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In semi-arid regions, particularly in hard rock areas (Southern India), shallow aquifers are a major 
source of potable groundwater. These aquifers are indiscriminately exploited to meet the growing 
demand of water for domestic, irrigation as well as industrial uses. In order to achieve sustainable 
development, it is essential not only to delineate the groundwater potential zones but also suitable 
augmentation schemes which, in turn, require delineation of feasible recharge zones. Such zones are 
conventionally delineated through the application of various indirect methods, such as geological, 
hydro-geomorphological, geophysical, 

14
C-age dating, tracer, entropy method, and groundwater 

modeling. These methods are, in general, time consuming and may not be economical in the 
developing countries. A simple, efficient and cost-effective based on cross-correlation method, which 
takes into consideration the shallow aquifer response to rainfall, is presented to delineate groundwater 
recharge zones in hard rock areas. The zones so delineated were compared with the results obtained 
from remote sensing (RS) and GIS techniques and were further validated with the aid of estimated 
recharge values calculated using the modified water-table fluctuation (WTF) method. 
 
Key words: Shallow aquifers, rainfall, cross-correlation coefficient, recharge zone, water-table fluctuation, hard 
rock, Southern India. 

 
 
INTRODUCTION 
 
In many countries, particularly in Asia, there has been a 
rapid development in various fields particularly in 
agriculture, industry and energy during the last couple of 
decades. This has led to ever increasing demand for 
groundwater to meet domestic, agricultural and industrial 
requirements (Abdulrazzak et al., 2002; Espino et al., 
2004; Batayneh and Qassas, 2006; Narayanamoorthy, 
2007; Naik et al., 2008; Davies et al., 2009). Such 
demands are often met with indiscriminate exploitation of 
groundwater. The only source of replenishment of this 
exploited resource is rainfall, which is limited to a few 
monsoon months in a year, particularly in semi-arid 
regions such as in India (Rangarajan and Athavale, 2000;  
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Raj, 2004; Zaidi et al., 2007). For example, according to 
some estimates, there is merely a 4.1 to 19.7% of the 
local average seasonal rainfall that replenishes 
groundwater in semi-arid regions. Based on tritium 
injection studies, the annual replenishable groundwater 
potential in India for a normal monsoon year has been 
calculated as 476 × 10

9
 m

3
/year (Rangarajan and 

Athavale, 2000). Annual rainfall in semi-arid regions is 
often scanty and recurring drought often prevails. The 
over-exploitation of groundwater in such regions, 
especially during droughts, leads to a progressive 
depletion of recharge potential and consequent decline in 
groundwater level year after year (Singh and Singh, 
2002; Senthilkumar and Elango, 2004; Ambast et al., 
2006; Panda et al., 2007; Vittala et al., 2008; Tiwari et al., 
2009; Narayanamoorthy, 2010). In order to arrest the 
depletion in groundwater potential and to achieve 
sustainable   development,   several  measures  including  
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artificial groundwater recharge have been suggested by 
Muralidharan and Shanker (2000), Bouwer (2002), Lerner 
(2002) and Anbazhagan and Ramasamy (2006). In order 
to implement artificial groundwater recharge, it is 
essential to delineate potential groundwater recharge 
zones. Conventionally piston-flow model (Zimmermann et 
al., 1967; Munnich, 1968; Gupta and Sharma, 1984; 
Athavale et al., 1992; Rangarajan and Athavale, 2000; 
Chaulya, 2004; Chand et al., 2005; Mondal et al., 2009; 
Rangarajan et al., 2009; Samadder et al., 2011), remote 
sensing (Saraf et al., 2004; Chowdary et al., 2009; Elewa 
and Qaddah, 2011), photogeological (Salama et al., 
1994; Jackson, 2002), hydrogeological (Fetter, 2001; 
Scanlon et al., 2002; Nonner, 2006; Kumar et al., 2011) 
and geophysical methods (Shankar and Mohan, 2005; 
Maliva et al., 2009), 

14
C-age dating (Bredenkamp and 

Vogel, 1970), entropy method (Mondal and Singh, 2010) 
and regional groundwater models (Sibanda et al., 2009) 
have been deployed to select favorable sites for 
implementation of artificial recharge schemes. 

