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Correct estimation of sediment volume carried by a river is very important for many water resources 
projects. The prediction of river sediment load also constitutes an important issue in hydraulic and 
river engineering. Conceptual models based on artificial intelligence models, namely, ant colony 
optimization (ACO) and genetic algorithm (GA) are now being used more frequently to solve 
optimization problems. Hence, the main purpose of this study was to apply ACO and GA in order to 
identify the relation between stream flow discharge and sediment loads for Nodeh station at the 
Gorgan River in Iran. The training and testing data sets were chosen based on the K-fold method of 
cross validation to find the optimal classifier. Different input combinations of ACO and GA models 
(that is, ACO1 and GA1: the suspended sediment estimation based on current discharge; ACO2 and 
GA2: the estimation of suspended sediment based on current, one day of previous discharges; and 
ACO3 and GA3: the suspended sediment estimation based on current, one and two-day of previous 
discharges) were chosen based on similar meteorological requirements to those of the suspended 
sediment equations included in this study. The estimation of the ACO and GA models was also 
compared with the empirical model, such as the sediment rating curve (SRC) technique. The models 
were compared based on statistical criteria, namely; regression coefficient (R

2
), Nash-Sutclif 

coefficient (CE) and root mean square error (RMSE). The results indicated that the ACO1 model 
provided better performance in estimating the suspended sediment loads as compared to the ACO 
models. Also, the GA2 model was more accurate than the GA1 and GA3 models. The findings in this 
study showed that the performance of the SRC model was more inferior the ACO and GA techniques 
when the inputs of the GA, ACO and rating curve models comprised only the current discharge. As 
seen from the results, the ACO1 model approximated that the corresponding observed suspended 
sediment values were better than the rating curve and GA2 techniques. However, for the peak flow 
discharge, the GA2 model could predict the suspended sediment better than the ACO2 and SRC 
models. 
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INTRODUCTION 
 
The volume and types of particles eroded and 
transported by the rivers exhibits great geographical and 
temporal variability.  Predicting  the  sediment  load  of   a 

river has long been a goal of engineers, hydrologists, 
sedimentologists, and many other earth scientists 
(Leopold et al., 1992). Accurate sediment load  prediction 



 
 
 
 
is very important in planning, designing, operating and 
maintenance of water resources structures.  Empirical 
relations, such as sediment rating curves, are often 
applied to determine the average relationship between 
discharge and suspended sediment loads. This type of 
models generally underestimates or overestimates the 
amount of sediment. Notably, direct measurement of 
sediment loads is very expensive to implement. Various 
models have been developed so far to identify the 
relation between discharge and sediment loads. Most of 
the models, based on the regression method, have some 
restrictive assumptions. Therefore, it is still necessary to 
develop an explicit model for the discharge-sediment 
relationship. Optimization models based on artificial 
intelligence models, namely, ant colony optimization 
(ACO) and genetic algorithm (GA) are now being used 
more frequently to solve optimization problems. In the 
early 1990s, ACO (Dorigo, 1992; Gambardella et al., 
1999; Maniezzo, 1996) was introduced as a novel nature-
inspired metaheuristic for the solution of hard 
combinatorial optimization (CO) problems. ACO belongs 
to the class of metaheuristics (Blum and Rol, 2003; 
Glover, 2002; Hoos et al., 2004), which are approximate 
algorithms used to obtain good enough solutions to hard 
problems in a reasonable quantity of computation time. 
Since then, ACO algorithms have been applied to 
different continuous and combinatorial problems, such as 
the travelling salesperson problem (TSP), the generalized 
assignment problem (GAP), the multiple knapsack 
problem (Leguizamon and Michalewicz, 1999), water 
distribution network design (Mariano and Morales, 1998), 
and the constraint satisfaction problem (Schoofs and 
Naudts, 2000). Abbaspour et al. (2001) used the ACO 
algorithm for estimating the unsaturated soil hydraulic 
parameters. Zecchin et al. (2003) compared the 
performance of original ant system with that of max-min 
ant system (MMAS), a modified version of the ant system 
proposed by Stutzle and Hoos (2001), for optimization of 
water distribution networks. Simpson et al. (2001) 
discussed the selection of parameters used in the ACO 
algorithm for pipe network optimization problems. More 
recently, Maier et al. (2003) compared the performance 
of the ACO algorithm with that of GA for the optimization 
of water distribution networks. Afshar (2005) proposed a 
new transition rule for ACO algorithms using elitist 
strategies and applied the method to pipe network 
optimization problems. The method was shown to 
overcome the premature convergence problem 
encountered by elitist ACO algorithms while improving 
the convergence characteristics of the algorithms as 
compared to alternative methods such as MMAS.  

GA have been applied to numerous engineering 
problems such as management of water systems  (Cai  et 
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al., 2001), design of water distribution networks (Savic 
and Walters, 1999), optimisation of sewer networks 
(Parker, 2000), calibration and improvement of urban 
drainage systems (Liong, 1995; James, 2002). In most 
applications, single objective GA were used such that 
only one criterion of optimisation was evaluated at a time 
and this is mainly due to the inadequate ability of single 
objective GA to deal with more than one objective. GA 
has been used frequently in the engineering problems in 
recent years. Sen and Öztopal (2001) used GA to predict 
precipitation occurrence. GA are also used in the 
optimization and operation of groundwater resources 
design uncertainties in the hydraulic conductivity and they 
also provide solution of more complex nonlinear 
problems when compared with traditional gradient based 
approaches (Espinoza et al., 2005; Hilton et al., 2005; 
Mahinthakumar et al., 2005). The sediment was predicted 
from discharge measurements using GA by Altunkaynak 
(2009). 

Altunkaynaka and Wang (2010) proposed a new 
adaptive prediction approach termed Geno-Kalman 
filtering (GKF), combining GA and Kalman filtering 
techniques for accurate prediction of suspended 
sediment concentration (SSC). Their model is formed in 
three steps. Firstly, discharge and suspended sediment 
concentration are related by using dynamic linear model. 
Secondly, an optimum transition matrix relating these two 
state variables is obtained by Genetic Algorithms (GAs), 
and an optimum Kalman gain is calculated. Thirdly, 
Kalman filtering is used to predict the suspended 
sediment concentration from discharge measurement. 
They applied the proposed method to measurements at 
the Mississippi river basin in St. Louis, Missour. 

