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Virtualization via dynamic binary translation is essentially an emulator. The main advantage is that the 

CPU of the guest does not have to be the same as the CPU of the host. Although, dynamic binary 

translators (DBT) are gaining popularity and offering a promising future in the modern virtual executive 

environments, the requirements of DBTs’ processing and memory resources have seriously hampered 

the performance of host platforms. For cloud computing seems to offer incredible lightning-quick 

processing power and unlimited storage. In this paper, we propose a novel distributed DBT system-

DistriBit for resource-limited thin clients computing. Meanwhile, we study the effects of the number of 

virtual registers and trace length to improve the performance of DistriBit. Our results demonstrate that 

improving these two factors (the number of virtual registers and trace length) may help to improve 

program speedup by up to 1.4 to 3.9x and 2 to 3x for certain benchmark programs. 
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INTRODUCTION 
 
Cloud computing (Michael et al., 2009) is a fashionable 
technology which uses the internet and powerful remote 
servers to acquire data and applications. Furthermore, 
cloud computing allows clients to use applications 
without installation and access their personal files or 
requisite resources at any computer with internet access. 
This technology allows for much more efficient 
computing by centralizing storage, memory, processing 
and bandwidth. Virtualization is a core technology for 
enabling cloud resource sharing (Andrés, 2009), and it 
uses a single data processing system to run multiple 
operating systems (for example, Linux, Windows) or 
applications based on different architectures (for 
example, x86, MIPS, POWER). 

Both in virtual execution environments and cloud com-
puting environments, DBTs are usually considered as a 
kind of processed virtual machines, which support user 
applications   with  a  virtual  application  binary  interface 
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environment (Jim and Ravi, 2005). There is no need to 
recompile the source code, since DBTs facilitates the 
support of running heterogeneous code on a wide range 
of architectures. A DBT is originally developed to support 
program binaries compiled to a different instruction set 
rather than the one executed by the hosts hardware 
dynamically, and more and more DBTs have been used 
as optimizers or dynamic binary analysis tools nowadays 
(Vasanth et al., 2000; Chi et al., 2005; Sorav and Alex, 
2008). 

Although, DBTs are very attractive and ubiquitous, 
they also exhibit major shortcomings. First, the DBT itself 
is very complex; developing a complete process-level 
DBT from the scratch always takes a lot of manpower 
and material resource, not to mention the development 
of system-level DBT (Cristina and Mike, 2000). 
Secondly, state-of-the-art monolithic DBTs rely on the 
monolithic architecture of their ancestors and highly 
machine dependence (John and Gerald, 1994), so they 
are difficult to port across the diverse architectures and 
platforms found in a typical network. Thirdly, DBTs’ 
processing and memory requirements often make host 
machine    unbearable    (Borin    and    Youfeng,    2008),  
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especially for those resource-limited thin clients. As a 
result, directly using monolithic DBTs on resource-limited 
thin clients may be unsuitable and impractical. On the 
other hand, cloud computing offers an immediate access 
to large numbers of the world’s most sophisticated 
supercomputers and their corresponding processing 
power. The power of cloud computing could compensate 
for some shortcomings of thin clients, and the thin clients 
may benefit from it in cloud computing environments. 

We have developed a distributed DBT–DistriBit for 
cloud computing environments. In a DistriBit system, 
some works which need substantial processing and 
memory requirements, such as code translation and 
optimization are factored out of thin clients and located 
on powerful servers in cloud. By adopting this approach, 
thin client can reduce the hardware configuration and 
concentrate on execution. Surprisingly, we found that 
DistriBit rarely offers performance advantages over 
existing monolithic DBT. In some cases, we ascribe this 
situation to high network transmission overhead and cost 
of virtual intermediate instructions’ translation. Overall, in 
this paper, we focus on the latter and study how optimi-
zation factors are related to virtual intermediate instruct-
tions and as such affects the running performance. 
Furthermore, we hope our results encourage software 
designers to support distribute DBT techniques rather 
than seek to replace them. We believe the benefits of 
distribute DBTs to cloud computing are compelling.  