These methods are time consuming and sometimes 
even uneconomical in the developing countries, 
particularly when one has to deal with a large basin area. 
Instead, one can adopt simple and rapid methods to scan 
the entire area and arrive at suitable zones where further 
investigations can be undertaken later. In semi-arid 
regions where groundwater occurs in shallow weathered 
zones, the rise in groundwater level is a direct 
consequence of precipitation, particularly in the monsoon 
season, when the groundwater withdrawal is minimum 
(Raj, 2001; Public Works Department, 2008). The rise of 
water level at a particular place is a characteristic feature 
of unsaturated zone (Todd, 1980; Athavale et al., 1992; 
Raj, 2001; Moon et al., 2004; Lee et al., 2005). Therefore, 
there exists a definite relationship between the amount of 
rise in water level and precipitation for a particular region. 
In other words, each zone is characterized by a 
parameter that correlates the rise in groundwater level 
with precipitation. A higher correlation coefficient implies 
a significant groundwater recharge characteristic or most 
favorable recharge zone. Considering this feature data on 
the rise in groundwater level and rainfall from an area in a 
semi-arid region in southern India have been analyzed to 
delineate suitable artificial recharge zones.  Monthly 
water level data, recorded for 37 years (from January 
1971 to December 2007) by Public works department 
(PWD), Tamil Nadu, India, in 6 monitoring wells in the 
study area (Figure 1) were considered. The cross-
correlation between rainfall and depth to water level were 
then determined. The correlation coefficient of these two 
variables varied from place to place and from time to 
time. Thus, the objective of this study is threefold: 1) 
delineate groundwater recharge zones using cross-
correlation, 2) compare the cross-correlation method with 
the results   obtained   from   remote  sensing   (RS)   and  

 
 
 
 
geographical information systems (GIS) techniques, and 
3) validate the demarcated groundwater recharge zones 
using the modified water-table fluctuation (WTF) method. 
 
 
MATERIALS AND METHODS 
 
About study area 
 
The study area is a drought prone hard rock terrain and is located 
about 400 km southwest of Chennai, the capital city of Tamil Nadu 
state, India. It lies between 10° 13’44” to 10° 26’

 
47” N latitude and 

77° 53’ 08” to 78° 01’ 24” E longitude (Figure 1), and encompasses 
an area of about 209 km

2
, covering parts of Dindigul, Attur, 

Reddiarchattram and Sanarpatti blocks. The area is characterized 
by undulating topography with hills located in southern parts, 
sloping towards north and northeast. The highest elevation 
(altitude) in the hilly area (Sirumalai Hill) is of the order of 1350 m 
(amsl), whereas in plains it ranges from 360 m (amsl) in the 
southern part to 240 m in the northern part. No perennial streams 
exist in the area, except for short distance streams encompassing 
2nd and 3rd order drainage (Singh et al., 2003; Mondal et al., 
2005). Runoff from precipitation within the area ends in small 
streams flowing towards the main Kodaganar River. From a period 
of 1971 to 2007 (Public works department, 2008) the average 
annual rainfall is of the order of 905.3 mm. 
 
