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The -expansion method is one of the most direct and effective method for obtaining exact 

solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact 
travelling wave solutions of nonlinear evolution equations in mathematical physics via (2+1) 
dimensional generalized KdV, Sin Gordon Equation and Landau-Ginzburg-Higgs Equation by 

-expansion method, where )(G  satisfies the auxiliary ordinary differential equation (ODE) 

0)()()(   GGG  where   and   are arbitrary constants. 

 
Key words: (2+1) dimensional generalized KdV, Sin Gordon Equation, Landau- Ginzburg-Higgs equation, 

-expansion method, auxiliary equation, travelling wave solutions. 

 
 
INTRODUCTION 
 
Nonlinear evolution equations play a significant role in 
various scientific and engineering fields, such as, optical 
fibers, solid state physics, fluid mechanics, plasma 
physics, chemical kinematics, chemical physics 
geochemistry, etc. Nonlinear wave phenomena of 
diffusion, reaction, dispersion, dissipation, and convection 
are very important in nonlinear wave equations. In recent 
years, the exact solutions of nonlinear PDEs have been 
investigated by many researchers who are concerned in 
nonlinear physical phenomena and many powerful and 
efficient methods have been offered by them. Among 
non-integrable nonlinear differential equations, there is a 
wide class of equations that is referred to as the partially 
integrable, because these equations become integrable 
for some values of their parameters. There are many 
different methods to look for the exact solutions of these 
equations. The most famous algorithms are the truncated 
Painleve   expansion   method   (Liu   et   al.,   2001),  the 

Weierstrass elliptic function method (Kudryashov, 2009), 
the tanh-function method (Abdou, 2007; El-Wakil et al., 
2010; Fan, 2000; Wazwaz, 2008a, b; Zhang et al., 2002) 
and the Jacobi elliptic function expansion method (Chen 
and Wang, 2005; Liu et al., 2001; Lu, 2005; Wazzan, 
2009; Yomba, 2008; Yusufoglu and Bekir, 2008). There 
are other methods which can be found in (Kawahara, 
1972; Wang and Zhang, 2007; Wang et al., 2005). For 
integrable nonlinear differential equations, the inverse 
scattering transform method (Ablowitz and Clarkson, 
1991), the Hirota method (Hirot, 1971), the truncated 
Painleve expansion method (Zayed et al., 2007), the 
Backlund transform method (Miura, 1978; Rogers and 
Shadwick, 1982) and the Exp- function method (Naher et 
al., 2011, 2012; He and Wu, 2006; Inan, 2010; Akbar and 
Ali, 2011a, b; Akbar et al., 2012a) are used for searching 
the exact solutions. Wazwaz (2008a) introduced a direct 
and concise method, called the )/( GG -expansion method
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to look for traveling wave solutions of nonlinear PDEs, 
where )(GG   satisfies the second order linear ODE 

0)()()(   GGG ;   and   are arbitrary 

constants. For additional references see the articles 
(Akbar et al., 2012b, c; El-Wakil et al., 2010; Parkes, 
2010; Zayed et al., 2004a, b; Akbar and Ali, 2012; Zhang 
and Xia, 2007, 2008). 

In this article, we bring in an alternate approach, called 
expansion method to find the traveling 

wave solutions of the, via (2+1) dimensional Generalized 
KdV, Sine-Gordon Equation and Landau-Ginzburg-Higgs 

Equation where )(GG   satisfies the auxiliary 

ODE 0)()()(   GGG .  and   are 

arbitrary constants.  Recently, El-Wakil et al. (2010) and 
Parkes (2010) have shown that the extended tanh-
function method proposed by Fan (2000) and the basic 

)/( GG -expansion method proposed by Wang et al. 

(2008) are entirely equivalent in as much as they deliver 
exactly the same set of solutions to a given nonlinear 
evolution equation. This observation has also been 
pointed out recently by Kudryashov (2009). In this article, 

we assert even though the basic )/( GG -expansion 

method is equivalent to the extended tanh-function 

method, the further improved )/( GG -expansion 

method presented in this letter is not equivalent to the 
extended tanh-function method. The method projected in 
this article is varied to some extent from the extended 

)/( GG -expansion method. Further solitary wave 

solutions are achieved via the  

expansion method. This approach will play an imperative 
role in constructing many exact travelling wave solutions 
for the nonlinear PDEs via (2+1) dimensional Generalized 
KdV, Sin Gordan and Landau-Ginzburg-Higgs Equations. 
It is worth mentioning that an exemplary work is made by 
Yang (2012a, b, 2013) on fractional calculus and its 
applications. 

