
Scientific Research and Essays Vol. 7(8), pp. 939-946, 29 February, 2012
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.1790
ISSN 1992-2248 ©2012 Academic Journals

Full Length Research Paper

Planning for fast DBT in distributed virtual execution

environment

Yindong Yang and

 Erzhou Zhu*

Department of Computer Science and Engineering, Shanghai Key Laboratory of Scalable Computing and Systems

Shanghai Jiao Tong University, Shanghai, P. R. China.

Accepted 22 November, 2011

Virtualization via dynamic binary translation is essentially an emulator. The main advantage is that the

CPU of the guest does not have to be the same as the CPU of the host. Although, dynamic binary

translators (DBT) are gaining popularity and offering a promising future in the modern virtual executive

environments, the requirements of DBTs’ processing and memory resources have seriously hampered

the performance of host platforms. For cloud computing seems to offer incredible lightning-quick

processing power and unlimited storage. In this paper, we propose a novel distributed DBT system-

DistriBit for resource-limited thin clients computing. Meanwhile, we study the effects of the number of

virtual registers and trace length to improve the performance of DistriBit. Our results demonstrate that

improving these two factors (the number of virtual registers and trace length) may help to improve

program speedup by up to 1.4 to 3.9x and 2 to 3x for certain benchmark programs.

Key words: Virtualization, dynamic binary translation, DBT, cloud computing, distribit.

INTRODUCTION

Cloud computing (Michael et al., 2009) is a fashionable
technology which uses the internet and powerful remote
servers to acquire data and applications. Furthermore,
cloud computing allows clients to use applications
without installation and access their personal files or
requisite resources at any computer with internet access.
This technology allows for much more efficient
computing by centralizing storage, memory, processing
and bandwidth. Virtualization is a core technology for
enabling cloud resource sharing (Andrés, 2009), and it
uses a single data processing system to run multiple
operating systems (for example, Linux, Windows) or
applications based on different architectures (for
example, x86, MIPS, POWER).

Both in virtual execution environments and cloud com-
puting environments, DBTs are usually considered as a
kind of processed virtual machines, which support user
applications with a virtual application binary interface

*Corresponding author. E-mail: yasakaezzhu@sjtu.edu.cn.Tel:
+86-15900619365, +86-21-23119272. Fax: +86-21-23112489.

environment (Jim and Ravi, 2005). There is no need to
recompile the source code, since DBTs facilitates the
support of running heterogeneous code on a wide range
of architectures. A DBT is originally developed to support
program binaries compiled to a different instruction set
rather than the one executed by the hosts hardware
dynamically, and more and more DBTs have been used
as optimizers or dynamic binary analysis tools nowadays
(Vasanth et al., 2000; Chi et al., 2005; Sorav and Alex,
2008).

Although, DBTs are very attractive and ubiquitous,
they also exhibit major shortcomings. First, the DBT itself
is very complex; developing a complete process-level
DBT from the scratch always takes a lot of manpower
and material resource, not to mention the development
of system-level DBT (Cristina and Mike, 2000).
Secondly, state-of-the-art monolithic DBTs rely on the
monolithic architecture of their ancestors and highly
machine dependence (John and Gerald, 1994), so they
are difficult to port across the diverse architectures and
platforms found in a typical network. Thirdly, DBTs’
processing and memory requirements often make host
machine unbearable (Borin and Youfeng, 2008),

940 Sci. Res. Essays

especially for those resource-limited thin clients. As a
result, directly using monolithic DBTs on resource-limited
thin clients may be unsuitable and impractical. On the
other hand, cloud computing offers an immediate access
to large numbers of the world’s most sophisticated
supercomputers and their corresponding processing
power. The power of cloud computing could compensate
for some shortcomings of thin clients, and the thin clients
may benefit from it in cloud computing environments.