 
Geological and hydrogeological settings 
 
The study area is covered with Achaean granites and gneisses, 
intruded by dykes (Balasubramanian, 1980; Chakrapani and 
Manickyan, 1988). These, including granite, grandiosities, gneissic 
granite and gneisses (Krishnan, 1982) are the most widespread 
groups of rocks, and have heterogeneous mixtures of different 
types of granites intruding into schistose rocks after the latter folded 
and metamorphosed. The rocks are mainly composed of gray and 
pink feldspar with quartz grains, biotite and hornblende (Barker et 
al., 2001). These formations are crossed by sets of joints and 
fractures, which have also caused weathering of coarser rocks. 
Weathering occurs due to mechanical and mostly chemical 
processes that take place, while water in the fractures interacts with 
the formation. The shallow hard and massive rocks are exposed 
mostly in the southern part. Red sandy soil is obtained in northern 
and southern parts of the area where black cotton soil occurs in the 
middle part. The weathered thickness varies from 3.1 to 26.6 m 
(Mondal et al., 2011a). Such shallow weathered zones may not be 
stable sources of groundwater for meeting large demands of 
groundwater (Singh et al., 2003; Mondal, 2005; Mondal et al., 
2011a). There are many lineaments which are oriented mainly in 
the NNE to SSW, NEE to SWW, and NW to SE directions, but the 
major lineament is running in the NNE to SSW direction for several 
kilometers situated northwest of Dindigul town along Kodaganar 
River (Figure 1). The weathered zone facilitates the movement and 
storage of groundwater through a network of joints, faults and 
lineaments, which form conspicuous structural features. Apart from 
the structural controls on the groundwater movement, the area is 
covered with pediment and buried pediment on southern and 
western sides of the area. The other most dominant formation is the 
charnokite, which is found in southern and southeastern parts of the 
Sirumalai hills. This formation is less weathered, jointed or fractured 
compared to the previous one (Public works department, 2008) and 
can therefore be considered as impermeable. Groundwater occurs 
mostly in weathered and fractured zones, which are unconfined, 
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Figure 1. Location map of the study area. 

 
 
 
semi-confined or confined (Mondal et al., 2011b). These aquifer 
confining conditions may change rapidly and vary over a wide 
range from place to place. 

The thickness of weathered/fractured zone varies over even a 
small region. Shallow aquifers are usually phreatic, which may not 
be a stable source for meeting large demands on groundwater, but 
deeper aquifers are partly confined, that is, they are recharged from 
shallow unconfined aquifers through dug-cum-bore wells/bore wells 
as water accumulates in dug wells, percolates into confined 
aquifers through bore wells which are provided in dug wells. 
 
 
Data collection 
 
Monthly rainfall data from the Dindigul rain gauge station (Figure 1) 

was collected for the period of January 1971 to December 2007 
(Public works department, 2008). During the same period the 
monthly water level data was also collected from 6 PWD open 
wells, which are not used for domestic and gardening uses. The 
missed water level data at the PWD wells varied from 0.48 to 3.81% 
with an average 2.24% of total 2100 events, which were calculated 
using a moving average method (Medhi, 2005). Although rainfall 
distribution in the study area is non-uniform due to the presence of 
surrounding hills, undulating topography and other meteorological 
conditions, it was presumed that rainfall was uniformly distributed 
throughout the area, because there was only one rain gauge 
station. Using remote sensing (RS) and geographical information 
system (GIS) techniques, the Institute of Remote Sensing, Anna 
University, Chennai, India has divided the study area into four 
recharge zones. These zones are: i) high, ii) moderate, iii) less, and  
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iv) poor zones for groundwater recharge. The categorization of 
zones are based on the integration of the different themes namely: 
geomorphology, geology, hydrological soil group, slope, depth to 
weathered zone, depth to basement, run-off, water level, land use, 
drainage density, lineament density, water quality and rainfall. The 
well areas of PWD 83520 and 83514 (Figure 1) are fallen in high 
and less groundwater recharge zones, respectively. 

The wells 83029A and 83503 are in moderate whereas poor 
groundwater recharge zones are found at the wells 83029 and 
83515A, which were compared with the cross-correlation 
coefficients obtained between water level fluctuations 
corresponding to rainfall. 
 