Altunkaynaka (2010) developed some models for 
predicting suspended soild concentration based on 10 
different scenarios for lake Okeechobee in Florida. 
Extensive data, including wind speed, flow velocity, flow 
direction and SSC, have been collected. They predicted 
the SSC by the Kriging interpolation technique. 

Sen et al. (2004) proposed a new approach for 
sediment concentration prediction, and provided that 
there are measurements of discharge and sediment 
concentration. The basis of their methodology is a 
dynamic transitional model between successive time 
instances based on two variables, namely, discharge and 
sediment concentration measurements. The transition 
matrix elements are estimated from the measurements 
through a special form of the artificial neural networks as 
perceptrons. They achieved the sediment concentration 
predictions from discharge measurement through a 
perceptron Kalman filtering (PKF) technique. 

The aim of this study is to obtain the relation between 
suspended sediment discharge and flow discharge for 
estimation of suspended sediment by using two 
optimization models that consist of ACO and GA and 
empirical model (SRC) for Nodeh station at Gorgan-river 
in Iran. Also, the result of each model was compared 
together in this study. In this study,  the  ACO  (main  aim  of 
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study) was developed because: 
 
1) ACO imposes no continuity requirement on the 
objective function, and they can solve problems with 
discrete decision variables; 
2) ACO usually does not get trapped to a local-optimal 
solution, and they can find a near-optimal solution with a 
high probability; 
3) ACO generates several near-optimal solutions, and 
they can provide sufficient flexibility in decision making;  
4) ACO have parallel processing potential, and they can 
generate faster solution in real (clock) time. 
 
 
MATERIALS AND METHODS 

 
The optimization and empirical models were used for estimating the 
suspended sediment in this investigation. The sediment rating 
curve through bias correction factor was used for the empirical 
models. The optimization models consisted of the ACO and GA 
models that were used for estimating the suspended sediment. GA 
was obtained from MATLAB toolbox, whereas ACO was developed 
for estimating the suspended sediment in C++. For all the models, 
the daily flow discharge and the suspended sediment discharge 
measurements were used. 

 
 
Empirical model or sediment rating curve (SRC) 

 
In spite of very different methods for developing the rating curves, 
the most common method is the power function of the form 

baXY   which relates the suspended sediments concentrations 

to water discharge. Sediment rating curve expresses the sediment 

load, sQ , at a cross-section from the river through its discharge, 

wQ , as follow: 

 
b

ws aQQ                      (1) 

 

Where sQ is the suspended sediment discharge in ( dayton ); 

wQ is the stream discharge in ( sm3
); a, b are the coefficients 

that provide the best relationship between discharge and the 
sediment load. These parameters are generally obtained by least 

squares method. For a given set of sQ and wQ data, only one 

solution point (a and b) values are obtained. In this case, a and b 
coefficients are accepted as constant through all process. After log-
transformation to the arithmetic domain and application of the 
Ferguson (1986) correction factor, the sediment load occurring at a 
specific discharge can be estimated using the following expression: 

 
b

wfs QaCQ ..                                (2) 

 

where fC  is the log-transformation bias correction factor 
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where exp is the exponential function and s is the standard error of 
the regression equation. In the applications, Equation 2 is the 
sediment rating curve with bias correction factor was used for 
suspended sediment estimation. 
 
 
Optimization models  
 
The estimation of the suspended sediment depended only on the 
current discharge, because of the empirical models such as the 
sediment rating curve; in this study, flow discharges from the 
previous one- and two-days were also considered to improve the 
relationship between suspended sediment discharge and flow 
discharge, because the suspended sediment discharge has a 
relationship with discharges from the current, as well as from the 
previous one- and two-days. 

The following equation shows the developed rating curve for the 
suspended sediment estimation: 
 

d

tw

c

tw

b

tws QQaQQ )2()1()( .. 
                               (4) 

 

where  
sQ  is the discharge of suspended sediments (

dayton
); 

 
)(twQ  is the value of current discharge ( sm3

);
 

)1( twQ
 is the 

value of previous one-day discharge ( sm3
);

 
)2( twQ is the value 

of previous two-day discharge ( sm3
); a, b, c, and d are the 

determination coefficients. 
The best unknown coefficients for a, b, c and d for the improved 

rating curve were obtained by minimizing the root mean square 
error (RMSE) between the observed suspended sediment 
discharge and the estimated suspended sediment discharge used 
(Equation 4).  The training data was used to obtain the unknown 
parameters, and after that, obtained parameters were used for the 
test period. For minimizing the RMSE between the observed 
suspended sediment discharge and the estimated suspended 
sediment discharge using Equation 4, the developed ACO and GA 
approaches were used. Considering the use of the flow discharge 
for the improved rating curves by GA and ACO, three sub-models 
were being created for each of them. If the data of the current day 
discharge were used for estimating the suspended sediment in 
Equation 4, the corresponding models of ACO and GA were called 
ACO1 and GA1; whereas, if the data of the current and one-day 
previous discharges were used, they were then called ACO2 and 
GA2. When the current, one and two-day previous discharges were 
used, the ACO and GA were called ACO3 and GA3. Table 1 
summarises the parameters that were used for each model. 
 
 

GA 
 
This global optimisation (GA) procedure is based on the Darwinian 
principle of survival of the fittest. Applied to a biological community, 
it is the principle by which chances of survival of an entire com-
munity within a particular environment are increased by discarding 
inferior members and replacing them by superior offspring. The 
probability of survival of the community increases as it develops 
characteristics required to extract maximum benefit from resources 
within its new environment. This stage is reached over a period 
spanning many generations and is the result of improving genetic 
combinations of individual members through reproduction of the 
fittest. Theoretically, a near optimal solution could perhaps be 
obtained even within the initial population, if it were possible to 
formulate a parameter set by taking the best value of each 
parameter across population members. Given a sufficiently large 
population,   every   parameter    would    assume    values    evenly
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Table 1. Discharge identity parameter used for corresponding model. 
 

Variety of 
conceptual 

models 

Current 
discharge 

(Qw(t)) 

Current discharge and 
one day previous 
discharge (Qw(t-1)) 

Current discharge, one  
and two day previous 

discharge (Qw(t-2)) 

ACO1 * - - 

ACO2 * * - 

ACO3 * * * 

GA1 * - - 

GA2 * * - 

GA3 * * * 

SRC * - - 

 
 
 
distributed over its parameter range. Careful formulation of the 
genetic plan is required to produce balance between exploitation of 
the entire search space and exploration of the interesting regions of 
attraction.  

