, both GOO and ESU are executed in
the ESU-GOO, the polynomial time complexity used by
the GOO algorithm is negligible compared to the time that
will be decreased by the reduction in search space and
the stopping criterion implemented in the ESU-GOO
algorithm.

MATERIALS AND METHODS

Join graph definition

The weighed graph which is commonly used for modeling shortest-
path problems (Kenneth, 2003a) is modified to model the join order
optimization problem. In this paper, the initial join graph is
generated on the basis of the SQL query which is an input of our
join order algorithms. One join graph is used to represent one join

order route consisting of n-1 join operations, where n is the number
of relations in a join query. The join graph G = (V, S, TT, E, W)
consists of the following parameters:

1. V: a set of relations, where vi V.

2. S: a set of relation sizes, where si S.
3. TT: a set of average time for storing one tuple into a relation,

where tti TT.

4. E: a set of edges connecting vi with vj, where eij E.
5. W: a set of join selectivity’s between vi and vj assigned to eij,

where wij W.

The value of si relying on whether there exists a selection condition
specified on the relation vi, the si is defined as follows:

 | |

 | | ,

i i i

i

i

sel v if there is a selection condition specified on v
s

v otherwise
 (1)

Where sel is selectivity of relation vi and | vi | is cardinality of relation
vi.

The seli is the ratio of the number of tuples satisfying the
selection condition of vi to |vi|. It is estimated by the selectivity factor
(Selinger et al., 1979; Lise et al., 2001) or the histogram technique
(Gregory, 1984). The tti is an average time for storing one tuple into

vi. The eij edge connecting vi with vj indicates that a join predicate
between vi and vj is specified in the join query and their join
selectivity, wij, can be estimated by Equation 2. The wij is the ratio of

Trongratsameethong and Mitrpanont 561

the number of tuples satisfying the join predicate between vi and vj
to the multiplication of |vi| and |vj|. The value of wij is between 0 and
1:

. .| |
, , [1..] and ,

| | | |

i ji v A op v B j

ij

i j

v v
w i j n i j

v v
 (2)

Where is a join operator, “vi.A op vj.B” is a join predicate
between relations vi and vj, A and B are attributes of relations vi and
vj, respectively, and op is a comparison operator.

In this paper, the initial join graph G is an input of join order
algorithm. Figure 1 is an example of SQL query that is transformed
into the initial join graph G displayed in Figure 2. The initial join
graph G consists of 4 nodes and 4 edges. Each node represents
relation vi. The number without parenthesis represents relation size,
si. The number with parenthesis represents average time for storing
one tuple into a relation, tti. The line connecting vi with vj is an eij
edge. The number on each edge represents join selectivity, wij,
between relations vi and vj.

Cost parameters of the join graph G

To optimize each join query, the join order algorithm generates
equivalent join order routes and the join order route having the
estimated minimum cost for performing n-1 join operations is
selected as a join order solution. The equivalent join order routes
are the routes producing the same join query results but the costs
for performing their n-1 join sequences may be different.

In this paper, the cost for performing n-1 join operations of the

join order route r is called a join operation cost, r

JT , and is estimated

by Equation 3:

1

1

, , [1..] and ,
n

r k

J ij

k

T jt i j n i j (3)

Where k

ijjt is the join cost for performing a join operation at the join

sequence k of a join order route r.

The join operation (vi vj) at any join sequence k is performed
as follows:

1. The join predicate between relations vi and vj is evaluated.
2. The tuples of relations vi and vj satisfying the join predicate are
merged and stored in terms of intermediate results.

As a result, the jtij cost for performing a join operation is the
summation of cost for evaluating a join predicate between relations
vi and vj and cost for storing the intermediate results as illustrated in
Equation 4:

[max(,)] [() ()],ij i j i j ij i jjt s s b s s w tt tt (4)

Where b is the average number of tuples in each found bucket and

 is the average time for one evaluation.
The first cost, the cost for evaluating the join predicate, is

estimated on the basis of the hash join algorithm (Yu and Meng,
1998) which is efficient and applicable to an equi-join. It should be
noted that all join predicates in our experiments are equi-joins. In
the hash join algorithm, all tuples of the larger size relation are
examined and evaluated with every tuple in the matched bucket.

The second cost, the cost for storing intermediate results, relies
on the number of tuples of intermediate results satisfying the join

562 Sci. Res. Essays

Figure 1. An example of SQL query.

Figure 2. An example of initial join graph G.

predicate estimated by the

i j ijs s w . Each tuple of intermediate

results is generated from merging the tuple of relation vi to the tuple
of relation vj. Assume that the average time for storing one tuple

into vi and vj is represented as tti and ttj, respectively. Therefore, the
average time for storing one tuple into the intermediate results is
approximated as tti + ttj.