 
 
METHODOLOGY 

 
Here, we describe the main steps of the (G´/G, 1/G)-expansion 
method for finding travelling wave solutions of nonlinear evolution 

equations. Suppose a nonlinear equation for  is given by 

 

              (1) 

 
in which both nonlinear term(s) and higher order derivatives of 

 are all involved. In general, the left-hand side of Equation 

1 is a polynomial in  and its various derivatives. The (G´/G, 1/G)-

expansion method for solving Equation 1 proceeds in the following 
steps: 

 
 
 
 
Step 1: Look for traveling wave solution of Equation 1 by taking 
 

                (2) 

 

where  is nonzero constant,  the function of . Substituting 

Equation 2 into Equation 1 yields an ordinary differential equation 

(ODE) for  

 

              (3) 

 
Step 2: If possible, integrate Equation 3 term by term one or more 
times. This yields constant(s) of integration. For simplicity, the 
integration constant(s) may be set to zero. 
 
Step 3: According to the (G´/G, 1/G)-expansion method supposes 

that  can be expressed by a finite power series of 

 

             (4) 

 

where  and  are 

constants to be determine later and  and  are 

 

              (5) 

 
which satisfied 
 

                (6) 

 
Then Equations 5 and 6 yields 
 

               (7) 

 
From the three cases of general solutions of the Equation 6, we 
have: 
 
Case 1: 
 

When  the general solution of Equation 6 is 

 

 

 
we have 
 

              (8) 

 

where  and  are two arbitrary constants and 

 

 
Case 2: 
 

When       the    general    solution    of     Equation    6    is 



 
 

 
 
 
 

 

 
we have 
 

              (9) 

 

where  and  are two arbitrary constants and 

 

 

Step 4: Determine . This, usually, can be accomplished by 

balancing the linear term of highest order with the highest order 
nonlinear term which obtained in Step 2. 
 
Step 5: Substituting Equation 4 into Equation 3 using Equation 7 

and Equation 8 will yield a polynomial in  and  in which the 

degree of  is not larger than 1.Compare the like powers of  

and  equal to zero, yields a set of algebraic equations for 

 and  

Step 6: Solve the system which obtained in step 5 for 

 and  with the 

help of Maple 13, to determine these constants. Putting these 
constant into Equation 4, one can obtain the travelling wave 
solutions expressed by the hyperbolic functions of Equation 2. We 
can obtain the more general type and new exact traveling wave 
solution of the nonlinear partial differential Equation 1. 
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Step 7: Similarly substituting Equation 4 into Equation 3 using 

Equation 7 and 9 will yield a polynomial in  and  in which the 

degree of  is not larger than 1. Compare the like powers of  

and  equal to zero, yields a set of algebraic equations for 

 and  Then 

we obtain one more solution which expressed by trigonometric 
functions as proceeding before. 

 
 
APPLICATIONS 
 
Here, we apply (G´/G, 1/G)-expansion method to 
construct traveling wave solution of the (2+1) dimensional 
Generalized KdV, Sin Gordan Equation and Landau-
Ginzburg-Higgs Equation. Numerical results are very 
encouraging. 

 
 
(2+1) dimensional Generalized KdV Equation 

 

 

 

 

Consider the transformation  

 we have 

                (10) 

 

By applying the balancing principle we have  Therefore the trail solution is 

 
                      (11) 

 
Putting Equation 11 into Equation 10 with Equation 5, we have 
 

 

 

 

Comparing the like powers of and  we have system of equations: 

 
 

, 
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, 

 

, 

 

=0, 

 

=0, 

 

, 

 

 

 

, 

 

 

 
Solving the above system, we have one solution set. 

 
 
1

st
 Solution set 

 
Case 1 

 

When  

 

. 

 
Which yields 
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Figure 1. 1st
 solution set (Case 1 - When  for (2+1) dimensional Generalized KdV Equation. 

 
 
 

𝑢 𝑥, 𝑡 =
6 −𝑙2 + ⍵ 3/2(𝐴1 cosh   −𝑙2 + ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡  + 𝐴2 sinh   −𝑙2 + ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡  

𝐴1 sinh   −𝑙2 + ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 + 𝐴2 cosh   −𝑙2 + ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 
+ 

6 ⍵ 𝐴1
2 − 𝐴2

2 − 𝑙2 𝐴1
2 − 𝐴2

2 (−⍵ + 𝑙2)

  𝐴1 sinh   −𝑙2 + ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 + 𝐴2 cosh   −𝑙2 + ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 
 

 

as shown in Figure 1. 
 
 

Case 2 
 

When  

 

. 