We have developed a distributed DBT–DistriBit for
cloud computing environments. In a DistriBit system,
some works which need substantial processing and
memory requirements, such as code translation and
optimization are factored out of thin clients and located
on powerful servers in cloud. By adopting this approach,
thin client can reduce the hardware configuration and
concentrate on execution. Surprisingly, we found that
DistriBit rarely offers performance advantages over
existing monolithic DBT. In some cases, we ascribe this
situation to high network transmission overhead and cost
of virtual intermediate instructions’ translation. Overall, in
this paper, we focus on the latter and study how optimi-
zation factors are related to virtual intermediate instruct-
tions and as such affects the running performance.
Furthermore, we hope our results encourage software
designers to support distribute DBT techniques rather
than seek to replace them. We believe the benefits of
distribute DBTs to cloud computing are compelling.

In summary, our aim in this work is to demonstrate the
ability to improve the running performance of DBT in
distributed virtual execution environment. Towards this
end, we make the following main contributions in this
paper: (1) an introduction of the distribute DBT system–
DistriBit, focusing on its virtual intermediate instructions
(V-IIS)–a powerful but previously little-studied com-
ponent; (2) a quantitative analysis of optimization factors
the number of virtual registers and trace length.

RELATED WORK

Traditional monolithic DBT

The UQBT (Cristina, 2000), is a reusable, component-
based binary-translation framework which allows
engineers quickly and inexpensively migrate existing
software from one processor to the other. Different from
V-IIS, UQBT uses two intermediate instructions to
transform the source code into a high-level represen-
tation. The more middle transformation, the more perfor-
mance will be lost. That is the reason why papers about
UQBT focus on concept and not performance.

Dynamo (Vasanth, 2000), a dynamic optimization sys-
tem for PA-RISC, developed by Hewlett-Packard Labs
showed good performance. Unfortunately, many similar
systems with intermediate languages have been built but
little success has been reproduced ever since Dynamo.

Distributed virtual computing

DVM (Emin et al., 1999) is a distributed virtual machine
designed for heterogeneous clusters of networked
computers. DVM uses Java virtual machine to run on
x86 or DEC Alpha server to supply services to thin
clients. DVM could reduce resources requirement on thin
clients, improve site security through physical isolation
and increase the manageability of a large and
heterogeneous network without sacrificing performance,
but the limitation is that DVM only supports existing
Java-enable clients not other Java-unable clients. In
contrast, DistriBit is language independent and can
support heterogeneous software without recompiling the
source code.

Emin (1998) designed and implemented a system
similar to DVM, services that perform rule checking and
code transformation are factored out of thin clients and
located on severs. However, these severs are located in
enterprise-wide network, can’t spreading widely.

General trace optimization

Many works which use traces for exploring program
optimization opportunities have been done. To our
knowledge, the work closest to ours has been done in
(Brian, 2004) and (Andres, 2009). Fahs et al (Brian,
2004) demonstrated the potential of dynamically-applied
classical optimizations as a function of trace length.
However, their results are based on ideal circumstances,
and not easily compared to existing dynamic optimization
systems. Moreover, they did not study the potential of
virtual registers.

Andres (2009) described their type specialization
algorithm and trace compiler, which translated a trace
from an intermediate representation to optimized native
code in two linear passes. Their experiments showed that
on programs amenable to traces, they achieved
speedups of 2x to 20x. Different from ours, their
programs are currently executed via interpretation not
dynamic binary translation.

METHODOLOGY

We now move on to begin with a necessarily brief overview of the
distributed DBT system–DistriBit, followed by a detailed description of
its virtual intermediate instruction set–V-IIS.

Architecture overview

Considering that code translation and optimization always consume a
lot of computation and memory resources, we address the problems
of monolithic DBTs by proposing a novel distributed DBT–DistriBit
(Haibing et al., 2010) based on function factoring. The DistriBit
supplies a virtual executive environment wherein a powerful server

could provide code translation, code optimization services and an
unbounded code cache for thin client. With the help of this powerful
server, thin client does not need to perform code translation but still

Yang and Zhu 941

Translation Server
Thin Client

TCache

Translatio
n

Thread3

Translation
Process

Target C.

V-IIS

Source C.

Translation
Request

TCache

HitHit

MissMiss
Lookup

HitHit

MissMiss

Target
Code Block

Lookup

Translation Server

Initial
Connection

End
Connection

Cloud

Execution

Figure 1. The workflow of a DistriBit system.