Join graph updating

The join order optimization problem differs from other shortest-path
problems. Cost parameters for calculating join operation cost are

changed after two relations are joined at each join sequence. The
join graph G is then updated after two relations are joined, vi vj,
to reflect the change of three following cost parameters as

SELECT *

 FROM LINEITEM as L, PART as P,

 PARTSUPP as PS, SUPPLIER as S

WHERE L.L_PARTKEY = P.P_PARTKEY and

 L.L_SUPPKEY = S.S_SUPPKEY and

 P.P_PARTKEY = PS.PS_PARTKEY and

 PS.PS_SUPPKEY = S.S_SUPPKEY and

 L.L_SHIPDATE >= date '1995-09-01' and

 L.L_SHIPDATE < date '1995-10-01' and

 S.S_ACCTBAL < 8000 and

 PS.PS_SUPPLYCOST > 950;

L

0
.0

0
0

0
0

5

0
.0

0
0

1
0.000005

0.0001

69832 (1.94)

S PS

P

8170 (1.02)

200000 (1.45)

43892 (0.29)

Trongratsameethong and Mitrpanont 563

Figure 3. Join graph updating.

displayed in Figure 3:

1. The size of new joined node vi vj is changed to
i j ijs s w .

2. The join selectivities on the edges associated with the vi vj are
updated as follows: for each node vk connected to both nodes vi
and vj, the join selectivity between node vk and joined node vi vj

becomes
ik jkw w .

3. The average time for storing one tuple into vi vj is updated as
tti + ttj.

It should be noted that the first two cost parameters are updated
similarly to the GOO algorithm. The third cost parameter is added to
our algorithm because GOO measures cost in terms of intermediate
result size but our algorithm measures it in terms of join operation
cost.

Join query cost

In this paper, the join query cost, TQ, includes not only the cost to
generate join query results but also the cost used by the join order
algorithm. Thus, the join query cost shown in Equation 5 is the
summation of two following costs:

1. TA: join order algorithm cost, the cost used by the join order
algorithm for generating equivalent join order routes and searching

for the join order solution. The TA is depicted in Equation 6.
2. TJ: join operation cost of join order solution, the cost for
performing n-1 join operations of the equivalent join order route
providing the estimated minimum join operation cost. The TJ is
illustrated in Equation 7:

TQ = TA + TJ. (5)

1

,
rc

A r

r

T at (6)

1 2min(, , ...,)rc

J J J JT T T T , (7)

Where rc is the number of equivalent join order routes generated by
the join order algorithm and atr is the time to generate the
equivalent join order route r.

ESU-GOO algorithm

The ESU-GOO is a combination of Exhaustive Search with join
graph Update (ESU) algorithm and the Algorithm I of Greedy
Operator Ordering (GOO) algorithm. The Algorithm I of GOO
hereafter is called GOO in short.

GOO is a greedy bottom-up algorithm that is similar to the
Kruskal’s minimum spanning tree algorithm (Kenneth, 2003b). GOO
finds the minimum spanning tree of the join graph, the total size of
intermediate results. For each join sequence, the two relations

providing the minimum size of intermediate results are searched to
be joined. After two relations are joined at each join sequence,
GOO updates the join graph to reflect the change of new size and
new join selectivity. This directly determines the decision of the join
at subsequent steps. Consequently, GOO can generate a good
quality order of relational joins in a polynomial time. The number of
join order routes generated by GOO is always one. The join order
route consists of n-1 join sequences, where n is the number of
relations in a join query. Each join sequence takes at most n

2

iterations to find the two relations providing the minimum size of
intermediate results to be joined. As a result, the time complexity of
GOO algorithm is O(n

3
). The pseudo code of Algorithm I of GOO is

given by (Fegaras, 1998).
ESU is an exhaustive search algorithm generating all equivalent

join order routes using Depth First Search (DFS) traversal and the
join order route providing the estimated minimum size of
intermediate results is selected to be a join order solution. ESU also
uses the join graph to maintain the equivalent join order routes.
One join graph is generated for representing one join order route.
The new size and new join selectivity are also updated similarly to
the GOO algorithm after two relations are joined at each join
sequence. The join order solution obtained by ESU is always the
best solution. The time complexity of ESU algorithm is analyzed as
follows:

1. The number of join order routes generated by the ESU algorithm

is analyzed as follows:
1.1. For the first join sequence, m possible join order routes can be
generated,
1.2. For the join sequences 2 to n-1, there are (m-1), (m-2), …, 3,
and 1 remaining edges that can be generated as the join sequence
of equivalent join order routes. The number 3 and 1 are the
maximum number of remaining edges at the join sequences n-2
and n-1, respectively. It should be noted that, the search space is

estimated for the worst case, only the edge of two relations
selected to be joined, is reduced at each join sequence.
2. As a result, the search space size of ESU is approximated as

vi vj

vi vj

vkvp

wip

wij

wik
wjk

si
sj

sp sk

tti

ttp

ttj

ttk

vkvp

wip
ik jkw w

i j ijs s w

sp skttp ttk

tti + ttj

vi vj

564 Sci. Res. Essays

4

0

3 ()
n

i

m i .