 
Cross-correlation technique 

 
Changes in the depth to the water table were correlated with 
changes in rainfall (Todd, 1980).  First, mean values of monthly 
rainfall (p) and monthly depth to water level (d) values were 
computed, and then deviations from the mean values were 
computed as: 
 

/
ppP −=                                                            (1) 

 

/
ddD −=                                             (2) 

 
Where, P = deviation from the mean, = p – p’; D = deviation from 
the mean, = d – d’; p’ and d’

 
are the means of monthly rainfall and 

monthly depth to water level, respectively. Deviations of rainfall and 
depth to water level were plotted on a linear graph (Davis, 1986). 
Points (P, D) are so distributed over the fourth quadrant of the PD-
plane that the product PD is negative. Cross-coefficient (r) between 
p and d was computed using the following relation: 
 

dpn

PD

σσ

∑
=r

                              (3) 

 

Where pσ = standard deviation of p-series; 
d

σ  = standard 

deviation of d-series and n = number of data sets of depth to water 
level corresponding to rainfall. 
 
 
Cumulative WTF for recharge estimation 

 
Recharge based on the water-table fluctuation (WTF) method for an 
unconfined aquifer was calculated as (Healy and Cook, 2002): 
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Where Sy is specific yield, h is water-table height, and t is time. The 
method is best applied over short time periods (hours or a few 
days) in regions having shallow water tables that show sharp rises 
and declines (Scanlon et al., 2002). When delayed drainage occurs, 
the method would underestimate the recharge rate (Healy and 
Cook, 2002). Moon et al. (2004) suggested  a  modified  water-table  

 
 
 
 
fluctuation (WTF) method to estimate groundwater recharge as the 
product of specific yield and ratio of water level rise over the 
cumulative precipitation during the rainy period that caused water 
level rise: 
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where α is recharge ratio, h1, h2, ….., hn is the water level rise for 
each precipitation event, and P1, P2, P3, ….., Pn is the precipitation 
at each time, Σh is the total water level rise due to the cumulative 
precipitation, and ΣP is the cumulative precipitation in the period 
corresponding to water level rise (∆h). This modified WTF method 
was employed for recharge estimation in hard rock area. 

 
 
RESULTS 
 
Climate and rainfall patterns 
 
Normally, sub-tropical climate prevails over the study 
area without sharp variations. The temperature increases 
slowly to a maximum in summer months up to May and 
after which it drops slowly. The mean of maximum 
temperature ranges from 36.5 to 41.8°C and in the hills, it 
ranges from 7.9 to 21.8°C. The mean of minimum 
temperature varies from 17.4 to 24°C and in the hills it 
varies from 6 to 8.5°C (PWD, 2008). The season wise 
normal rainfall values for the period of January 1971 to 
December 2007 shown that about 4.11% of the annual 
rainfall precipitated in winter (January and February), 
where 15.77% in summer (March to May), 31.39% in 
Southwest monsoon period (June to September) and 
48.73% in Northeast monsoon period (October to 
December). As there was only one rain gauge station, the 
whole study area was considered to be affected by the 
same rainfall (Athavale et al., 1980, 1983; Rangarajan, 
1997; Rangarajan and Athavale, 2000, Chand et al., 
2005), which was monitored at the Dindigul rain gauge 
station (Figure 1). The total annual and average monthly 
rainfall values are illustrated in Figure 2. It indicates that 
the average monthly rainfall was in four different 
stretches. More rainfall, however, occurred in the last 
stretch each year (Figure 2A). The average annual 
rainfall was also estimated to be about 905.3 mm from 
January 1971 to December 2007 (Figure 2B) and a linear 
trend showed that average annual rainfall was uniform. 
Based on the natural recharge values (Rangarajan and 
Athavale, 2000), the entire country (India) has been 
grouped into four main hydrogeological provinces. They 
are granitic, basaltic, sedimentary and alluvial. The best 
fit lines, obtained by the least square method, show a 
linear correlation between seasonal rainfall and natural 
recharge in each case. This linear relation between 
rainfall   and  natural  recharge  exists  for  all  four  major 
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Figure 2. Average (A) monthly rainfall (mm), and (B) annual rainfall (mm). 

 
 
 
 hydrogeological units. 

The regression equation derived for each of the 
hydrogeological provinces indicates a certain minimum 
rainfall requirement to initiate groundwater recharge. The 
minimum values were 255 mm/year for granite, 355 
mm/yr for basalt, 220 mm/year for sediments and 40 
mm/year for alluvial areas. The seasonal normal rainfall 
was 441.1 mm during months of October and December 
in the study area. Therefore this season was considered 
for cross-correlation analysis between water level 
fluctuations to rainfall. 
 