Table 1. The entire V-IIS instructions.

Type Instruction name

register state
mapping

GET PUT

Memory access LD ST

Data transfer MOV LI

Arithmetic/logic

ADD SUB AND NOT XOR

OR MUL MULU DIV DIVU

SLL SRL SRA CMP SEXT
ZEXT

Control transfer JMP BRANCH

Special HALT SYSCALL CALL

can get the optimized code from the server whenever necessary. In
this manner, the burden of hardware requirements for thin client will
be reduced. Figure 1 illustrates distributed DBT architecture–DistriBit.
For instance, a DistriBit system consists of a translation server and a
thin client that communicates over a network using TCP/IP
transportation protocol. This translation server could be one of those

powerful servers located in a cloud, and the thin client could be any
thin client device, like mobile phone, sensor, etc. In general, the
connection between them can be wired or wireless.

DistriBit is a general-purpose distributed DBT that could supply
heterogeneous code translation and optimization services to thin
clients. DistriBit uses a translator (Yindong et al., 2010) located on a
powerful server to response to thin clients’ translation requests. The
translator that DistriBit adopts differs from other commercial machine

dependent on DBTs which only can translate one kind of source code
to another specific target code. This translator is a multi-source and
multi-target DBT which can translate different kinds of source code to

different kinds of target code, and undoubtedly reduce the number of
DBT systems on server. By now, this versatile translator has run on

IA-32 and POWER, and has supplied MIPS-IA32, SPARC-IA32 and
SPARC-POWER code translation to users. Moreover, this translator
is machine independent and can easily add other source ends and
target ends according to the actual needs, so it may provide better
and comprehensive services for thin clients.

V-IIS instructions

In order to reduce the complexity of translation, DistriBit’s translator
does not translate source code to target code directly. We design a
set of virtual intermediate instructions called V-IIS and let translator
firstly translate source code to intermediate instructions, then to target
code. Therefore, the V-IIS makes this translator easily retargetable
and extensible. Similar to V-IIS, LLVA (Vikram et al., 2003) is a low-
level virtual instruction set designed for life-long (including compile,
link and run) code optimization. Though, as a low-level virtual

instruction set, LLVA contains enough rich high-level information (for
example, control flow, data flow and data dependence) required by
optimization algorithms, and these information usually can be
extremely difficult to extract from native machine code. However,
Different from our research, LLVA’s design goal and object code
cannot be applied to the analysis of low level executable binary code.
V-IIS comprises six kinds of basic instructions which are compatible
with most popular ISAs. They include arithmetic/logical, control

transfer, data transfer, and memory access; register state mapping
and special instructions. Table 1 shows all virtual intermediate
instructions of V-IIS.

Research concept

There are a number of factors that impact a DBT’s performance

improvement, including the virtual registers’ allocation and the
instruction traces selected. Virtual registers hold data in binary code,
which makes virtual, register allocation an important factor in dynamic

942 Sci. Res. Essays

1 Virtual_Register_Allocation (trace t, int max)
2 {
3 VR_record = Init (max); /* VR information*/
4 ins = Get_First_Instruction (t);
5 while (ins)
6 {
7 for each r in ins
8 {
9 if (ture == Not_Allocated (VR_record, r)
10 {
11 r = Assign_Virtual_Register (VR_record, r);
12 }
13 else
14 {
15 r = New_Virtual_Register (VR_record, r);
16 }
17 }
18 ins = ins->next;
19 }
20 }

Figure 2. Virtual register allocation on a trace.

binary optimization. Traces define the optimization unit and the scope
of the code. Hence, trace selection in dynamic binary optimization is
as critical as region selection in static optimization. Therefore, all of
these optimization factors have to be handled carefully for a DBT to

gain performance improvement.

Number of virtual registers

Surprisingly, according to the initial experimental results, we found that
DistriBit rarely offers performance advantages over existing monolithic
DBT. One main reason for this situation is that we introduce a virtual

intermediate instruction set called V-IIS during the translation process.
The causalities incurred when using V-IIS are due to the following

reasons. First, independent V-IIS could be collected and then reused
for new objects, dramatically reducing the cost of handling machine
idiosyncrasies, and a developer is able to concentrate on writing
descriptions of properties of target machines instead of having to
rewrite the DBT itself. Second, V-IIS allows developers to performing
machine-independent analysis and optimization on the fly, such as
inserting code to do basic block counting and profiling. We can also

understand the behavior of running programs by recording dynamic
memory accesses, branches taken or not, and instruction traces from
V-IIS.