In this part of this research, genetic algorithm improved the 
sediment rating curve for one and two days before the current 
discharge. GA with the training data minimized the RMSE between 
the observed suspended sediment discharge and the simulated 
suspended sediment discharge for obtaining the coefficient of 
Equation 4. The best coefficient was found when the lowest RMSE 
was obtained and the GA stopped. The calculated coefficient 
through GA was then used for the test period. The following is the 
first description of the objective function for genetic algorithm. In 

this study, the objective function was to find a factor set 


 that 
minimized the general function by using GA: 
 





l

i

om QQg
1

2)()(                   (5) 

 

Where g is the objective function; 


is the vector of input factor; l is 

the number of observed variables; oQ
 is the measured value of 

suspended sediment discharge of the ith variable ( dayton ); and 

mQ
 is the simulated suspended sediment discharge from Equation 

4 ( dayton ). 
Careful formulation of the genetic plan was required to produce 

the balance between the exploitation of the entire search space and 
the exploration of the interesting regions of attraction. For this 
research, all the functions were examined together for finding the 
best function. GA may achieve this best combination via its genetic 
plan, which is a procedure consisting of the following operators:  
 
1) Selection, which randomly chooses a sub-set of individuals for 
mating from among the whole population; 
2) Replacement, which is the mechanism of incorporating into the 
original population the offspring resulting from mating at the 
expense of inferior individuals; 
3) Crossover, which is the method of swapping genes during 
mating of selected individuals to produce offspring; 
4) Mutation, which randomly alters selected genes in chromosomes 
and which will be discussed subsequently. 

 
These steps are repeated until a certain error percentage is 
achieved between two final successive solutions. In the first step of 
the    algorithm,    initial    population   is   constituted    through   the 

chromosomes that are selected randomly. The number of 
chromosomes in the population is decided by the user. This 
population changes by certain rules in order to optimize the target 
function. Each chromosome should be evaluated by considering 
their objective function to find the optimum solution. During the 
evolution of the solution population, some chromosomes depart 
from the process while stronger ones remain in the updated 
population. In order to constitute the new generation, chromosomes 
that provide the most suitable conditions for objective function are 
selected by using Roulette wheel. This wheel is partitioned into 
sections of which the widths are determined according to the 
objective function. So, the chromosomes which have best objective 
function value have a more chance to be selected as members for 
the next generation. The new generation is evolved from the current 
generation by applying some genetic operators such as cross-over 
and mutation. These operations are repeated until the objective 
function is achieved. The number of iterations required to obtain the 
optimal coefficient values depend on the initial population. If the 
initial population is close to solution point, the algorithm would 
reach the solution with less iteration. Since GA produce many 
solution points, they put forward the relationship between discharge 
and sediment by forming more than one curve using a and b 
parameters in Equation 4. The flow chart of the genetic algorithm 
used in this study is as shown in Figure 1. 
 
 
ACO 
 
ACO is now being used more frequently to solve optimization 
problems other than those for which they were originally developed. 
However, the application of ACO to water resources problems is 
rather recent. In this part of the research, ACO can improve the 
sediment rating curve for one and two-day discharges before the 
current discharge. ACO with the training data (from sample data) 
minimized the RMSE between the observed suspended sediment 
discharge and the simulated suspended sediment discharge in 
order to obtain the coefficient of Equation 4. ACO continues until 
the lowest RMSE is obtained. The best coefficient was found when 
the lowest RMSE was obtained, after which ACO was stopped. The 
calculated coefficient was used for the test period (from sample 
data). 
 

Application of ACO to estimated suspended sediment: During 
the past several decades, considerable advances have been made 
in the mathematical description of water flow and suspended 
sediment transport. A large number of models are now available for 
predicting the subsurface flow and suspended sediment. Still, 
effective application of such models to practical field problems 
suffers from the lack of knowledge of model parameters and their 
uncertainties.    
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 Initial population selects the population 

individuals (chromosomes) randomly 

Compute the objective function 

Select the chromosomes the pass to new 

generation 

Reproduction (cross-over and mutation)  

 

Is the objective function achieved?  

Solution: The best parameter are found 

End 

Compute the objective function 

 

Yes 

 

No 

 
 

Figure 1. Flow chart for GA. 

 
 
 

In order to deal with the issue of model factor identification, 
inverse modelling (IM) from ant system (AS) algorithm provides that 
constituted estimation of input factors from readily measurable 
model output variables. Input factors are obtained by minimizing an 
objective function describing the difference between the measured 
and simulated data (Abbaspour et al., 2001). 

The first in this part of the study was to describe the objective 
function.  In this study, the objective function was the same with the 
objective earlier explained in the part of GA. As mentioned 
previously, the objective function is to find a factor set 

 
that 

minimizes the general function repeated here for convenience: 

 





l

i

om QQg
1

2)()(  

 
In the ACO algorithm, a colony of artificial ants contributes in finding 
good solutions to discrete optimization problems. Application of the 
ACO   algorithm   to   arbitrary  combinatorial  optimization  problem 

requires that the problem can be projected on a graph (Dorigo, 

1996). Consider a graph G = (J, γ, U), in which J = { njjj ,...., 21 } 

is the set of decision points at which some decisions are to be 

made; γ = { il } is the set of options; L = 1,2,...,l, at each of the 

determination points; i = 1,2,...,n; and finally U = { ilu } is the set of 

costs associated with options γ = { il }. 

The main concept behind the algorithm can be summarized in 
the following steps: 

 
1) Depict each unknown factor by an interval based on the available 

information for the imaginary factor 


, as shown in Figure 2; 
2) Discrete each interval into a number of level, and let the middle 
of each layer represent that layer; 
3) Run the simulation model of the selected subset of all the 
possible factor combinations (a loop); 
4) Grade each layer on the basis of the  smallness  of  the  value  of
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Figure 2. Schematically scheme of nerve tract structure.  

 
 
 
the objective function received higher grade; 
5) Remove from the ends of the factor intervals the level with small 
or no grade, thereby, decreasing the initial range of factor 
uncertainty, and finally; 
6) Repeat the process until a desired stopping rule is reached. 
 
In the algorithm, each layer, which is initially set to a grade of zero, 
receives a grade of 1 if the numerical quantity of the objective 

function g, for that layer satisfies the condition ( )crgg  , where 

crg  is the user defined numerical quantity (Abbaspour et al., 

2001). 