 
Water level fluctuation 
 
The details of well inventory are given in Table 1. All the 
open wells were rectangular shaped, except for two 
circular structures with depth ranging from 14.05 to 28.50 
m below ground level (bgl). The depth to water bearing 
zone varied from 2.5 to 3.8 m (bgl) and the thickness 
ranged from 4.0 to 14.6 m under phreatic conditions. The 

transmissivity varied from 10 to 140 m
2
/day, whereas the 

specific yield ranged from 0.002 to 0.004 (Mondal, 2005). 
The well reduced levels varied from 259.499 to 301.045 
m above mean sea level (amsl), but the groundwater was 
measured from the measuring points, which varied from 
0.45 to 1.05 m. When water level hydrographs with 
rainfall data were plotted, there was approximately one 
month time lag in the response of water table to rainfall 
events. One typical well hydrograph (at PWD well 83520) 
and monthly rainfall variation is shown in Figure 3. It was 
confirmed by cross-correlation analysis between depth to 
water level and rainfall events in the next section. The 
aquifer system is spread over the area, responding within 
one month lag of rainfall.  It can be also observed that the 
aquifer responded maximally particularly to the rainfall 
that occurred from October to January when most of the 
rainfall occurs and withdrawal could be minimized 
(Figures 4A, B). Measured groundwater levels at the 6 
PWD wells of the study area in the months of September, 
October, November, December and January for the years 
1974, 1994, 2000 and 2004 corresponding to monthly 
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Table 1. Detailed well inventory of PWD wells located in hard rock area of Southern India. 
 

Well Ids. Village name 
Global location  

(Latitude, Longitude) 

Dimension  

(m) 

Depth of well 

 (m) 

Lining depth 

 (m) 

Water bearing zone 

 (m, bgl) 
Ta (m2/d) Sy

a MP (m) 
Reduced level 

 (m, amsl) 

83029 A. Vellodu 10° 18’ 50’’, 77° 56’ 50’’ 3.02 21.65 3.0 2.6-  8.1 65 0.002 1.00 279.760 

83029A A. Vellodu 10° 19’ 26’’, 77° 57’ 50’’ 3.93 28.50 3.0 3.0 - 7.0 80 0.002 0.45 282.800 

83503 Ambathurai 10° 16’ 25’’, 77° 55’ 14’’ 3.85 × 3.00 16.65 4.0 3.4 - 9.0 10 0.003 0.66 301.045 

83514 Sinthalakundu 10° 21’ 55’’, 77° 54’ 20’’ 2.41 × 2.47 14.05 5.0 2.9 - 8.0 40 0.004 0.90 259.499 

83515A Dindigul 10° 22’ 10’’, 77° 59’ 45’’ 7.36 × 6.08 14.40 3.0 2.5 - 11.1 140 0.002 1.05 267.435 

83520 Seelapadi 10° 24’ 22’’, 78° 00’ 23’’ 2.82 × 2.93 18.40 4.0 3.8 - 18.4 85 0.002 0.78 260.695 
 

Well type: dug well; type of aquifer: phreatic; geology: granite and gneisses; stratigraphy: archaean; T: transmissivity (m
2
/day); Sy: specific yield; MP: measuring point; 

a
after Mondal (2005). 

 
 
 

 
 
Figure 3. Comparison of water level fluctuation with rainfall at PWD well 83520 (Seelapadi village) from July 1972 to 
December 2007. 

 
 
 

rainfall are shown in Figures 5A, B, C, D. Depths 
to groundwater ranged from 6.50 to 18.10 m 
below the ground surface for the period of 
September 1974 to January 1975 (Figure 5A). 