In summary, our aim in this work is to demonstrate the 
ability to improve the running performance of DBT in 
distributed virtual execution environment. Towards this 
end, we make the following main contributions in this 
paper: (1) an introduction of the distribute DBT system–
DistriBit, focusing on its virtual intermediate instructions 
(V-IIS)–a powerful but previously little-studied com-
ponent; (2) a quantitative analysis of optimization factors 
the number of virtual registers and trace length. 

 

 
RELATED WORK 

 
Traditional monolithic DBT 
 
The UQBT (Cristina, 2000), is a reusable, component-
based binary-translation framework which allows 
engineers quickly and inexpensively migrate existing 
software from one processor to the other. Different from 
V-IIS, UQBT uses two intermediate instructions to 
transform the source code into a high-level represen-
tation. The more middle transformation, the more perfor-
mance will be lost. That is the reason why papers about 
UQBT focus on concept and not performance. 

Dynamo (Vasanth, 2000), a dynamic optimization sys-
tem for PA-RISC, developed by Hewlett-Packard Labs 
showed good performance. Unfortunately, many similar 
systems with intermediate languages have been built but 
little success has been reproduced ever since Dynamo. 

 
 
 
 
Distributed virtual computing  
 

DVM (Emin et al., 1999) is a distributed virtual machine 
designed for heterogeneous clusters of networked 
computers. DVM uses Java virtual machine to run on 
x86 or DEC Alpha server to supply services to thin 
clients. DVM could reduce resources requirement on thin 
clients, improve site security through physical isolation 
and increase the manageability of a large and 
heterogeneous network without sacrificing performance, 
but the limitation is that DVM only supports existing 
Java-enable clients not other Java-unable clients. In 
contrast, DistriBit is language independent and can 
support heterogeneous software without recompiling the 
source code. 

Emin (1998) designed and implemented a system 
similar to DVM, services that perform rule checking and 
code transformation are factored out of thin clients and 
located on severs. However, these severs are located in 
enterprise-wide network, can’t spreading widely.  
 

 

General trace optimization 
 

Many works which use traces for exploring program 
optimization opportunities have been done. To our 
knowledge, the work closest to ours has been done in 
(Brian, 2004) and (Andres, 2009). Fahs et al (Brian, 
2004) demonstrated the potential of dynamically-applied 
classical optimizations as a function of trace length. 
However, their results are based on ideal circumstances, 
and not easily compared to existing dynamic optimization 
systems. Moreover, they did not study the potential of 
virtual registers. 

Andres (2009) described their type specialization 
algorithm and trace compiler, which translated a trace 
from an intermediate representation to optimized native 
code in two linear passes. Their experiments showed that 
on programs amenable to traces, they achieved 
speedups of 2x to 20x. Different from ours, their 
programs are currently executed via interpretation not 
dynamic binary translation. 
 
 
METHODOLOGY 

 
We now move on to begin with a necessarily brief overview of the 
distributed DBT system–DistriBit, followed by a detailed description of 
its virtual intermediate instruction set–V-IIS. 

 
 

Architecture overview 

 
Considering that code translation and optimization always consume a 
lot of computation and memory resources, we address the problems 
of monolithic DBTs by proposing a novel distributed DBT–DistriBit 
(Haibing et al., 2010) based on function factoring. The DistriBit 
supplies a virtual executive environment wherein a powerful server 

could provide code translation, code optimization services and an 
unbounded code cache for thin client. With the help of this powerful 
server, thin client does not need to  perform  code  translation  but  still 
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Figure 1. The workflow of a DistriBit system. 

 
 
 

Table 1. The entire V-IIS instructions. 