Despite its advantage, V-IIS exhibits major shortcoming and that is
loss in efficiency. As a process virtual machine, DBTs similarly add
another layer on host machine and inevitably lose some performance
during translation. The more the layer, the more performance will be
lost. The use of V-IIS exacerbates this situation and leads to more

performance loss. In general, virtual registers have a greater impact
on performance, because they hold the data that translator
manipulates. Register allocation determines the length of live intervals,
which further affects data availability. Hence, register allocation can
impact many optimization measures. Register allocation includes
allocation of virtual registers and physical registers. In this paper, we
focus on virtual register allocation. Normally, the benefit of dynamic
optimization can be limited by a DBT’s virtual register allocation
algorithm. For example, common sub expression elimination can be

applied only when the result of a sub expression is held by a virtual
register and its live interval reaches another instance of the sub
expression. During the design process of V-IIS, like most virtual

instruction sets (for example, LLVA (Vikram et al., 2003)), we set V-
IIS with unlimited numbers of 32-bit virtual integer registers. However,
the concept of “the unlimited numbers” is vague, also imprecise. How
does the number of virtual registers affect the performance? This
critical question has not been addressed before and we aim to

address this lack of knowledge by using approximation in approaching
the result of ideal virtual register allocation.

Our method of virtual register allocation on a trace is to aggressively
allocate new virtual registers, and the number of virtual register is set
as a configurable parameter and increased from the minimum (that is,
larger than or equal to the number of host’s physical register) to the
maximum step by step. Instead of re-using virtual registers for other
values, the goal of aggressively allocating is to extend the availability of

the results held by virtual registers. Figure 2 shows the virtual register
allocation algorithm. First, line 2 initializes the data structure with
virtual register information (VR_record) and the number of virtual
registers (maximum). Secondly, every virtual register r used by
instruction ins on the trace t must go through several steps. If r has
not been allocated before, this virtual register number is assigned as
in line 11 and the allocation information of r is recorded in VR_record;
otherwise, a new virtual register will be used as in line 15. When
maximum is smaller than or equal to the number of physical registers,

things become simple. Finally, if the number of virtual registers
exceeds the number of physical registers, we use “next-use” register
allocation algorithm to handle this problem. Our virtual register
allocation scheme is effective and extending the availability of useful
results, which exposes optimization opportunities and helps an
optimizer detect and remove redundant computations.

Trace length

Indeed, basic block linked as a trace is an effective optimization
measure, which links direct and indirect branches between blocks.
Optimization opportunities emerge when a trace is formed into a single
entry and multiple exits superblock, where a variable in the original
program may become constant and a partial redundancy may change
to a full redundancy. It has been used in many DBT systems (for
example, Dynamo (Vasanth, 2000)) and it helps speed up the

performance even up to 10 times. Theoretically, performance speedup
only happens when trace length reaches a certain number of basic
blocks. For example, assume that freq (t) denotes the total execution
frequency for path t. So, for a set T of paths we define the flow of T
as:

freq(T) = { freq(t) | t ∈ T} (1)

A path t is regarded as a trace if and only if freq (t) is greater than
some hot threshold θ (that is, a piece of translated code in the code
cache is executed “too often”). The set of traces with respect to θ is
defined as:

Traceθ = {t | freq(t) >θ} (2)

Furthermore, assume a path t is predicted after it has executed η

times. η is called the prediction delay and the execution flow captured
by this prediction is: freq(p)-η. The hit rate for T now results as:

HitRate (T) = [freq (T ∩ Traceθ) - | (T ∩ Traceθ)| × η] ×100 ∕ freq

(Traceθ) (3)

The improvement of the hit rate needs minimizing the η of (3), and
then the trace execution overhead (verify the targets of returns and
indirect branches) is significantly reduced. As a result, a long trace is

likely to contain more opportunities for optimization than a short trace.
However, traces should also follow execution flow, and the benefit of
the optimization opportunities is only gained when the traces execute.