 
Explication of the ACO: The ACO problem can be described as 

follows: let RDg )( , as given by Equation 6 be a 

continuous and bounded function, and 


 be a b-dimensional state 
vector. The objective is to find the state vector   that minimizes g 

( ). Without the loss of generality, D can be taken as the hyper 

parallelepiped: 

 

D= biiiii ,...,2,1;                    (6) 

 

where 


i  and 


i  denote, respectively, the lower and upper 

bounds of factor i . This is done by separating the interval 

 

ii  ,
 
of each factor i  into a number, say iw , of the level 

(Abbaspour et al., 2001). 

Note that in this study, a1 , b2 , c3  
and 

d4 . If each layer is represented by the numerical quantity at 

the middle of the layer, then there will be W = bwww .... 21  switch 

or possible nerve tracts through the space of the input factors. The 
aforementioned decretive scheme for the three factors is 
schematically shown in Figure 2. 

While having more levels would speed up the convergence of the 
ACO   problem,   this  advantage  should  be  balanced  against  the 

speed of the simulation programme, which rapidly increases as the 
number of calls to a simulation programme rapidly increases as the 
number of level increases. To limit the number of function calls, one 
could select only a random subset of M or N and invoke parallel 

processing. Based on Abbaspour experience so far, MN 1.0  

generally leads to optimum solutions. 
 
Attribute tasks to ant agentive role: The total number of ant m in 
the colony is chosen because any ant must follow one nerve tract. 
Acting like an agentive role, each ant has the following tasks: 
1) Selecting a nerve tract from the nerve tract list and remembering 
the numerical quantities of the factor level along its nerve tract; 
2) Passing the factor numerical quantities to a simulation 
programme at the end of the nerve tract; 
3) Calculating the numerical quantity of the objective function for its 
nerve tract, and 
4) Placing a certain pheromone in the case of real ants on the basis 
of the numerical quantity of the objective function. 
 

Once all ants complete the aforementioned circuit, one ant cycle or 
one loop is completed (Abbaspour et al., 2001). 
 

Counting the trail and grading factor level: Pheromone trails 
play an important function in the foraging behaviour of the real ant 
colonies. While walking from food sources to the nest and vice 
versa, ants stick on the ground a substance called pheromone, 
forming in this way a pheromone trail. Ants can smell pheromone 
and, when choosing their way, they tend to choose, in probability, 
routes marked by strong pheromone densities (Abbaspour et al., 
2001). 

The pheromone trail acts as a form of indirect social relation 
called stigmergy helping the ants to find their way back to the food 
source or the nest. In ACO,  pheromone trails are the only social 
relation channel among the ants and play a major role in the 
utilization of collective knowledge of the colony (Abbaspour et al., 
2001). 

Let )1(u  be the intensity of pheromone on nerve tract u (u = 

1,…N) and cycle 1. Ants must place the same quantity of 
pheromone on the layers that they follow. In the Travelling 
Salesman Problem (TSP), the trail intensity is defined as a function 
of the length of a route. In this problem, we used the numerical 
quantity of the objective function of a nerve tract to ascribe the trail. 
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where ug  is the numerical quantity of the objective function for the 

uth nerve tract, crg  (will be defined later) is a critical numerical 

quantity and ming  is the minimum numerical quantity of the 

objective function for a cycle (Abbaspour et al., 2001). 
The aforementioned Equation (7) posits that the nerve tracts with 

numerical quantities of the objective function larger than crg  

receive no pheromone, while below crg , the intensity of trail is 

exponentially larger for smaller numerical quantities of the objective 

function. At ming , )1(u  is a set equals to an arbitrary numerical 

quantity of 100 (this numerical quantity would be equivalent to Q in 
the TSP, which also incidentally equals 100) (Abbaspour et al., 
2001). 

In order to determine how to update the factor, we defined the 

term grade iS  for each layer counted by the following expression 

similar to the transition probability of the TSP problem. 
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where the numerical quantity of A = 1, and count N and T by using, 
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NCN



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g

g

Tcr cgg



 min               (10) 

 

where ijij  ,  are respectively the standard deviation and mean of 

trail of the ij
 

level (Abbaspour et al., 2001). gg  ,  are 

respectively, the standard deviation and mean of the objective 

function for a loop, and TC and NC  are constant that were 

determined to be about 0.8 and 0.5, respectively. The factor A, N 
and T in Equation 8 control the relative importance of the trail 

intensity versus sensitivity. Note that any single layer ij  may be 

the crossroad of many ant nerve tracts. The trail share of each layer 

ij  form each nerve tract, and can be summed to yield ij  as: 

 





gpathwayscrosu

uij

sin

)1()1(


               (11) 

 
where crossing nerve tracts are all the nerve tracts that cross 

layer ij
 
(Abbaspour et al., 2001). The work Abbaspour (2001) has 

more information about this algorithm. 

 
 
 
 
Updating factors and stopping rules: The counted trail for each 
nerve tract is used to grade a nerve tract. The low grading nerve 
tracts will vanish and new nerve tracts will evolve around high 
grading routes (Abbaspour et al., 2001). 

Once the grading is completed, the factors are updated by 
decimating the level with small grades from both ends of the 
intervals. This results in factors with narrower ranges. Note that, if 
the high grading level falls on either end of the factor intervals, the 
factors could be extended in that direction. The system is 
subsequently reinitialized, with the updated factors and the process 
repeated. This loop continues until a stopping rule is satisfied. This 
may occur when: (1) a desired numerical quantity of the objective 
function is reached, and (2) no changes in the numerical quantity of 
the objective function are obtained in the consecutive loops. Figure 
3 shows the flow chart for ACO. 

 
 
Study area and data 

 
The Gorgan River watershed is located in the southeast of the 
Caspian Sea between 54°,02' - 56°,16' east longitude and 36°,34' - 
37°,47' north latitude. The Gorgan River originates from the high 
lands of the Alborz mountain chains at the eastern part of the 
watershed. After passing through the city of Gonbad Kavous, it 
enters into Voshmgir Dam and finally joins the Caspian Sea. The 
watershed of Gorgan River spreads over an area of 13170 km2 
approximately, 7838 km2 (60%) of which accounts for the 
watershed highlands, and the remainder includes foothills and 
plains. Nearly 8500 km2 of the watershed is covered by the Basin of 
Gorgan River, which extends to the Voshmgir Dam. Figure 4 shows 
the location of Gorgan River basin and Voshmgir Dam. 