Median values decreased, which meant water 
level rise by 0.83 from 12.23 m in September to 
11.46 m in January. For the period of September 
1994 to January 1995 depths to groundwater 

ranged between 1.55 and 13.05 m below the 
ground surface (Figure 5B). Medians of the values 
decreased, which meant the water level rise by 
4.25   from  9.53  m  in  September  to  5.28  m  in 
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Figure 4. Well hydrographs (A) at PWD well 83029 (A. Vellodu) and (B) at PWD well 83503 (Seelapadi). 

 
 
 
January. Below the ground surface, depths to 
groundwater ranged between 5.35 and 18.55 m for the 
period of September 2000 to January 2001 (Figure 5C). 
Medians of the values also decreased, which meant the 
water level rise by 4.31 from 13.98 m in September to 
9.67 m in January. Further, the depth to groundwater 
ranged between 2.65 and 22.05 m (bgl) for the period of 
September 2004 to January 2005 (Figure 5D). The 
median values decreased, which meant the water level 
rise by 8.00 m in the study area from 15.12 m in 
September to 7.12 m in January. This rise in the water 
level coincided with amount of monthly precipitation with 
1-month lag in all the above cases (Figure 5). 
 
 
Cross-correlation analysis 
 
For confirming the response of water level in open well, 
cross-correlation coefficients were determined between 
the depth to water table and corresponding rainfall for 37 

years of data. The coefficient values with one-month lag 
between depth to water level and rainfall at PWD well 
83029, 83029A, 83503, 83514, 83515A and 83520 were 
comparatively higher, which were 0.171, 0.251, 0.169, 
0.215, 0.161 and 0.255, respectively. The correlation 
coefficient values were plotted against the corresponding 
lags in the water table rise, as shown in Figure 6. It was 
seen that all PWD wells responded with one-month lag 
after the rainfall in this hard rock area. 

Applying cross-correlation analysis to the water table 
variation in response to rainfall, the following 
observations were made: 1) The time lag of one-month 
for the maximum response of unconfined aquifer after 
rainfall is observed; 2) the amplitude of correlation 
decreases when lag increases/decreases in a systematic 
manner; and 3) the depth to the aquifer also plays an 
important role in the delay because of subsurface losses 
as well as travel time for vertical percolation (Todd, 
1980). The travel time may vary from a few minutes for 
shallow water tables in permeable formations to several  
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Figure 5. Ranges of depth to water (DTW) from September to January with monthly rainfall for year (A) 1974, (B) 1994, 

(C) 2000 and (D) 2004. 



Mondal et al.          3547 
 
 
 

 
 
Figure 6. Plots of cross-correlation between depth to water level and precipitation 

with different lags. 

 
 
 
months or years for deep water tables underlying 
sediments or weathered zones with low vertical 
permeabilities. 
 
 
Qualitative recharge estimates 
 
On the basis of correlation coefficient values from August 
to March (including wet period) with corresponding 
response lag for the period of January 1971 to December 
2007, a qualitative estimation of groundwater recharge 
zones of this hard rock area was made. The seasonal 
normal rainfall was 441.1 mm in the months of October to 
December. In this period unconfined aquifers are in more 
suitable condition for natural recharge (Rangarajan and 
Athavale, 2000). High coefficient values indicated good 
recharge and low value indicated poor recharge (Figure 
7). Due to rainfall in the month of November, PWD wells 
83520, 83503, 83029A, 83514 and 83029 responded in 
December where the value of correlation coefficients 
were 0.676, 0.551, 0.544, 0.471 and 0.388, respectively. 
Well 83515A gave a good response to rainfall in January; 
the value being 0.368. The correlation values indicated 

the behavior of the recharge response of unconfined 
aquifers in this hard rock area. 
 