Yang and Zhu 943

1 Trace_Create (trace t, int threshold)
 2 {
 3 while (t.blockCount < threshold)
 4 {

 5 newBlockAdded = False；

 6 for each bblock after trace t
 7 {

 8 newBolckAdded = True；

 9 Trace_Linking (bblock)；

 10 bblock = bblock -> next；

 11 blockCount ++；

 12 }
 13 if (newBlockAdded == False)
 14 {

 15 break；

 16 }
 17 }
 18 }

Table 2. Experimental setup

IA
-3

2

P
O

W
E

R

P
ro

c
e
ss

o
r

In
te

l
R

X

e
o
n

R

P
O

W
E

R
 R

6

2
.0

0
G

H
z
 (

q
u
a
d
-c

o
re

)
1
-c

o
re

4
.2

G
H

z

M
e
m

o
ry

4
G

B

1
G

B

O
S

C
e
n
tO

S
5
.1

L

in
u
x
 2

.6

C
o
m

p
il

e
r

g
c
c
-4

.2
.3

B
in

a
ry

st
a
ti

c

Figure 3. Block linking as a trace.

Table 2. Experimental setup.

 IA-32 POWER

Processor
Intel

®
 Xeon

®

2.00GHz(quad-core)

POWER
®
 6

1-core 4.2GHz

Memory 4GB 1GB

OS CentOS 5.1 Linux 2.6

Compiler gcc-4.2.3

Binary static

Therefore, traces need to be carefully selected both to expose
opportunities and to realize optimization benefit. We try to figure out
that when the speedup saturates once trace length reaches a certain
number of basic blocks.

We consider traces with different lengths to find the point at which
their performance saturates. The lengths of traces are gradually
increased until the set point is reached. Figure 3 abstracts the block
linking algorithm. Given a trace, we set threshold as a limit of its

number of basic blocks. First, line 5 initializes the trace t holding
nothing. Second, lines 6 to 12 keep increasing the length of trace t
along executing paths until the threshold is met. Otherwise, lines 13 to
16 exit trace construction.

RESULTS AND DISCUSSION

Here, we present the results of the optimization
measures through experimentation with DistriBit.
Through this evaluation, we want to assess the following

two issues. First, how does the number of virtual
registers affect the overall DistriBit’s running
performance? We compare its performance with a
different number of virtual registers. Moreover, we need
to determine the number of virtual registers that provides
a reasonable approximation to deal with different
optimization levels (for example, -o3, -o1). Secondly,
once the optimal number of virtual registers is
determined, the question is whether it will affect other
optimization measures, such as block linking (that is,
trace length). Taking into account the translation of the
procedures between same platforms is meaningless, we
choose two typical pairs (MIPS–IA-32 and IA-32–
POWER), and make an evaluation of them. MIPS and
POWER are reduced instruction set computer ISAs with
a lot of registers. The opposite situation is that IA-32
belongs to complex instruction set computer ISAs with a
small number of registers. The huge differences between
them could illustrate the problem better. We adopt the
popular method of testing, which is running the
SPECint2000 with test inputs. Other missing programs
are due to failed translations. The experimental setup is
described in Table 2.

Virtual registers number

It is generally recognized that the number of physical
registers has a tremendous effect on performance. In
fact, virtual register also has a potential impact on the

944 Sci. Res. Essays

gcc -o1

1

1.2

1.4

1.6

1.8

2

gzip vpr mcf craft parser eon gap vortex bzip2 twolf

S
p

ee
d

u
p

8 VR

16 VR

32 VR

64 VR

128 VR

256 VR

∞ VR

gcc -o1

1

2

3

4

5

6

7

gzip vpr gcc mcf crafty parser eon bzip2

S
p

e
e
d

u
p

8 VR

16 VR

32 VR

64 VR

128 VR

256 VR

∞ VR

(a) MIPS—IA-32 (b) IA-32—POWER

Figure 4. Speedup with a different number of virtual registers. The bars represent performance relative to 8 VR situation (initialized to 1),

higher is better. (Benchmarks are compiled by gcc -o1).