In this study, the mean river flow discharge and the suspended 
sediment concentration data at Nodeh station on the Gorgan River 
in Iran were used. These data, gathered from the Water Resource 
in Golestan province from 1978 until 2008, were divided into two 
partitions, that is, one for training and the other for testing. It was 
important to separate the data sets into two separate sets, that is, 
one to be used for training and the other for testing the results 
obtained from the training. K-fold cross validation was used in the 
field of machine learning to determine how accurately a learning 
algorithm would be able to predict data that it was not trained on. 

 
 
Efficiency criteria 

 
Here, the efficiency criteria used in this study are presented and 
evaluated. These are the three criteria: coefficient of determination, 
Nash-Sutcliffe efficiency, and RSME present in the model 
simulation. 

 
 
Coefficient of determination (R2) 

 
The coefficient of determination R2 is defined as the squared value 
of the coefficient of correlation according to Bravais-Pearson. It is 
calculated as: 
 

R2 = 

2

1 1
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With O observed and P predicted values. R2 can also be expressed

http://everything2.com/title/cross+validation
http://everything2.com/title/machine+learning


Pour et al.         3591 
 
 
 

 

 

 

 

 

 

 

Describe of an objective function 

Depict each unknown factor by an interval based on 
available information, for the imaginary factor 

 

Discrete each interval into a number of level 

Selecting a nerve tract from the nerve tract list and 

remembering the numerical quantities of the factor level 
along its nerve tract. 

 

Calculating the numerical quantity of the objective 

function for its nerve tract 

Grade each layer on the bases of the smallness of the 

value of the objective function receive higher 

Solution: best factor are found 

End 

At the end of the nerve tract, passing the factor 
numerical quantities to a simulation program 

 

Yes 

No 

Remove from the ends of the factor intervals the level 
with small or no grade, thereby decreasing the initial 

range of factor uncertainty 

Is the high grade of factor achieved objective 

function? 

 
 

Figure 3. Ant colony optimization flowchart. 
 
 
 

as the squared ratio between the covariance and the multiplied 
standard deviations of the observed and predicted values. 
Therefore, it estimates the combined dispersion against the single 
dispersion of the observed and predicted series. The range of R2 
lies between 0 and 1 which describes how much of the observed 
dispersion is explained by the prediction. A value of zero means no 
correlation at all, whereas a value of 1 means that the dispersion of 
the prediction is equal to that of the observation. The fact that only 
the dispersion is quantified is one of the major drawbacks of R2  if  it 

is considered alone. A model which systematically over- or under 
predicts all the time will still result in good R2 values close to 1.0 
even if all predictions were wrong. 
 
 

Nash-Sutcliffe efficiency 
 

The coefficient of efficiency (CE) proposed by Nash and Sutcliffe 
(1970) is defined as one minus  the  sum  of  the  absolute  squared
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Figure 4. Location of the Gorgan River Basin and Nodeh station. 

 
 
 

differences between the predicted and observed values normalized 
by the variance of the observed values during the period under 
investigation. It is calculated as: 
 

                            (13) 
 
where CE is the coefficient of efficiency, N is the number of data 
points, O is observed value and P is predicted value. 

Nash–Sutcliffe efficiencies can range from −∞ to 1. An efficiency 
of 1 (CE = 1) corresponds to a perfect match of model discharge to 
the observed data. An efficiency of 0 (CE = 0) indicates that the 
model predictions are as accurate as the mean of the observed 
data, whereas an efficiency less than zero (CE < 0) occurs when 
the observed mean is a better predictor than the model or, in other 
words, when the residual variance, is larger than the data variance. 

 
 
RMSE 

 

 



n

i

PO
N

RMSE
1

21
                           (14) 

 
where,  RMSE is the root mean square error, N is the number of 
data points, O is observed value and P is predicted value. 

RESULTS 
 

The scatter plots of the Nodeh station data for deter-
mining the relationship between the discharge and 
sediment data were used, as shown in Figure 5.  It can 
be seen that there was a non-linear and scattered 
relationship between the discharge and sediment data for 
this station. The daily statistical parameters of the stream 

flow and sediment data were meanx , maxX
 

and minX  

denoting the mean, maximum and minimum of data, 
respectively. The daily statistical parameters of the 
stream flow and sediment data are given in Table 2. 

The results of each model are shown in the 
subsequently. Considering the presentation of results 
from the each month, it took more time and attention than 
only the results of April declared. 
 
 

Sediment rating curve 
 
As for the SRC model, the daily discharge and 
sedimentation data of 30 years were used for the monthly 
method. Prior to application, the SRC data were divided 
into two parts, namely, calibration and validation. The 
training   data  was  used  to  find  the  model  parameters
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Table 2. The daily statistical parameters for monthly flow discharge (m3/s) and suspended sediment 
(ton/day). 
 

Test period  Data type Xmin Xmax Xmean 

April  
Flow 1.43 10.66 4.95 

Sediment 27.46 1845.64 450.81 
     

May  
Flow 0.47 6.94 2.81 

Sediment 2.00 574.16 93.43 
     

June  
Flow 0.02 7.05 1.83 

Sediment 0.02 493.79 53.20 
     

July  
Flow 0.06 2.85 0.93 

Sediment 0.07 38.10 10.35 
     

August  
Flow 0.40 3.28 1.21 

Sediment 0.07 402.79 32.92 
     

September  
Flow 0.48 3.32 1.54 

Sediment 1.67 292.97 33.36 
     

October  
Flow 1.30 3.42 2.23 

Sediment 8.98 113.59 34.07 
     

November  
Flow 1.12 2.93 1.98 

Sediment 4.08 68.94 23.68 
     

December 
Flow 0.77 3.45 1.92 

Sediment 1.32 78.59 21.26 
     

January 
Flow 0.89 7.30 2.13 

Sediment 0.65 859.88 55.19 
     

February 
Flow 1.02 5.61 2.29 

Sediment 4.40 211.88 45.46 
     

March 
Flow 1.62 12.88 3.72 

Sediment 8.56 2511.29 240.13 
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Figure 5. Suspended sediment load–discharge scatter diagram for 
all data for the Nodeh station. 

(coefficients of a and b), while the rest of the data was 
employed for validation of the model. On the other hand, 
in Figure 6, the scatter plot for the observed and 
estimated suspended sediments for April was drawn by 
the SRC model. Meanwhile, Figure 7 shows the scatter 
plot of the discharge against the observed suspended 
sediment load and the estimated suspended sediments 
by SRC, whereas Table 3 displays the RMSE, coefficient 
of determination (R

2
) and Nash’s Efficiency (CE) values. 