 
Categorization of recharge zones 
 
Using remote sensing (RS) and geographical information 
system (GIS) techniques, the study area has been 
divided into four recharge zones. These zones are: i) 
high, ii) moderate, (iii) less, and (iv) poor for groundwater 
recharge. On the basis of estimated cross-correlation 
coefficients, the well areas were also divided into four 
recharge zones, which yielded a good agreement with 
the results obtained from RS and GIS techniques. They 
are: (i) zones of high recharge for value (r>0.60), (ii) 
moderate zone for recharge (0.50 ≤ r ≥0.60), (iii) zones of 
less recharge (0.40 ≤ r ≥ 0.50), and (iv) zones of poor 
recharge (r < 0.40). It was difficult to identify the response 
behavior of unconfined aquifers with coefficient values, 
because it depended on the combined effect of 
hydrogeological variables, such as precipitation-related 
variables (amount, duration, and intensity), stream levels, 
the thickness and materials of the vadose zone, 
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Figure 7. Qualitative recharge response at PWD wells due to rainfall. 

 
 
 
geometry and properties of aquifer, crops and topography 
patterns, and bed-rock geology (Moon et al., 2004). The 
recharge rates of any unconfined aquifer are very “site 
specific” (Viswanathan, 1983). This means that results 
obtained at one location may not be applicable to 
another. The highly favorable recharge zone was found 
around well 83520 at Seelapadi village. This area is 
characterized by bajada, shallow pediment with high 
weathered (thickness>10 m), hydrological soil group ‘A’ 
with moderate infiltration characteristics as well as runoff 
(50-130 mm) with a slope of 3 to 10%. Moderate 
recharge zones were around the ‘A’ Vellodu (at well 
83029A) and Ambathurai (at well 83503) villages. These 
zones are characterized by pediment, moderated 
weathered zone (thickness 12 to 20 m), hydrological soil 
group ‘B’ with moderate infiltration rate and runoff (65 to 
80 mm) with a slope of 5 to 10%. 

The area around the Sinthalakundu village (at well 
83514) is less favorable for groundwater recharge. This is 
characterized by hydrological soil group ‘C’ with less 
runoff (75 to 95 mm) and a slope of < 3%. The poor 
condition for recharge zone existed only for hills and PI 
complex having less thickness (< 20 m) of weathered 
chances zones within hydrological soil group ‘D’ having 

poor infiltration rate and runoff (> 130 mm) with a slope of 
> 15% in ‘A’ Vellodu and Dindigul town. 
 
 
Recharge estimation and its validity 
 
Recharge ratios at the monitoring PWD wells were 
estimated using the modified WTF method (Moon et al., 
2004) in consideration of 1-month time delay. First, the 
water-level rise due to rainfall event was calculated for 
the period of January 1971 to December 2007 (Figures 8 
A to F). Any noticeable water-level rise in the case of no 
rainfall indicated the existence of delayed drainage by 
preceding rainfall or horizontal component of 
groundwater recharge. In this case, meaningful water-
level rises were observed at minimum rainfall values of 
5.50 to 20.92 mm. The water-level rises versus event 
rainfall values were fitted with linear equations, but they 
yielded a wide range of coefficients of determination (R

2 
= 

0.125 to 0.433). As expected, the same amount of 
precipitation did not produce the same amplitude of water 
level rise. Water level rises due to specific amounts of 
rainfall were largest at PWD well 83520, while those were 
smallest at PWD well 83514. At PWD well 83029 and 
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Figure 8. Water level rises due to rainfall events at PWD well (A) 83029, (B) 83029A, (C) 83503, (D) 83514, (E) 
83515A and (F) 83520. 

 
 
 
83515A, the water level rises were relatively moderate 
and linearity between the water level rise and the rainfall 
was poorest. The fact is highly correlated with larger 
attenuation of the input stress through the thinnest black 
cotton soil, which amplified the non-linearity (Mondal, 
2005). This was also supported by the lowest correlation 
between rainfall and water level. Relatively, a significant 
linearity between water level rise and site rainfall was 
observed at PWD well 83520 (R

2 
= 0.433) which is 

located at highly weathered zone (>10 m).  
The values of the ratio of the rise in groundwater level 

and the cumulative rainfall during the rainy period for the 
entire data set were calculated (Table 2). 