gcc -o3

1

1.2

1.4

1.6

1.8

2

2.2

gzip vpr mcf craft parser eon gap vortex bzip2 twolf

S
p

ee
d

u
p

8 VR

16 VR

32 VR

64 VR

128 VR

256 VR

∞ VR

gcc -o3

1

2

3

4

5

6

7

8

gzip vpr gcc mcf crafty parser eon bzip2

S
p

e
e
d

u
p

8 VR

16 VR

32 VR

64 VR

128 VR

256 VR

∞ VR

(a) MIPS—IA-32 (b) IA-32—POWER

Figure 5. Speedup with a different number of virtual registers. The bars represent performance relative to 8 VR situations (initialized to 1), higher

is better. (Benchmarks are compiled by gcc -o3).

performance, especially in dynamic binary translation
process. We collect program speedups from DistriBit
when the virtual registers are equipped with 8 to ∞ in a
distribute environment. When the number of virtual
registers is ∞, it means that we do not specify a particular
number, and this number depends on the actual situation
of running.

We present the results for two compiler optimization
levels (that is, -o1 and -o3) because the binary
executable code is sensitive to static optimization level,
and then influences the results. Due to space limitations,
we think these two moderate optimization and aggressive
optimization levels are sufficient in describing the
problem. Therefore, we aim to avoid overestimates.
From Figures 4 and 5, as expected, the speedup grows
with the number of virtual registers increasing. This
phenomenon shows that DistriBit’s performance can
indeed benefit from more virtual registers.

In fact, there is no upper bound in the number of virtual

registers, and it is difficult to determine how many virtual
registers are close to ideal register allocation. When
studied carefully, a close look at Figures 4 and 5 show
that every increase in the number of virtual registers
helps performance improvement and going from 16 to 32
and 32 to 64 is the largest boost respectively. Hence, we
conclude that 32 or 64 virtual registers represent
considerable benefit of increasing the number of
registers, though 32 and 64 registers are not
overwhelmingly many. The average potential speedup is
1.4 and 3.9x, and it is not surprising that the potential of
performance improvement is sensitive to static
optimization.

Trace length

Dynamic binary translation is based on traces which are
a sequence of basic blocks, typically chained along

Yang and Zhu 945

gcc -o3

1

2

3

4

5

6

7

8

5 10 20 50 100 200 500 1000 1500

S
p
e
e
d
u
p

gzip

vpr

mcf

craft

parser

eon

gap

vortex

bzip2

twolf

gcc -o3

1

2

3

4

5

6

7

5 10 20 50 100 200 500 1000 1500

S
p
e
e
d
u
p

gzip

vpr

gcc

mcf

crafty

parser

eon

bzip2

(a) MIPS—IA-32 (b) IA-32—POWER

Figure 6. Speedup on traces with a different number of basic blocks. The lines represent performance relative to 5 situations (initialized to 1),

higher is better. (Benchmarks are compiled by gcc -o3).

frequently executing code paths. Traces are formed
between the processes of translating virtual intermediate
code into target code. The quality of trace forming is
affected by the speed of virtual intermediate code
generating. So, we need to find a trace length that is long
enough to approximate the ideal trace. In this
experiment, we show results only for aggressive
optimization, which is gcc -o3, to avoid overestimating.

One approach to figure out the trace length is by
creating an ideal environment where virtual registers are
32 and 64 respectively. As expected, Figure 6 shows
performance speedup when the full execution trace is
divided into a series of traces with a different number of
basic blocks. On the surface, according to Figure 6,
performance seems to have more improvement as the
trace length is increased. However, the speedups
become slow when traces are longer than 500 and 200
fragments respectively. Moreover, this phenomenon is
consistent across the benchmarks and optimization
levels. Clearly, the potential performance improvement
of trace length is significant; the average improvement in
speedup is 3 and 2x. Based on our results, we can
conclude that long trace is a key to achieving good
performance, and they deserve the further research in
the future.