 
 

GA 
 

Several input combinations are checked using GA to 
estimate suspended sediment load for the Nodeh station. 
The RMSE, coefficient of determination (R

2
), Nash-Sutcliffe 
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Table 3. The RMSE (ton/day), coefficient of correlation and determination coefficient of SRC models for test 
period. 
 

Test period  
SRC 

RMSE R
2
 a b CE 

October 5.539 0.525 11.03 1.149 0.54 

November 4.892 0.234 1.91 2.678 -5.47 

December 4.540 0.610 4.359 1.595 -1.89 

January 69.870 0.801 7.286 1.56 0.25 

February 8.521 0.065 13.56 1.271 -6.05 

March 23.328 0.238 8.904 2.118 0.05 

April 109.446 0.656 3.061 2.799 0.39 

May 34.548 0.168 12.01 1.407 0.26 

June 27.241 0.408 13.62 1.395 -0.62 

July 0.839 0.389 10.63 1.124 0.57 

August 3.100 0.597 6.624 2.768 -1.2 

September 3.942 0.325 9.57 1.436 0.42 
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Figure 6. Scatter plot for observed and predicted suspended 
sediment for test period for various SRC for April. 
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Figure 7. The scatter plot of the discharge against the observed 
suspended sediment load and the estimated suspended sediment 
by SRC of Nodeh station during test period in April. 
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Figure 8. The scatter plot of the discharge against the observed 
suspended sediment load and the estimated suspended 
sediment by GA models of Nodeh station during test period in 
April.  

 
 
 

efficiency (CE) and coefficients that provide the best 
relationship between discharge and the sediment load of 
GA models in test period are shown in Table 4. For GA 
optimization, constant parameters, sets of a, b, c and d 
parameters were obtained from training data. The scatter 
plot of the discharge against the observed suspended 
sediment load and the estimated suspended sediment by 
GA models of April is as shown in Figure 8. Also in Figure 
9, the scatter plot for the observed and estimated 
suspended sediment for April is drawn by parameters 
found as a result of GA optimization. 
 
 

ACO 
 

For the Nodeh station, the RMSE, coefficient of 
determination (R

2
), Nash-Sutcliffe efficiency (CE) and 

coefficients that provide the best relationship between 
discharge and the sediment load of ACO models in test 
period are given in Table 5. For ACO optimization, 
parameters, sets of  a,  b,  c  and  d  were  obtained  from



Pour et al.         3595 
 
 
 

Table 4. The RMSE (ton/day), coefficient of correlation and determination coefficient of variety of GA and SRC models for test 
period. 
 

Test period  RMSE R
2
 a b c d CE 

GA1 
    

 
 

 

October 117.835 0.67 5.306 2.591 - - 0.30 

November 53.291 0.398 4.254 2.68 - - -0.76 

December 21.383 0.854 5.892 2.296 - - -0.17 

January 1.282 0.482 9.289 2.25 - - 0.42 

February 8.177 0.61 11.366 3.008 - - -14.4 

March 4.111 0.356 6.498 2.389 - - 0.13 

April 5.124 0.349 15.917 0.963 - - -0.16 

May 4.248 0.357 5.08 1.99 - - -3.88 

June 4.013 0.606 6.322 1.728 - - -0.48 

July 71.528 0.908 3.733 1.84 - - 0.21 

August 8.404 0.227 4.751 2.12 - - -1.78 

September 23.447 0.254 7.262 2.288 - - 0.00 

     
 

 
 

GA2 
    

 
 

 

October 86.926 0.736 1.906 1.126 2.002 - 0.62 

November 42.998 0.347 5.633 2.801 -0.669 - -0.15 

December 19.788 0.8 8.927 2.066 -0.016 - 0.65 

January 1.6784 0.595 3.701 3.531 0.395 - -0.80 

February 9.899 0.619 2.186 4.132 1.317 - -21.6 

March 2.599 0.473 4.565 4.876 -2.233 - 0.29 

April 4.557 0.599 12.179 1.009 0.209 - 0.09 

May 4.171 0.054 6.324 1.38 0.317 - 0.39 

June 3.947 0.593 6.244 2.34 -0.574 - -0.56 

July 74.174 0.91 2.044 1.709 0.503 - 0.15 

August 7.729 0.295 4.948 0.583 1.116 - -0.84 

September 27.678 0.259 2.35 2.652 0.197 - -0.20 

     
 

  
GA3 

    
 

  
October 130.203 0.632 0.472 1.665 1.087 1.107 0.14 

November 37.550 0.333 6.135 2.806 1.558 -2.276 0.12 

December 26.083 0.660 6.558 2.304 0.077 -0.278 0.08 

January 1.721 0.169 1.51 2.477 2.454 0.757 -3.20 

February 9.569 0.628 3.872 3.979 0.023 0.728 -20.1 

March 3.015 0.176 4.03 5.801 -0.839 -2.51 0.03 

April 5.120 0.575 5.566 1.894 -0.839 0.95 0.21 

May 4.620 0.417 1.737 1.987 -0.942 2.032 -4.78 

June 5.804 0.302 2.923 1.182 1.173 -0.457 -1.78 

July 73.463 0.446 2.472 0.58 1.813 0.373 0.17 

August 12.798 0.238 2.461 0.226 1.36 1.46 -34.46 

September 28.715 0.312 1.934 2.943 1.542 -1.682 -0.24 

 
 
 
training data. The scatter plot of the discharge against the 
observed suspended sediment load and the estimated 
suspended sediment by ACO models of April is as shown 
in Figure 10. Also in Figure 11, scatter plot for the 
observed and estimated suspended sediment for April is 
drawn by parameters found as a result of ACO 
optimisation. 

DISCUSSION  
 
The various GA models were compared together for 
Nodeh station, as shown in Table 4. As seen from the 
table, the GA model for the current discharge and one 
previous discharge input combination (GA2) for most of 
the months (about 8 month) had the lowest RMSE and
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Figure 9. Scatter plot for observed and predicted suspended sediment for test period for various model of GA.  
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Table 5. The RMSE (ton/day), coefficient of correlation and determination coefficient of various ACO and SRC models for test 
period. 
 