3. Each join order route consists of n-1 join sequences, and each

join sequence takes at most n
2
 iterations to find the two relations to

be joined.
4. Consequently, the time complexity of ESU algorithm is O(m

n
n

3
),

where m and n are the number of edges and nodes, respectively in
an initial join graph G.

The ESU-GOO combines the merits of ESU and GOO algorithms.
The GOO algorithm is executed to obtain two parameters: the
starting route of the join order solution named eGOO, and the join
operation cost of join order solution named TJ-GOO. The ESU is later
executed to generate equivalent join order routes and the join order
route having the estimated minimum join operation cost is selected
to be a join order solution. The ESU is modified to reduce size of
search space as follows:

1. The equivalent join order routes generated by ESU start with the
same edge eGOO using DFS traversal so that the search space at
the first join sequence is reduced from m to 1. However, our join
order solution is guaranteed to be always better than or equal to the
join order solution obtained by GOO because the join order solution
obtained by GOO is also included in our search space.
2. The DFS used for generating equivalent join order routes and
searching for the join order solution is modified to speed up the
algorithm as follows:
2.1. The join operation cost of join order solution, TJ, is initially set
to TJ-GOO.

2.2. During the generation of the join order route, if the cumulative
of join operation cost of join order route being generated is greater
than or equal to TJ, the join order route is immediately discarded.
DFS is not applied to find path beyond this level. The search is then
backtracked.
2.3. If the join operation cost of join order route being generated,

r

JT , is less than the TJ then the TJ is replaced with the
r

JT .

GOO and ESU used in ESU-GOO are modified to support the cost
parameters used for calculating the join operation cost. The pseudo
codes of ESU-GOO algorithm and DFS function are illustrated in
Figures 4 and 5, respectively. The time complexity of ESU-GOO
algorithm is analyzed as follows:

1. The number of join order routes generated by the ESU-GOO
algorithm is from two algorithms.

1.1. GOO always generates 1 join order route.
1.2. The ESU starts from the eGOO edge. Thus the search space at
the first join sequence is reduced from m to 1 so that the number of
equivalent join order routes generated by ESU is reduced to

4

1

3 ()
n

i

m i .

1.3. Consequently, the search space size of ESU-GOO is
4

1

1 [3 ()]
n

i

m i that is approximately
4

1

3 ()
n

i

m i .

2. Each join order route consists of n-1 join sequences, and each
join sequence takes at most n

2
 iterations to find two relations to be

joined.
3. Consequently, the time complexity of ESU-GOO algorithm is
O(m

n
n

3
).

Although, the time complexity of ESU-GOO algorithm is still
O(m

n
n

3
) that is similar to the time complexity of ESU algorithm in

terms of mathematics but reducing the search space from

4

0

3 ()
n

i

m i to
4

1

3 ()
n

i

m i can reduce a large number of join

order algorithm costs.
In this paper, the experimental results of ESU-GOO algorithm are

compared to ESU and GOO algorithms. Therefore, the ESU and
GOO are also modified to support the cost parameters for
calculating the join operation cost. The pseudo code of GOO
algorithm used in the experiments is similar to the GOO algorithm
used in the ESU-GOO (lines 1 to 7 in Figure 4). It should be noted
that the ESU used in the experiments also uses the DFS function of
ESU-GOO (Figure 5) to generate equivalent join order routes and
search for the join order solution. Thus, the ESU is also a near

exhaustive search but the join order solutions obtained by the ESU
still preserve the best join order solutions. The pseudo code of ESU
algorithm is displayed in Figure 6.

Figure 7 shows the comparison between the search space of
ESU, GOO, and ESU-GOO algorithms. The numbers shown in
each join graph are as follows: the number without parenthesis
represents si, the number with parenthesis represents tti in
microsecond, and the number on each edge represents wij. The
ESU is an exhaustive search algorithm generating all possible
equivalent join order routes, that are r1 to r12, and the join order
solution obtained by ESU is optimal. The search space of GOO is
always one. The join order solution obtained by GOO is not optimal.
The search space of ESU-GOO is 4, r1 to r4. The join order solution
obtained by ESU-GOO is not optimal but it is better than the
solution obtained by GOO.

Experimental set up

All experiments were done on the HP Compaq LE1711 computer
with 4 GB memory running Microsoft Windows XP. The join order
algorithms used in the experiments were developed by C++. The
join graphs were simulated based on the table relationship of the
relational TPC-H database benchmark (available on
http://www.tpc.org/tpch). This benchmark has 8 relations consisting
of business oriented ad-hoc queries and concurrent data
modification. The TPC-H schema represents the table relationship
of the TPC-H database (available on
http://www.tpc.org/tpch/spec/tpch2.14.0.pdf, page 12). The scale
factor, SF, determines the size of the TPC-H database is set to 1.