Conclusions

We have designed and implemented a distributed DBT–
DistriBit to supply heterogeneous code translation
services to thin clients in recent cloud computing
environments. This solution factors code translation out
of thin clients and locates it on a powerful server in
cloud. With the help of cloud computing processing
power and unlimited storage; thin client can focus on
execution wholeheartedly. We also investigated the
potential profit of different factors on program

performance. Experimental results showed that the
potential profits of the number of virtual registers and
trace length are significant. From our study, researchers
are better positioned to identify what is important for
dynamic binary optimization.

ACKNOWLEDGEMENTS

Our research is supported by the National Natural
Science Foundation of China (Grant No.60873209,
60970107, 60970108), the Science and Technology
Commission of Shanghai Municipality (09510701600).

REFERENCES

Andres G, Brendan E, Mike S, David A, David M, Mohammad RH, Blake K,

Graydon H, Boris Z, Jason O, Jesse R, Edwin S, Rick R, Michael B,

Mason C, Michael F (2009). Trace-based just-in-time type specialization

for dynamic languages. In ACM SIGPLAN Notices. 44: 465–478.

Andrés LC, Joseph AW, Adin S, Philip P, Stephen MR, Eyal DL, Michael

B (2009). Snowflock: rapid virtual machine cloning for cloud computing.

In Proceedings of the 4th ACM European conference on Computer

systems, pp. 1-12.

Borin E, Youfeng W (2008). Characterization of dynamic binary translation

overhead. PROCEEDINGS–AMAS-BT, pp. 4-13.

Brian F, Aqeel M, Francesso S, Sanjay JP, Steve SL (2004). The

performance potential of trace-based dynamic optimization. In University

of Illinois Technical Report, UILU-ENG-04-2208.

Chi KL, Robert C, Robert M, Harish P, Artur K, Geoff L, Steven W, Vijay

JR, Kim H (2005). Pin: building customized program analysis tools with

dynamic instrumentation. In ACM SIGPLAN Notices. 40: 90–200.

Cristina C, Mike VE (2000). UQBT: Adaptable binary translation at low

cost. Computer. 33: 60–66.

Emin GS, Rober G, Arthur JG, Nathan A, Brian NB (1998). A. Gregory,

and S. McDirmid, Distributed virtual machines: A system architecture

for network computing. European SIGOPS, pp 13-26.

Emin GS, Robert G, Arthur JG, Brian NB (1999). Design and

implementation of a distributed virtual machine for networked computers.

In Proceedings of the seventeenth ACM symposium on Operating

systems principles, ACM, pp. 202-216.

Haibing G, Yindong Y, Kai C, Yi G, Liang L, Ying C (2010). Distribit: a

distributed dynamic binary translator system for thin client computing.

946 Sci. Res. Essays

In HPDC-19, ACM, pp. 684–691.

Jim S, Ravi N (2005). Virtual machines: versatile platforms for systems

and processes. Morgan Kaufmann Pub.

John SH, Gerald P (1994). File-system development with stackable layers.

ACM Transactions on Computer Systems (TOCS). 12(1): 58–89.
Michael A, Armando F, Rean G, Anthony DJ, Randy HK, Andrew K,

Gunho L, David AP, Ariel R, Ion S, Matei Z (2009). Above the Clouds: A

Berkeley View of Cloud Computing. Technical Report No. UCB/EECS-

2009-28.

Sorav B, Alex A (2008). Binary translation using peephole superoptimizers.

In Proceedings of the 8th USENIX conference on Operating systems

design and implementation, USENIX Association, pp. 177-192.

Vasanth B, Evelyn D, Sanjeev B (2000). Dynamo: a transparent dynamic

optimization system. In ACM SIGPLAN Notices. 35: 1–12.

Vikram A, Chris L, Michael B, Anand S, Brian G (2003). LLVA: A Low-

level Virtual Instruction Set Architecture. In ACM Micro-36, San Diego,

California, pp. 201-216.

Yindong Y, Haibing G, Erzhou Z, Hongbo Y, Bo L (2010). Crossbit: A

multi-sources and multi-targets dbt. In The First International

Conference on Cloud Computing, GRIDs, and Virtualization, IARIA, pp.

41-47.