Test period  RMSE R
2
 a b c d CE 

ACO1 
    

  
 

October 84.477 0.677 9.489 2.24 - - 0.64 

November 28.967 0.37 11.608 1.804 - - 0.48 

December 17.627 0.741 12.77 1.875 - - -1.34 

January 0.821 0.426 12.665 1.222 - - 0.69 

February 1.549 0.536 5.228 2.229 - - 0.4 

March 3.59 0.372 7.236 1.894 - - 0.29 

April 3.892 0.634 11.472 1.471 - - -1.11 

May 4.817 0.333 3.62 1.87 - - 0.48 

June 4.504 0.565 5.458 2.229 - - -0.16 

July 57.257 0.905 7.656 1.828 - - 0.50 

August 8.047 0.042 12.34 1.23 - - -2.07 

September 30.909 0.244 5.17 2.171 - - -0.23 

     
  

 
 ACO2 

    
  

 
October 73.117 0.748 2.241 0.962 - - 0.73 

November 50.485 0.376 7.744 2.604 - - -0.58 

December 11.529 0.895 8.587 2.099 - - 0.86 

January 1.479 0.488 14.987 3.675 - - 0.95 

February 8.696 0.624 2.534 3.938 - - -16.4 

March 5.482 0.432 2.885 13.92 - - -2.18 

April 4.709 0.553 15.519 0.984 - - -1.16 

May 4.907 0.205 3.663 1.897 - - -5.51 

June 3.928 0.599 6.552 2.135 - - -0.53 

July 58.382 0.693 19.345 0.987 - - 0.48 

August 7.34 0.269 10.1 0.223 - - -2.32 

September 32.451 0.239 3.066 2.5 - - -0.49 

     
  

 
ACO3 

       
October 90.541 0.661 0.615 1.429 1.144 1.001 0.58 

November 31.804 0.114 8.8 1.421 1.919 -0.999 0.37 

December 30.476 0.892 8.587 1.909 0.912 0.01 -0.37 

January 6.784 0.117 30.956 0.442 4.873 0.001 -14.53 

February 2.437 0.685 6.327 -0.313 2.11 0.001 -0.4 

March 21.82 0.166 15.985 2.424 1.546 0.001 -49.40 

April 7.112 0.55 3.041 0.896 1.994 0.001 -7.95 

May 5.939 0.09 2.79 1.876 0.987 0.1 -8.54 

June 4.036 0.529 5.885 -0.142 3.891 -1.999 -0.12 

July 55.303 0.245 9.344 0.394 2.426 0.006 0.53 

August 12.57 0.255 3.078 1.001 3.973 -1.999 -31.09 

September 28.173 0.388 13.673 3.332 0.003 -1.2 0.03 

 
 
 
the highest R

2
, also, the Nash Sutcliffe efficiency (CE) for 

most of the month for GA2 is better from other models. In 
this case, for example, in April, the RMSE, R

2 
and CE 

values for the GA1 model were 117.83, 0.68 and -0.16, 
respectively. On the other hand, the RMSE, R

2
 and CE 

values for the GA2 model were 86.93, 0.74 and 0.39 and 
as for the GA3 model, they were 130.20,  0.63  and  0.21, 

correspondingly. Figure 8 shows the scatter plot of the 
discharge against the observed suspended sediment 
load and several GA model (that is, GA1, GA2 and GA3) 
predictions of Nodeh station. The GA performance for the 
first input combination of GA1 (only the current 
discharge) was low. For the high value of the discharge in 
GA2 (the current discharge and one previous  discharge),
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Figure 10. The scatter plot of the discharge against the observed suspended sediment 
load and the estimated suspended sediment by ACO models of Nodeh station during test 
period in April. 
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Figure 11. Scatter plot for observed and predicted suspended sediment for test period for various model of ACO. 
 
 
 

it revealed a good performance; however, the GA3 for the 
peak value of the discharge had low performance. 

For Nodeh station, the RMSE and the determination 
coefficient of various ACO models are given in Table 5. 
The ACO1 model provided the best accuracy for the input 

combination data. On the contrary, the ACO3 model with 
the input of the current discharge and one and two of 
previous discharges performed the worst model in the 
Nodeh station. As shown in Table 5, the ACO model with 
the inputs of current  discharge  (ACO1)  for  most  of  the
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Table 6. The RMSE (ton/day), coefficient of correlation of ACO1, GA2 and SRC models for test period. 
 

Test period  
SRC  ACO1  GA2 

RMSE R
2
 CE  RMSE R

2
 CE  RMSE R

2
 CE 

April 109.447 0.656 0.54  84.477 0.677 0.62  86.926 0.736 0.64 

May 34.549 0.168 -5.47  28.967 0.37 -0.15  42.998 0.347 0.48 

June 27.241 0.408 -1.89  17.627 0.741 0.65  19.788 0.8 -1.34 

July 0.839 0.389 0.25  0.821 0.426 -0.8  1.6784 0.595 0.69 

August 3.101 0.579 -6.05  1.549 0.536 -21.6  9.899 0.619 0.4 

September 3.942 0.325 0.05  3.59 0.372 0.29  2.599 0.473 0.29 

October 5.539 0.525 0.39  3.892 0.634 0.09  4.557 0.599 -1.11 

November 4.893 0.417 0.26  4.817 0.333 0.39  4.171 0.054 0.48 

December 4.54 0.61 -0.62  4.504 0.565 -0.56  3.947 0.593 -0.16 

January 69.876 0.801 0.57  57.257 0.905 0.15  74.174 0.91 0.5 

February 8.522 0.065 -1.2  8.047 0.042 -0.84  7.729 0.295 -2.07 

March 23.328 0.238 0.42  30.909 0.244 -0.2  27.678 0.259 -0.23 

 
 
 

related months (about 10 month) had the lowest RMSE 
and the highest R

2
. Also, ACO1 for 8 month has good CE 

from other models. In this case, for example, in May, the 
RMSE, R

2
 and CE values for the ACO1 model were 

28.97, 0.37 and 0.48, respectively. On the other hand, 
the RMSE, R

2
 and CE for the ACO2 model were 50.48, 

0.38 and -5.51, respectively, and 31.8, 0.11 and -8.58, 
accordingly, for the ACO3 model. Figure 10 displays the 
scatter plot for the observed and estimated suspended 
sediments for April, drawn from the various ACO 
optimisations. For most of the values of discharge, ACO1 
and ACO2 revealed good performance, whereas ACO3 
for the peak value of discharge showed low performance. 
ACO1 model was compared with the GA2 and SRC 
models as shown in Table 6, for Nodeh station, because 
between the sub models of ACO and GA, ACO1 and 
GA2 have good performance from the other. It can be 
obviously seen from this table that the ACO1 model 
performed much better than the rating curve techniques. 
However, the GA2 technique had a RMSE value slightly 
better than the SRC model. It appeared that the accuracy 
of the ACO model seemed to be better than the SRC 
model. In addition, it can be observed from Table 6 that 
the performance of the ACO model was much better than 
the SRC and GA techniques when the input to both GA 
and ACO and the rating curve model was only the current 
discharge. Furthermore, after the ACO model, the GA 
model was better than SRC. In this case, for example, in 
May, the RMSE, R