Subsequently, recharge ratios were computed using 
these ratios and specific yields (Table 1). As expected, 
the same amount of the cumulative precipitation 

produced a wide range of water level rises for different 
monitoring locations due to different hydrogeological 
conditions, such as the thickness of the unsaturated 
zone, topography pattern, weathered thickness, etc. The 
estimated recharge ratios based on the modified WTF 
method ranged from 1.92 to 4.06% (Table 2). The largest 
value of the recharge ratio was obtained at PWD well 
83520, while the lowest value was estimated at PWD well 
83515A. Although the spatial extent of the monitoring 
area is only 209 km

2
 (Mondal et al., 2011b), the 

estimated recharge ratios were very different within an 
average of 2.89%. Rangarajan and Athavale (2000) and 
Rangarajan et al. (2009) meanwhile estimated an 
average recharge ratio of 10.11% for 15 granitic and 
gneiss areas in varying climatic and hydrogeological 
provinces of India. Out of them, the average recharge 
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Table 2. Cumulative precipitation, water level rise and recharge ratios at six PWD wells in hard rock area 
(Southern India) 
 

Wells 83029 83029A 83503 83514 83515A 83520 

R
2
 0.131 0.308 0.316 0.222 0.125 0.433 

ΣP(mm) 14407.5 13954.5 10721.4 11030.2 14794.6 15140.3 

Σh(m) 166.02 262.64 98.92 69.50 141.71 307.15 

Σh/ΣP 11.52 18.82 9.23 6.30 9.58 20.29 

α 2.30 3.76 2.77 2.52 1.92 4.06 

*Recharge potential zone P M M L P H 
 

R
2
: Coefficient of determination; ΣP: Sum of precipitation; Σh: Sum of water level rise due to corresponding rainfall event; α 

= Recharge ratio (%); average recharge = 2.89% during wet seasons; and *H: high, M: moderate, L: less, and P: poor 
recharge zone based on RS & GIS methods 

 
 
 

ratio was about 9.90% for 4-granitic and gneiss areas in 
Tamil Nadu. But the simple mean of these six recharge 
values estimated in the study area was 2.89%, which was 
underestimated (Table 2). However, considering the 
great variation in recharge ratios according to the 
monitoring locations in hard rock area, it is important to 
compare the estimated correlation coefficients obtained 
between water level fluctuation and the corresponding 
rainfall events for choosing appropriate locations of 
groundwater potential recharge zones.  
 
 
DISCUSSION 
 
Groundwater recharge potential zones in hard rock area 
(Southern India) are important in planning sustainable 
groundwater development. These potential zones are 
demarcated into: (i) high recharge zone for value 
(r>0.60), (ii) moderate zone for recharge (0.50 ≤ r ≥0.60), 
(iii) less recharge zone (0.40 ≤ r ≥ 0.50), and (iv) zones of 
poor recharge (r < 0.40) with the aid of cross-correlation 
coefficients (r) between water level corresponding to 
rainfall for the period of January 1971 to December 2007. 
This yields a good agreement with the results obtained 
from RS and GIS methods. A modified water-table 
fluctuation (WTF) technique is also used to estimate the 
groundwater recharge ratio from the water level 
monitoring data and corresponding rainfall records. The 
recharge ratio during the rainy season is calculated as 
the ratio of water level rise to the cumulative rainfall 
amount. Using this technique, groundwater recharge 
ratios are calculated for all the PWD wells. The estimated 
recharge ratio values vary from 1.92 to 4.06%, which are 
in sequential order corresponding to the demarcated 
groundwater potential recharge zones classified from the 
cross-correlation coefficients between water level and 
precipitation in this hard rock area. Thus, identification of 
groundwater potential recharge zones in large areas, 
specifically hard rocks, by the existing geological, hydro-
geomorphological, geophysical, 

14
C-age dating, entropy, 

groundwater modeling, and tracer techniques is 
sometimes difficult and time consuming. Hence, the 

cross-correlation technique is a potential exploratory tool 
for demarcating possible quantative groundwater 
recharge zones using simply water level fluctuation due 
to rainfall in hard rock areas at a glance. 
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