The cardinality of relation, |vi|, and the average time in
millisecond for storing one tuple into a relation vi of the TPC-H
database, tti, are presented in Table 1. The size of relation, si, is
randomly selected in the range (0, |vi|]. All join predicates used in

our experiments were equi-joins and their join selectivity’s, wij,

between
i jv v were computed by equation 2 and displayed in

Table 2. The average number of tuples per bucket b was set to

1000. An average time for evaluating one join predicate, , was
estimated as follows:

1. All equi-joins in the TPC-H database were evaluated and their
joining times were measured.

2. The joining times were averaged and the averaged time was
found to be 12 ns..

The ESU-GOO, ESU, and GOO algorithms were executed and the
following were measured: the join order algorithm cost, TA, the join
operation cost of join order solution, TJ, and the number of
equivalent join order routes generated by the algorithm for each
simulated join graph, rc.

The TA used for generating equivalent join order routes and seeking
for the route having the estimated minimum join operation cost
were measured from the algorithm execution time in millisecond.

Trongratsameethong and Mitrpanont 565

Figure 4. Pseudo code of ESU-GOO algorithm.

ESU-GOO Algorithm:

Input:

 G An initial join graph

Outputs:

 JL The join sequences of join order solution

 TJ Join operation cost of join order solution

Algorithm:

//*** GOO algorithm ***//

(1) JL and eGOO are emptied. TJ is set to 0.

(2) for (k = 1; k <= n-1, k++)

(3) Find the eij edge providing the minimum jtij cost, where i, j [1..n] and i≠j.

(4) eij found in step 3 is added to JL.

(5) jtij found in step 3 is added to TJ.

(6) Update join graph G. // see Section 2

(7) end for

(8) eGOO is set to the first join sequence in JL.

//*** ESU algorithm started with eGOO ***//

(8) Initialization:

 r is set to 1. The join order route r, Jr, is emptied.

 The first join sequence of Jr is set to eGOO.

r

JT is set to the jtij cost of eGOO.

(9) Update join graph of Jr, Gr.

(6) JL, TJ Perform DFS of Jr.

(7) return JL, TJ.

566 Sci. Res. Essays

Figure 5. Pseudo code of DFS function.

DFS Function:

Inputs:

 Jr The join order route r. Gr The join graph of Jr.

 r

JT The join operation cost of Jr.

Outputs:

JL The join sequences of join order solution

TJ The join operation cost of join order solution

FUNCTION DFS:

(1) Initialization:

 The first child node of DFS is set to the vi vj of the first join sequence in Jr.

 The level of DFS, k, is set to 1.

(2) repeat:

(3) repeat:

(4) k is increased by 1.

(5) DFS is traversed to the k level.

(6) The jtij of the edge that the DFS is traversed to is added to r

JT .

(7) Update join graph Gr.

(8) until k = n-1 or r

JT >= TJ.

(9) if (k = n-1 and r

JT < TJ) then {

 TJ is set to r

JT . JL is set to Jr.

 }

(10) k is decreased by 1 and DFS is backtracked to the k level.

(11) r is increased by 1. Jr is emptied. r

JT is set to 0.

(12) The join sequences 1 to k of Jr-1 are copied to Jr.

(13) r

JT is set to the cumulative of join costs at the join sequences 1 to k of 1r

JT .

(14) until DFS is backtracked to the last node of the 2nd level.

(15) return TJ, JL.

END FUNCTION

T
r
J The join operation cost of Jr

Trongratsameethong and Mitrpanont 567

Figure 6. Pseudo code of ESU algorithm.

GOO always generates one join order route so that the rc of GOO
is always one. Due to the termination criteria implemented in the
DFS function of ESU and ESU-GOO, the number of join sequences

of some equivalent join order routes may be less than n-1. Thus the
rc of ESU and ESU-GOO were measured from the total number of
join sequences generated by the algorithm divided by n-1.

Join graph simulation

The join graphs with 4 to 12 nodes were simulated based on the
table relationship of the TPC-H database benchmark. The
simulated join graphs that form unconnected weight graphs were
discarded in our experiments because we only focus on a join
operator. The unconnected weight graphs will result in the
Cartesian product.

All node combinations were used in our simulation. There are 8
relations in the TPC-H. For the join graphs with n = 4 to 8 nodes,

the number of node combinations is
8

nC . For the join graph with n

= 9 to 12 nodes, the nodes consist of two parts: (i) the set of all 8
relations and (ii) n – 8 relations selected from the 8 available
relations. The number of the node combinations for the join graph

with n = 9 to 12 nodes is
8

(mod 8)nC .