 

Type Instruction name 

register state 
mapping 

GET  PUT 

  

Memory access LD ST 

Data transfer  MOV  LI 

  

Arithmetic/logic 

ADD SUB AND NOT XOR 

OR MUL MULU DIV DIVU 

SLL SRL SRA CMP SEXT 
ZEXT 

Control transfer JMP BRANCH 

Special  HALT SYSCALL CALL 

 
 
 
can get the optimized code from the server whenever necessary. In 
this manner, the burden of hardware requirements for thin client will 
be reduced. Figure 1 illustrates distributed DBT architecture–DistriBit. 
For instance, a DistriBit system consists of a translation server and a 
thin client that communicates over a network using TCP/IP 
transportation protocol. This translation server could be one of those 

powerful servers located in a cloud, and the thin client could be any 
thin client device, like mobile phone, sensor, etc. In general, the 
connection between them can be wired or wireless. 

DistriBit is a general-purpose distributed DBT that could supply 
heterogeneous code translation and optimization services to thin 
clients. DistriBit uses a translator (Yindong et al., 2010) located on a 
powerful server to response to thin clients’ translation requests. The 
translator that DistriBit adopts differs from other commercial machine 

dependent on DBTs which only can translate one kind of source code 
to another specific target code. This translator is a multi-source and 
multi-target DBT which can translate different kinds of source code to 

different kinds of target code, and undoubtedly reduce the number of 
DBT systems on server. By now, this versatile translator has run on 

IA-32 and POWER, and has supplied MIPS-IA32, SPARC-IA32 and 
SPARC-POWER code translation to users. Moreover, this translator 
is machine independent and can easily add other source ends and 
target ends according to the actual needs, so it may provide better 
and comprehensive services for thin clients.  

 
 
V-IIS instructions 

 
In order to reduce the complexity of translation, DistriBit’s translator 
does not translate source code to target code directly. We design a 
set of virtual intermediate instructions called V-IIS and let translator 
firstly translate source code to intermediate instructions, then to target 
code. Therefore, the V-IIS makes this translator easily retargetable 
and extensible. Similar to V-IIS, LLVA (Vikram et al., 2003) is a low-
level virtual instruction set designed for life-long (including compile, 
link and run) code optimization. Though, as a low-level virtual 

instruction set, LLVA contains enough rich high-level information (for 
example, control flow, data flow and data dependence) required by 
optimization algorithms, and these information usually can be 
extremely difficult to extract from native machine code. However, 
Different from our research, LLVA’s design goal and object code 
cannot be applied to the analysis of low level executable binary code. 
V-IIS comprises six kinds of basic instructions which are compatible 
with most popular ISAs. They include arithmetic/logical, control 

transfer, data transfer, and memory access; register state mapping 
and special instructions. Table 1 shows all virtual intermediate 
instructions of V-IIS. 

 
 
Research concept 

 
There are a number of factors that impact a DBT’s performance 

improvement, including the virtual registers’ allocation and the 
instruction traces selected. Virtual registers hold data in binary code, 
which makes virtual, register allocation an important factor in dynamic 
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1  Virtual_Register_Allocation (trace t, int max) 
2  { 
3    VR_record = Init (max); /* VR information*/ 
4    ins = Get_First_Instruction (t); 
5    while (ins) 
6    { 
7      for each r in ins 
8       { 
9        if ( ture == Not_Allocated (VR_record, r) 
10          { 
11            r = Assign_Virtual_Register (VR_record, r);  
12          } 
13       else 
14          { 
15            r = New_Virtual_Register (VR_record, r); 
16          } 
17     } 
18    ins = ins->next; 
19   } 
20 } 

 
 

 

Figure 2. Virtual register allocation on a trace. 

 
 
 
binary optimization. Traces define the optimization unit and the scope 
of the code. Hence, trace selection in dynamic binary optimization is 
as critical as region selection in static optimization. Therefore, all of 
these optimization factors have to be handled carefully for a DBT to 

gain performance improvement.  
 