 
Which yield 
 
 

𝑢 𝑥, 𝑡 =
6 −𝑙2 + ⍵ 3/2(𝐴1 cos  𝑙2 −⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡  − 𝐴2 sin   𝑙2 −⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡  

𝐴1 sin   𝑙2 −⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 + 𝐴2 cos   𝑙2 − ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 
+  

6 ⍵ 𝐴1
2 + 𝐴2

2 − 𝑙2 𝐴1
2 + 𝐴2

2 (−⍵ + 𝑙2)

𝐴1 sin   𝑙2 −⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 + 𝐴2 cos  𝑙2 − ⍵ −𝑥 + 𝑙𝑦 + ⍵𝑡   −⍵ + 𝑙2 
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Landau-Ginzburg-Higgs (LGH) Equation 
 

 

 

Consider the transformation   we have 

 

=0              (12) 

 

By applying the balancing principle we have  Therefore the trail solution is 

 

           (13) 

 
Putting Equation 13 into Equation 12 with Equation 5, we have 
 

 

 

Comparing the like powers of and  we have system of equation 

 

, 

 

, 

 

, 

 

=0, 

 

, 

 

, 

 

. 

 
Solving the above system, we have one solution set 
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Figure 2. 1st
 solution set (Case 1 - When  for Landau-Ginzburg-Higgs (LGH) Equation. 

 
 
 

1
st

 Solution set 
 

Case 1 
 

When  

 

 

 

which yields 
 

𝑢 𝑥, 𝑡 = −

 

 
 
 
  −2⍵2 − 2𝑘2 2 

𝑚2

⍵2 + 𝑘2 

3
2

(𝐴1 cosh  2 
𝑚2

⍵2 + 𝑘2  𝑘𝑥 + ⍵𝑡  + 𝐴2sinh⁡  2 
𝑚2

⍵2 + 𝑘2  𝑘𝑥 + ⍵𝑡  

(𝑛(−

2𝐴1 sinh  2 
𝑚2

⍵2 + 𝑘2  𝑘𝑥 + ⍵𝑡  𝑚2

⍵2 + 𝑘2 −

2𝐴2 cosh  2 
𝑚2

⍵2 + 𝑘2  𝑘𝑥 + ⍵𝑡  𝑚2

⍵2 + 𝑘2 )  

 
 
 
 

+         …  

 
 
as shown in Figure 2. 
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Case 2 
 

When  

 

 
 

which yields 
 

 

 𝑢 𝑥, 𝑡 =
1

2
(

 −2⍵2−2k2 
−2m 2

⍵2+k2 

3
2
 A1 cos   

−2m 2

⍵2+k2 kx +⍵t −A2 sin   
−2m 2

⍵2+k2 kx +⍵t    

(n(

−2A 1sin ⁡( 
−2m 2

⍵2+k2 kx +⍵t 

⍵2+k2 −

2𝐴2 cos   2 
𝑚2

⍵2+𝑘2 𝑘𝑥+⍵𝑡  𝑚2

⍵2+𝑘2

+ ⋯, 

 

 

 

 
 
 
Sin Gordan Equation 
 

 

 

Consider the transformation   we have 

 

       (14) 

 

By applying the balancing principle we have  Therefore the trail solution is 

 

         (15) 

 

Putting Equation 14 into Equation 15 with Equation 5, we have 
 

 
 

 
. 

 

Comparing the like powers, and  we have system of equation 

 

0, 

 

=0, 

 

0, 
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= , 

 

= =0, 

 

0, 

 

0. 

 
Solving the above system, we have one solution set. 
 
 
1

st
 Solution set 

 
Case 1 
 
When  

 

0.
 
 

 
Which yields 
 

 

+ . 

 
As shown in Figure 3. 
 
 
Case 2 
 

When  
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Figure 3. 1st
 solution set (Case 1 - When  for Sin Gordan Equation. 

 
 
 

0.
 
 

 

Which yields 
 

𝑢(𝑥, 𝑡)

  

+

 

  +

 

 
 
 

+

 

 
 
 

. 

 

 

 

𝑢(𝑥, 𝑡)

  

+

 

  +

 

 
 
 

+

 

 
 
 

. 

 

 

 



 
 

 
 
 
 
Conclusion 
 

(G´/G, 1/G)-expansion method is applied to obtain 
generalized solitary solutions of nonlinear (2+1) 
dimensional generalized KdV, Sine-Gordan and Landau-
Ginzburg-Higgs Equations. The main advantage of this 
scheme over others is that it possesses all types of exact 
solutions. Moreover, reliability of the algorithm and the 
reduction in the size of computational domain give this 
proposed technique a wider applicability. 
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