The experiment was done with the number of edges, m, varying
from n-1 to max(link), where max(link) is the maximum number of
links connecting the simulated relations. The max(link) is searched
from the table relationship of the TPC-H database. For each
simulated join graph, the relation size, si, is randomly selected from
(0, |vi|]. The average time for storing one tuple into a relation is set

to the tti. The join selectivity assigned on each edge is set to the wij.
For the join graphs with n = 9 to 12 nodes, if vi is connected to vi
then the join selectivity between them will be set to 1.0.

Figure 8 shows one of the possible 70 (
8

4C) combinations for

the simulated join graphs with n = 4 nodes. These four nodes are C,
L, N, and S relations. The m of this combination is in the range of
[n-1, max (link), which is (3, 4). Then there are two sets of the
simulated join graphs for this combination: (i) the set of join graphs
with n = 4 and m = 4 and (ii) the set of join graphs with n = 4 and m
= 3. One of the simulated join graphs in the second set that forms

the unconnected weight graph is discarded. As a result, four join
graphs are simulated in this combination.

The number of connected weight graphs for the simulated join
graphs with n = 4 to 8 nodes is small. Thus, each connected weight
graph was simulated with different sets of relation sizes as
illustrated in Table 3. On the other hand, the number of connected
weight graphs for the simulated join graphs with n = 9 to 12 nodes
is large. Therefore, the join graphs were randomized from the sets
of connected weight graphs with n nodes and m edges as displayed

in Table 4.

RESULTS

The experimental results are shown in Figure 9 as
follows. Figure 9 (a) shows percent of minimum join
query costs, TQ, obtained by each algorithm. Figure 9 (b)
illustrates the average ratio of TQ costs of GOO to ESU-
GOO and ESU to ESU-GOO. Figure 9 (c) expresses

ESU Algorithm:
Input:
G An initial join graph.
Outputs:
TJ Join operation cost of join order solution.
JL The join sequences of join order solution.
Algorithm:
(1) JL is emptied. TJ is set to 0.

(2) Find all edges,
1 2

, ,{ ..., }m

ij ij ije e e , in G.

(3) for (k=1; k<=m; k++) {
(4) r is set to 1.
(5) The join order route r, Jr, is emptied.

(6)
k

ije is added to Jr.

(7) The join cost of
k

ije edge,
k

ijjt , is added to the join operation cost of Jr,
r

JT .

(8) Update join graph of Jr, Gr.
(9) JL, TJ Perform DFS of Jr.
(10) }
(11) return JL, TJ.

568 Sci. Res. Essays

Figure 7. Comparison of search spaces of ESU, GOO, and ESU-GOO.

ESU-GOO Search Space

Perform ESU Algorithm

(started with eGOO)

Perform GOO Algorithm

r1

Join order solution obtained by GOO

r1 = 573.537 + 1650.083 + 3004.997 = 5228.616 (ms.)

GOO Search Space

(b)

Join Sequence: 1

Join Sequence: 2 Join Sequence: 3

15325 (3.68)
r2

r 1

r
3

r1

r2

r3

r 4

r5

r
6

r4

r5

r6

r 7

r8

r
9

r7

r8

r9

r10

r11

r12

r 10

r11

r
12

r 1
,
r 2

,
r 3

r 4
, r

5
, r

6

r
7 , r

8 , r
9

r1
0,
 r

1
1,
 r

1
2

(L-P-PS)-S

1 (4.69)

(P-PS-S)-L

1 (4.69)

(S-PS-P)-L

1 (4.69)

ESU Search Space

1
st
 Child Node

1
st
 Child Node

1
st
 Child Node

1
st
 Child Node

Join order solution obtained by ESU

r8 = 2476.328 + 894.320 + 183.910 = 3554.558 (ms.)
(a)

Join Sequence: 1 Join Sequence: 2 Join Sequence: 3

DFS: 1
st
 Level DFS: 2

nd
 Level DFS: Last Level

eGOO: S-PS1
st
 Child Node

Join Sequence: 1 Join Sequence: 2 Join Sequence: 3

DFS: 1
st
 Level DFS: 2

nd
 Level DFS: Last Level

(c)

Join order solution obtained by ESU-GOO

r4 = 573.537 + 2498.794 + 837.990 = 3910.320 (ms.)