 
Number of virtual registers 

 
Surprisingly, according to the initial experimental results, we found that 
DistriBit rarely offers performance advantages over existing monolithic 
DBT. One main reason for this situation is that we introduce a virtual 

intermediate instruction set called V-IIS during the translation process. 
The causalities incurred when using V-IIS are due to the following 

reasons. First, independent V-IIS could be collected and then reused 
for new objects, dramatically reducing the cost of handling machine 
idiosyncrasies, and a developer is able to concentrate on writing 
descriptions of properties of target machines instead of having to 
rewrite the DBT itself. Second, V-IIS allows developers to performing 
machine-independent analysis and optimization on the fly, such as 
inserting code to do basic block counting and profiling. We can also 

understand the behavior of running programs by recording dynamic 
memory accesses, branches taken or not, and instruction traces from 
V-IIS. 

Despite its advantage, V-IIS exhibits major shortcoming and that is 
loss in efficiency. As a process virtual machine, DBTs similarly add 
another layer on host machine and inevitably lose some performance 
during translation. The more the layer, the more performance will be 
lost. The use of V-IIS exacerbates this situation and leads to more 

performance loss. In general, virtual registers have a greater impact 
on performance, because they hold the data that translator 
manipulates. Register allocation determines the length of live intervals, 
which further affects data availability. Hence, register allocation can 
impact many optimization measures. Register allocation includes 
allocation of virtual registers and physical registers. In this paper, we 
focus on virtual register allocation. Normally, the benefit of dynamic 
optimization can be limited by a DBT’s virtual register allocation 
algorithm. For example, common sub expression elimination can be 

applied only when the result of a sub expression is held by a virtual 
register and its live interval reaches another instance of the sub 
expression.   During  the  design  process  of  V-IIS,  like  most  virtual  

 
 
 
 
instruction sets (for example, LLVA (Vikram et al., 2003)), we set V-
IIS with unlimited numbers of 32-bit virtual integer registers. However, 
the concept of “the unlimited numbers” is vague, also imprecise. How 
does the number of virtual registers affect the performance? This 
critical question has not been addressed before and we aim to 

address this lack of knowledge by using approximation in approaching 
the result of ideal virtual register allocation.  

Our method of virtual register allocation on a trace is to aggressively 
allocate new virtual registers, and the number of virtual register is set 
as a configurable parameter and increased from the minimum (that is, 
larger than or equal to the number of host’s physical register) to the 
maximum step by step. Instead of re-using virtual registers for other 
values, the goal of aggressively allocating is to extend the availability of 

the results held by virtual registers. Figure 2 shows the virtual register 
allocation algorithm. First, line 2 initializes the data structure with 
virtual register information (VR_record) and the number of virtual 
registers (maximum). Secondly, every virtual register r used by 
instruction ins on the trace t must go through several steps. If r has 
not been allocated before, this virtual register number is assigned as 
in line 11 and the allocation information of r is recorded in VR_record; 
otherwise, a new virtual register will be used as in line 15. When 
maximum is smaller than or equal to the number of physical registers, 

things become simple. Finally, if the number of virtual registers 
exceeds the number of physical registers, we use “next-use” register 
allocation algorithm to handle this problem. Our virtual register 
allocation scheme is effective and extending the availability of useful 
results, which exposes optimization opportunities and helps an 
optimizer detect and remove redundant computations. 
 
 

Trace length 

 
Indeed, basic block linked as a trace is an effective optimization 
measure, which links direct and indirect branches between blocks. 
Optimization opportunities emerge when a trace is formed into a single 
entry and multiple exits superblock, where a variable in the original 
program may become constant and a partial redundancy may change 
to a full redundancy. It has been used in many DBT systems (for 
example, Dynamo (Vasanth, 2000)) and it helps speed up the 

performance even up to 10 times. Theoretically, performance speedup 
only happens when trace length reaches a certain number of basic 
blocks. For example, assume that freq (t) denotes the total execution 
frequency for path t. So, for a set T of paths we define the flow of T 
as: 
 

freq(T) = { freq(t) | t ∈  T}                                                                (1) 