2
 and CE values for the ACO1 model 

were 28.97, 0.37and 0.48, respectively. On the other 
hand, the RMSE, R

2
 and CE values for the GA2 model 

were 43, 0.35 and 0.39, and as for the SRC model, they 
were 34.5, 0.17 and 0.26, respectively. The suspended 
sediment estimation of ACO1, GA2 and SRC and the 
observed values were compared, as shown in Figure 12. 
As shown in the figure, the ACO1 model approximated 
the corresponding observed suspended sediment values 
better than the rating curve and GA2 techniques. The 

GA2 performed better than the SRC model. Apparently, 
the ACO1 seemed to have better accuracy than the GA2 
model. Moreover, it can be seen from this figure that the 
ACO1 model estimation was closer to the observed 
suspended sediment values than the rating curve and 
GA2 techniques for peak value (especially the SRC). 
 
 

Conclusions 
 

Alternatively, in this study, the parameters obtained by 
ACO and GA produced many sets of coefficient providing 

a relationship between wQ and sQ . The study showed 

the ability of the ACO technique to model the relationship 
between the stream flow and the suspended sediment. 
The model provides a practical way for sediment 
estimation, producing accurate results and encouraging 
the use of ACO in other aspects of water engineering 
studies. The suspended sediment estimations based on 
the ACO models were compared with GA and sediment 
rating curves. For the monthly suspended sediment 
estimation, the results indicated that the ACO1 model 
provided better performance in estimating the suspended 
sediment loads as compared to other ACO models. Also, 
the GA2 model was more accurate than GA1 and GA2.  It 
can be obviously seen from the results that the ACO1 
model performed much better than the rating curve 
techniques. However, the GA2 technique had slightly 
better value of RMSE than the SRC model. The accuracy 
of the SRC models seemed to be better than the ACO3 
model from the variety of ACO models. In addition, it can 
be observed from the results that the performance of the 
SRC model was more inferior than ACO and GA 
techniques when the input to both GA and ACO and the 
rating curve model was only the current discharge. Also, 
after using the ACO model, the GA model was better 
than SRC. As seen from the results, the ACO1 model 
approximated   the    corresponding    of    the    observed 
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Figure 12. The scatter plot of the discharge against the observed 
suspended sediment load and the estimated suspended sediment 
by the best ACO, best GA and SRC models of Nodeh station 
during test period in April.  

 
 
 

suspended sediment values better than the rating curve 
and GA2 techniques. The ACO1 seemed to have a better 
accuracy than the GA2 model. It was seen from the 
results that both the low and high sediment values and in 
general the overall shape of the sediment time series 
were closely approximated by the ACO1 for the monthly 
method. However, for the peak flow discharge, the GA2 
could predict the suspended sediment better than ACO1 
and SRC. From the mentioned results, it can be 
concluded that the suspended sediment discharge had 
high relationship with the current discharge and one-day 
previous discharge, whereas, it was an infirm relation 
between the two-day previous discharge and the 
suspended sediment discharge. There were a lot of 
research studies in the literature that looked at the 
prediction of sediment loads. However, only Altunkaynak 
(2009) applied the GA for suspended sediment 
estimation for the lower Mississippi river basin. He 
proposed a relationship between the sediment loads and 
the discharge by using GA. His results showed that GA 
provided better solutions than regression model (RM) 
with respect to the errors calculated by R

2
 and mean 

relating error (MRE). Considering Altunkaynak (2009) 
research for the sediment loads, the results of this 
investigation were also confirmed. However, ant colony 
optimization is applied more in water resource 
engineering, such as ground water, pipe network 
optimization and water distribution network. 
Nevertheless, there is no application for surface water 
resource, especially in suspended sediment estimation. 
In addition, Abbaspour et al. (2001) used the ACO 
algorithm for estimating the un-saturated soil hydraulic 
parameters. The results obtained with the ant colony 
parameter optimization method were very promising, that 
is, in eight different applications, they were able to 
estimate the true parameter within a few percent. 

Some of the advantages and disadvantages of the 
ACO algorithm and GA can be summarized as follows: 
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1) Optimization can be made through continuous or non- 
continuous variables. 
2) It is possible to start searching from many different 
points at solution space so that through numerous 
variables, global optimization is possible. 
3) Even in case of target functions with extreme values, 
optimization is possible. 
4) ACO and GA produce a set of solution points during 
an adaptive and dynamic system structure evolution. 
5) GA and ACO approaches provide the most suitable 
solution in the quickest way for an optimization problem. 
The GA and ACO solution has different facets than 
classic optimization methods. They seem as indefinite 
methods due to the random sampling procedure and 
rules at their basis.  
6) One of the advantages of GA and ACO is its ability to 
generate more than one optimum solution points. On the 
other hand, SRC with the limiting assumptions can only 
estimate one solution point.  
 

Another reason why the ACO and GA approach should 
be preferred is the independency of them from restrictive 
assumptions. 

The power of GA comes from the fact that the tech-
nique is robust and can deal successfully with wide range 
of difficult problems. GA is not guaranteed to find the 
global optimum solution to a problem, but they are 
generally good at finding acceptably good solutions to 
problems acceptably quickly. Where specialized 
techniques exist for solving particular problems, they are 
likely to outperform GA in both speed and accuracy of the 
final result.  

Disadvantages of these classical models, same ACO 
are that the calculations take too much time. In ACO 
degree of parameter, conditioning may be directly 
controlled through iteration. The more iteration we 
perform, the conditioned parameters being sought will 
become on the set, measured data. In general, we do not 
recommend obtaining highly conditioned parameters, as 
they will perform poorly when simulating other variables 
not included in the objective function. To find a global 
maximum, two techniques must be used for any efficient 
optimization algorithm: exploration to investigate new and 
unknown areas in the search space, and exploitation to 
make use of knowledge found at points previously visited 
to help find better points. These two requirements are 
contradictory, and a good search algorithm must find a 
trade off between the two. 
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