Initial MJOA Join Graph G

L

0
.0

0
0

0
0

5

0
.0

0
0

1

0.000005

0.0001

69832 (1.94)

S PS

8170 (1.02)

200000 (1.45)

43892 (0.29)

P

0
.0

0
0

0
0

50.
00

01

0.0001S PS

L-P

69832 (3.39)

8170 (1.02) 43892 (0.29)

57053 (2.95)

0
.0

0
0

0
0

5

0.000005

0.0001

PS

PL-S

200000 (1.45)

43892 (0.29)

0.0000000005 PS(L-P)-S

57053 (4.40) 43892 (0.29)

0.00000001 S(L-P)-PS

8170 (1.02)

0.0000000005L-P

35860 (1.30)

S-PS

69832 (3.39)

(L-P-S)-PS

1 (4.69)

(L-P)-(S-PS)

1 (4.69)

0.0000000005 PS(L-S)-P

57053 (4.40) 43892 (0.29)

(L-S-P)-PS

1 (4.69)

0.0000000005

43892 (1.74)

P-PSL-S

57053 (2.95)

(L-S)-(P-PS)

1 (4.69)

(L-S)-PS 0.000000000025

250416 (3.24)

P

200000 (1.45)

(L-S-PS)-P

1 (4.69)

L

0
.0

0
0

1

0.000005

0.0001S P-PS

43892 (1.74)

69832 (1.94)

8170 (1.02)

0.0000000005L-S P-PS

57053 (2.95) 43892 (1.74)

(P-PS)-(L-S)

1 (4.69)

0.00000001 S(P-PS)-L

15325 (3.68) 8170 (1.02)

(P-PS-L)-S

1 (4.69)

69832 (1.94)

0.0000000005L (P-PS)-S

35860 (2.75)

(S-PS-L)-P

1 (4.69)

0.000000000025P (S-PS)-L

250416 (3.24)200000 (1.45)

0.0000000005L-P

69832 (3.39)

S-PS

35860 (1.31)

(S-PS)-(L-P)

1 (4.69)

L

0.0
00005

0
.0

0
0

1

0.000005

S-PS

P

35860 (1.31)

69832 (1.94) 200000 (1.45)

0.0000000005L (S-PS)-P

35860 (2.75)69832 (1.94)

(S-PS-L)-P

1 (4.69)

0.000000000025P (S-PS)-L

250416 (3.24)200000 (1.45)

L

0.0
00005

0
.0

0
0

1

0.000005

S-PS

P

35860 (1.31)

69832 (1.94) 200000 (1.45)

Initial MJOA Join Graph G

L

0
.0

0
0

0
0

5

0
.0

0
0

1

0.000005

0.0001

69832 (1.94)

S PS

8170 (1.02)

200000 (1.45)

43892 (0.29)

P

r1r1

r2

r3

r4

r 2

r3

r
4

(S-PS-P)-L

1 (4.69)

(S-PS-L)-P

1 (4.69)

0.000000000025P (S-PS)-L

250416 (3.24)200000 (1.45)

0.0000000005L-P

69832 (3.39)

S-PS

35860 (1.31)

(S-PS)-(L-P)

1 (4.69)

L

0.0
00005

0
.0

0
0

1

0.000005

S-PS

P

35860 (1.31)

69832 (1.94) 200000 (1.45)

0.0000000005L (S-PS)-P

35860 (2.75)69832 (1.94)

Trongratsameethong and Mitrpanont 569

Table 1. Cardinality of relation and average time for storing one tuple into a relation.

vi Alias name of vi | vi | tti (ms.)

CUSTOMER C 150,000 0.001257

LINEITEM L 6,001,215 0.001937

NATION N 25 0.000480

ORDERS O 1,500,000 0.001241

PART P 200,000 0.001449

PARTSUPP PS 800,000 0.000290

REGION R 5 0.000526

SUPPLIER S 10,000 0.001016

Table 2. Join selectivity’s.

i jv v wij

i jv v wij

i jv v wij

C-N 0.04000000 N-R 0.20000000 PS-S 0.00010000

C-O 0.00000667 N-S 0.04000000 R-N 0.20000000

C-S 0.04000028 O-C 0.00000667 S-C 0.04000028

L-O 0.00000067 O-L 0.00000067 S-L 0.00010000

L-P 0.00000500 P-L 0.00000500 S-N 0.04000000

L-PS 0.00000125 P-PS 0.00000500 S-PS 0.00010000

L-S 0.00010000 PS-L 0.00000125

N-C 0.04000000 PS-P 0.00000500

percent of optimal join operation costs, TJ, obtained by
each algorithm. Figure 9 (d) displays the average ratio of
TJ costs of GOO to ESU-GOO and ESU to ESU-GOO.
Figure 9 (e) presents the average time used by each join
order algorithm, TA. Figure 9 (f) shows the average ratio
of TA costs of GOO to ESU-GOO and ESU to ESU-
GOO. Table 5 illustrates the average ratio of the number
of equivalent join order routes generated by ESU to ESU-
GOO.

The x axis in Figure 9a to f consists of two lines: the
number of relations is shown at the first line and the
number of simulated join graph is displayed at the second
line. It should be noted that the ESU and ESU-GOO were
very slow in processing the query having n = 13, m >=
20, and n = 13, m >= 26, respectively. As a result, only
the join graphs with n = 4 to 12 nodes were simulated
and tested in our experiment.