 

A path t is regarded as a trace if and only if freq (t) is greater than 
some hot threshold θ (that is, a piece of translated code in the code 
cache is executed “too often”). The set of traces with respect to θ is 
defined as: 
 
Traceθ  = {t | freq(t) >θ}                                                                   (2) 

 
Furthermore, assume a path t is predicted after it has executed η 

times. η is called the prediction delay and the execution flow captured 
by this prediction is: freq(p)-η. The hit rate for T now results as: 

 
HitRate (T) = [freq (T ∩ Traceθ) - | (T ∩ Traceθ)| × η] ×100 ∕ freq 

(Traceθ)                                                                                          (3) 
 

The improvement of the hit rate needs minimizing the η of (3), and 
then the trace execution overhead (verify the targets of returns and 
indirect branches) is significantly reduced. As a result, a long trace is 

likely to contain more opportunities for optimization than a short trace. 
However, traces should also follow execution flow, and the benefit of  
the optimization opportunities is only gained when the traces execute. 
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1  Trace_Create (trace t, int threshold) 
 2   { 
 3     while (t.blockCount < threshold) 
 4      { 

 5         newBlockAdded = False； 

 6         for each bblock after trace t 
 7           {    

 8             newBolckAdded = True； 

 9             Trace_Linking (bblock)； 

 10             bblock = bblock -> next； 

 11             blockCount ++； 

 12         } 
 13         if ( newBlockAdded == False) 
 14         {    

 15             break； 

 16          } 
 17      } 
 18   } 

 

Table 2. Experimental setup 
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Figure 3. Block linking as a trace. 

 

 
 

Table 2. Experimental setup. 

 

 IA-32 POWER 

Processor 
Intel

®
 Xeon

®
 

2.00GHz(quad-core) 

POWER
®
 6 

1-core 4.2GHz 

   

Memory 4GB 1GB 

OS CentOS 5.1 Linux 2.6 

Compiler gcc-4.2.3 

Binary static 
 

 

 

Therefore, traces need to be carefully selected both to expose 
opportunities and to realize optimization benefit. We try to figure out 
that when the speedup saturates once trace length reaches a certain 
number of basic blocks. 

We consider traces with different lengths to find the point at which 
their performance saturates. The lengths of traces are gradually 
increased until the set point is reached.  Figure 3 abstracts the block 
linking algorithm. Given a trace, we set threshold as a limit of its 

number of basic blocks. First, line 5 initializes the trace t holding 
nothing. Second, lines 6 to 12 keep increasing the length of trace t 
along executing paths until the threshold is met. Otherwise, lines 13 to 
16 exit trace construction. 
 

 

RESULTS AND DISCUSSION 
 
Here, we present the results of the optimization 
measures through experimentation with DistriBit. 
Through this evaluation, we want to assess the following 

two issues. First, how does the number of virtual 
registers affect the overall DistriBit’s running 
performance? We compare its performance with a 
different number of virtual registers. Moreover, we need 
to determine the number of virtual registers that provides 
a reasonable approximation to deal with different 
optimization levels (for example, -o3, -o1). Secondly, 
once the optimal number of virtual registers is 
determined, the question is whether it will affect other 
optimization measures, such as block linking (that is, 
trace length). Taking into account the translation of the 
procedures between same platforms is meaningless, we 
choose two typical pairs (MIPS–IA-32 and IA-32–
POWER), and make an evaluation of them. MIPS and 
POWER are reduced instruction set computer ISAs with 
a lot of registers. The opposite situation is that IA-32 
belongs to complex instruction set computer ISAs with a 
small number of registers. The huge differences between 
them could illustrate the problem better. We adopt the 
popular method of testing, which is running the 
SPECint2000 with test inputs. Other missing programs 
are due to failed translations. The experimental setup is 
described in Table 2. 
 