The experiments indicated that reduction in search
space in ESU-GOO still preserved the good quality of join
order solutions. This resulted in improvement of a whole
join query cost, TQ = TA +TJ, used for each join query.

DISCUSSION

Figure 9b indicates that the percent of TQ costs obtained
by GOO were better than ESU-GOO for the join graphs
with n = 4 to 5 nodes. However, the improvement of GOO

was negligible, that is, the average of 0.005 and 0.006
millisecond decreases for the join graphs with n = 4
nodes and n = 5 nodes, respectively. The percent of TQ
costs obtained by ESU for the join graphs with n = 4
nodes were also better than ESU-GOO. Nevertheless,
the average ratio of TQ costs obtained by ESU to ESU-
GOO for the join graphs with n = 4 nodes was
approximately 1 (Figure 9 (b)) that means the TQ costs
obtained by ESU and ESU-GOO were very close.
 The experimental results show that although all TJ and
TA costs were optimal for ESU and GOO, respectively,
but the whole join query cost, TQ = TJ + TA, obtained by
ESU and GOO were not optimized in most cases. On the
other hand, most TQ costs obtained by ESU-GOO were
the smallest among the three, although TJ and TA costs of
ESU-GOO were not optimal.
 Consequently, optimizing both cost used by the join
order algorithm and cost used for generating join query
results in ESU-GOO can improve a whole join query cost,
whereas optimizing either cost used by the join order
algorithm in greedy algorithm or cost used for generating
join query results in exhaustive search cannot guarantee
optimality of a whole join query cost.

Conclusions

In this paper, we have presented a novel join order

570 Sci. Res. Essays

Figure 8. An example of one of 70 combinations of the simulated join graphs with n = 4 nodes.

Table 3. The numbers of simulated join graphs with 4 to 8 nodes.

n No. of connected weight graphs No. of sets of different relation sizes Total simulated join graphs

4 64 20 1,280

5 143 10 1,430

6 289 5 1,445

7 380 4 1,520

8 220 5 1,100

algorithm named ESU-GOO to optimize the small join
queries. The ESU-GOO is a near exhaustive search
designed to reduce the size of search space and still
preserve the quality of join order solution. The

experimental results reveal that the whole join query cost
used by the ESU-GOO is minimized in most cases,
whereas most of the whole join query costs used by ESU
and GOO are not minimized. The experiments indicate

- n = 4 and these nodes are: C, L, N, S

Number of edges, m [n-1, max(link)] = [3, 4]

 1st Set: n=4, m=4

 2nd Set: n=4, m=3

 C

N

LS C

N

LS C

N

LS C

N

LS

 C

N

LS

- Assign edges

- Random sizes (si), Set join selectivities (wij), and

 Set average time for storing 1 tuple into relation (tti)

An example of the 1
st
 set

Unconnected weight
graph is discarded

C S L

N

0.04000028 0.0001

0.04

0
.0

4
(ttC = 0.001257)

sC = 150,000
(ttS = 0.001016)

sS = 22

(ttL = 0.001937)

sL = 6,001,215

(ttN = 0.00048)

sN = 1

wC-S

w
C-N

wN-S

wL-S

Trongratsameethong and Mitrpanont 571

Table 4. The numbers of simulated join graphs with 9 to 12 nodes.

n
No. of sets of join graphs with n nodes and m

edges, m [n-1, max (link)]
No. of random graphs per set Total of simulated join graphs

9 62 20 1,240

10 305 5 1,525

11 808 2 1,616

12 1,285 1 1,285

Figure 9. Experimental results.

0

20

40

60

80

100

4 5 6 7 8 9 10 11 12

P
e
r
c
e
n

t
o

f
m

in
im

u
m

 j
o

in
 q

u
e
r
y

 c
o

st
s

m
in

(T
Q

)
=

 m
in

(T
A

+
T

J
)

ESU-GOO

GOO

ESU

Number of join graphs1280 1430 1445 1520 1100 1240 1525 1616 1285

Number of relations

0

1

10

100

4 5 6 7 8 9 10 11 12A
v

e
r
a

g
e
 r

a
ti

o
 o

f
jo

in
 q

u
e
r
y

 c
o

st
s,

 T
Q

GOO/ESU-GOO

 ESU/ESU-GOO

Number of join graphs 1280 1430 1445 1520 1100 1240 1525 1616 1285

Number of relations

0

1

10

100

1000

4 5 6 7 8 9 10 11 12

A
v

e
r
a

g
e
 r

a
ti

o
 o

f
jo

in
 o

p
e
r
a

ti
o

n
 c

o
st

s,
 T

J

GOO/ESU-GOO

ESU/ESU-GOO

Number of join graphs 1280 1430 1445 1520 1100 1240 1525 1616 1285

Number of relations

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

4 5 6 7 8 9 10 11 12

A
v

e
r
a

g
e
 o

f
jo

in
 o

r
d

e
r
 a

lg
o

r
it

h
m

 c
o

st
s

T
A

 (
m

s.
) ESU-GOO

GOO

ESU

Number of join graphs1280 1430 1445 1520 1100 1240 1525 1616 1285

Number of relations

0.01

0.10

1.00

10.00

100.00

4 5 6 7 8 9 10 11 12

A
v

e
r
a

g
e
 r

a
ti

o
 o

f
jo

in
 o

r
d

e
r
 a

lg
o

r
it

h
m

 c
o

s
ts

,
 T

A

GOO/ESU-GOO

ESU/ESU-GOO

Number of join graphs1280 1430 1445 1520 1100 1240 1525 1616 1285

Number of relations

(a) (b)

(c) (d)

(e) (f)

0

20

40

60

80

100

4 5 6 7 8 9 10 11 12

P
e
r
c
e
n

t
o

f
o

p
ti

m
a

l
jo

in
 o

p
e
r
a

ti
o

n
 c

o
st

s,
 T

J

ESU-GOO

GOO

ESU

Number of join graphs 1280 1430 1445 1520 1100 1240 1525 1616 1285

Number of relations

572 Sci. Res. Essays

Table 5. Average ratio of the number of equivalent join order routes (rc) generated by ESU to
ESU-GOO.

n Average ratio of rc of ESU to ESU-GOO

4 1

5 3

6 4

7 5

8 6

9 7

10 9

11 13

12 18

Average 7

that the ESU-GOO is suitable for join queries with less
than 13 relations and ESU-GOO is not practical when the
number of relations in a query is 13 or more.

ACKNOWLEDGEMENTS

We would like to thank Dr. Supatana Auethaavekiat for
her valuable comments and suggestions and Assoc. Prof.
Dr. Ruja Pholsward for her valuable assistance in
proofreading. We also would like to convey thanks to the
Faculty of Information Communication and Technology,
Mahidol University for providing all laboratory facilities.

REFERENCES

Areerat T, Jarernsri LM (2009). Exhaustive Greedy Algorithm for

Optimizing Intermediate Result Sizes of Join Queries. Proceedings of
the 8

th
 IEEE/ACIS International Conference on Computer and

Information Science held at Shanghai, China. IEEE Comput. Soc.,

pp. 463-468.
Fegaras L (1998). A New Heuristic for optimizing large queries.

Proceedings of the 9
th
 International Conference on Database and

Expert Systems Applications held at Vienna, Austraria. SpringerLink
LNCS, pp. 726-735.

Gregory P (1984). Accurate Estimation of the Number of Tuples

Satisfying a Condition. Proceeding of the 1984 ACM SIGMOD
international conference on Management of data held at Boston,
Massachusetts, USA. ACM SIGMOD, pp. 256-276.

Hongbin D, Yiwen L (2007). Genetic Algorithms for Large Join Query

Optimization. Proceeding of the 9th annual conference on Genetic

and evolutionary computation held at London, England, UK. ACM,
pp. 1211-1218.

Kenneth RH (2003). Discrete Mathematics and Its Applications: Fifth
Edition. McGRAW-HILL, New York, pp. 593-601.

Kenneth RH (2003). Discrete Mathematics and Its Applications: Fifth
Edition. McGRAW-HILL, New York, pp. 691.

Lise G, Ben T, Daphne K (2001). Selectivity Estimation using

Probabilistic Models. Proceeding of the 2001 ACM SIGMOD
international conference on Management of data held at Santa
Barbara, California, USA. ACM SIGMOD, pp. 461-472.

Najmeh D, Hossein S, Homayun M (2010). Optimizing N relations join
queries by genetic algorithm. SRE. 5(13):1576-1582.

Pryscila GB, Marcos SS, Fabiano S (2007). Kruskal’s Algorithm for

Query Tree Optimization. Proceedings of the 11
th
 International

Database Engineering and Applications Symposium held at Banff,
Alberta, Canada. IEEE Comput. Soc., pp. 296-302.

Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG (1979).
Access Path Selection in a Relational Database Management
system. Proceeding of the 1979 ACM SIGMOD international

conference on Management of data held at Boston, Massachusetts,
USA. ACM SIGMOD, pp. 23-34.

Yanis IE, Eugene W (1987). Query Optimization by Simulated

Annealing. Proceeding of the 1987 ACM SIGMOD international
conference on Management of data held at San Francisco, California,
USA. ACM SIGMOD, pp. 9-22.

Yanis IE, Younkyung KC (1990). Randomized Algorithms for Optimizing
Large Join Queries. Proceeding of the 1990 ACM SIGMOD
international conference on Management of data held at Atlantic City,

New Jersey, USA. ACM SIGMOD, pp. 312-321.
Yu CT, Meng W (1998). Principles of Database Query Processing for

Advanced Applications. Morgan Kaufmann, CA, pp. 20-26.