 
Virtual registers number 
 
It is generally recognized that the number of physical 
registers has a tremendous effect on performance. In 
fact, virtual register also has a potential impact on the 
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Figure 4. Speedup with a different number of virtual registers. The bars represent performance relative to 8 VR situation (initialized to 1), 

higher is better. (Benchmarks are compiled by gcc -o1). 
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Figure 5. Speedup with a different number of virtual registers. The bars represent performance relative to 8 VR situations (initialized to 1), higher 

is better. (Benchmarks are compiled by gcc -o3). 

 
 
 
performance, especially in dynamic binary translation 
process. We collect program speedups from DistriBit 
when the virtual registers are equipped with 8 to ∞ in a 
distribute environment. When the number of virtual 
registers is ∞, it means that we do not specify a particular 
number, and this number depends on the actual situation 
of running. 

We present the results for two compiler optimization 
levels (that is, -o1 and -o3) because the binary 
executable code is sensitive to static optimization level, 
and then influences the results. Due to space limitations, 
we think these two moderate optimization and aggressive 
optimization levels are sufficient in describing the 
problem. Therefore, we aim to avoid overestimates. 
From Figures 4 and 5, as expected, the speedup grows 
with the number of virtual registers increasing. This 
phenomenon shows that DistriBit’s performance can 
indeed benefit from more virtual registers. 

In fact, there is no upper bound in the number of virtual 

registers, and it is difficult to determine how many virtual 
registers are close to ideal register allocation. When 
studied carefully, a close look at Figures 4 and 5 show 
that every increase in the number of virtual registers 
helps performance improvement and going from 16 to 32 
and 32 to 64 is the largest boost respectively. Hence, we 
conclude that 32 or 64 virtual registers represent 
considerable benefit of increasing the number of 
registers, though 32 and 64 registers are not 
overwhelmingly many. The average potential speedup is 
1.4 and 3.9x, and it is not surprising that the potential of 
performance improvement is sensitive to static 
optimization. 
 
 
Trace length 
 
Dynamic binary translation is based on traces which are 
a sequence of basic blocks, typically chained along 
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Figure 6. Speedup on traces with a different number of basic blocks. The lines represent performance relative to 5 situations (initialized to 1), 

higher is better. (Benchmarks are compiled by gcc -o3). 

 
 
 
frequently executing code paths. Traces are formed 
between the processes of translating virtual intermediate 
code into target code. The quality of trace forming is 
affected by the speed of virtual intermediate code 
generating. So, we need to find a trace length that is long 
enough to approximate the ideal trace. In this 
experiment, we show results only for aggressive 
optimization, which is gcc -o3, to avoid overestimating.  

One approach to figure out the trace length is by 
creating an ideal environment where virtual registers are 
32 and 64 respectively. As expected, Figure 6 shows 
performance speedup when the full execution trace is 
divided into a series of traces with a different number of 
basic blocks. On the surface, according to Figure 6, 
performance seems to have more improvement as the 
trace length is increased. However, the speedups 
become slow when traces are longer than 500 and 200 
fragments respectively. Moreover, this phenomenon is 
consistent across the benchmarks and optimization 
levels. Clearly, the potential performance improvement 
of trace length is significant; the average improvement in 
speedup is 3 and 2x. Based on our results, we can 
conclude that long trace is a key to achieving good 
performance, and they deserve the further research in 
the future. 

 

 
Conclusions 
 
We have designed and implemented a distributed DBT–
DistriBit to supply heterogeneous code translation 
services to thin clients in recent cloud computing 
environments. This solution factors code translation out 
of thin clients and locates it on a powerful server in 
cloud. With the help of cloud computing processing 
power and unlimited storage; thin client can focus on 
execution wholeheartedly. We also investigated the 
potential profit of different factors on program 

performance. Experimental results showed that the 
potential profits of the number of virtual registers and 
trace length are significant. From our study, researchers 
are better positioned to identify what is important for 
dynamic binary optimization. 
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