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This paper discusses the control of three-dimensional continuous Rabinovich attractor by using 
passive control technique. Based on the property of the passive system, the passive controller is 
designed and this controller is added to chaotic Rabinovich system for achieving the control of the 
system. The controller is ensured to the global asymptotical stability of the three dimensional 
Rabinovich chaotic system via Lyapunov theory. As a result, the control of Rabinovich chaotic system 
is realized. To confirm the validity of the proposed method, numerical simulations are presented 
graphically. 
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INTRODUCTION 
 
Chaos has been extensively interesting study area for 
many scientists, after Lorenz found the first attractor in 
1963 (Lorenz, 1963). After Lorenz, many chaotic systems 
were introduced such as Liu system (Liu et al., 2004), 
Chen system (Chen and Ueta, 1999), Chua system 
(Chua et al., 1986), Rössler system (Rössler, 1976), 
Rabinovich system (Pikovski et al., 1978) and Rikitake 
system (Rikitake, 1958). Chaos control has received 
increasingly attentions from researchers, since OGY (Ott 
et al., 1990) method has been proposed. Many control 
methods have been proposed for the control of chaotic 
systems such as adaptive control (Wu et al., 1996; Zeng 
and Singh, 1997; Hong et al., 2001), sliding mode control 
(Konishi et al., 1998; Ablay, 2009), linear feedback 
control (Yassen, 2005), and passive control (Lin, 1995; 
Yu, 1999; Qi, et al., 2004; Kemih et al., 2006; Zhou, 
2009; Kemih, 2009; Chen, 2010). Recently, the concept 
of passivity of nonlinear systems has intensively paid 
attentions and has been applied in chaos control (Byrnes 
et al., 1991). Wen Yu used the passive control technique 
to design the controller for Lorenz system (Yu, 1999). Qi 
applied this technique to Chen system (Qi et al., 2004) 
and also Chen et al. applied the passive control to unified 
chaotic system (Chen and Liu, 2010). Kemih  designed  a 
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controller to control the Liu system (Kemih et al., 2006) 
and nuclear spin generator system (Kemih, 2009) based 
on passive control. Zhou et al. investigated the control of 
4D chaotic system via passive control technique (Zhou, 
2009). In this paper, the control of Rabinovich chaotic 
system is investigated based on the properties of a 
passive system. Feedback controller is designed to 
control chaotic system via passive control approach. 
Simulation results show that the controller designed 
based on passive control can regulate the chaotic system 
effectively.  
 
 
SYSTEM DESCRIPTION 
 
The Rabinovich chaotic system (Pikovski et al., 1978) is 
defined by 
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Where  and  are the state variables, and a, b, d, 
h are positive real constants. The Rabinovich system (1) 
exhibits a chaotic attractor for a=4, b=d=1, and h=6.75 as 
shown in Figures 2 - 3. Using a Matlab-Simulink model, 

as shown  in Figure 1, the time  series  of  1x ,  2x , 3x  ,   
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Figure 1. Matlab-Simulink model of Rabinovich chaotic system for a = 4, b = d= 1, h = 6.75. 

 
 
 

and� 21 xx − � 31 xx − �� 32 xx − �� 321 xxx −− ,  phase 
portraits of the system are achieved as shown in Figure 
2. Calculating the lyapunov exponents for parameter a=4, 
b=d=1, and h=6.75, lyapunov exponents are 

046.01 >=λ �� 02 =λ �and� 046.63 <−=λ . Figure 3 
shows the Lyapunov spectrum of the Rabinovich system 
for parameter a=4, b=d=1, and h=6.75.  As can be seen 
from the Lyapunov exponent spectrum, the system is 
chaotic.  
 
 
THE THEORY OF PASSIVE CONTROL 
 
Consider a nonlinear system (2) modelled by ordinary 
differential equation with input vector u(t) and output 
vector y(t) (Yu, 1999; Qi et al., 2004), 
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Where the state variable nx ℜ∈ , the input mu ℜ∈ and 
the output my ℜ∈ . f(x) and g(x) are smooth vector fields. 
h(x) is a smooth mapping.  We  suppose  that  the  vector 

field f has at least one equilibrium point and without loss 
of the generality, we assume the equilibrium point x=0.  
 
Definition 1. System (2) is a minimum phase system if 
Lgh(0) is nonsingular and x=0 is one of the asymptotically 
stabilized equilibrium points of f(x). 
 
Definition 2. System (2) is passive if the following two 
conditions are satisfied: 
(1) f(x) and g(x) exist and are smooth vector fields, h(x) is 
also a smooth mapping. 
(2) For any 0≥t , there is a real value � that satisfies the 
inequality 
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or there are real values � and 0≥ρ  that satisfy the 
inequality 
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When we let )(xz Φ=  system (2) can be changed into 
the following generalized form 
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Figure 2. (a) X1, X2, X3 time series, (b) X1 – X2, (c) X1 – X3, (d) X2 – X3, (e) X1-X2-X3 phase portraits of Rabinovich 
attractor when a=4, b=d=1, and h=6.75. 
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Figure 3. Lyapunov spectrum of system. 

 
 
 

�
�
�

+=
+=

,),(),(
,),()(0

uyzayzby

yyzpzfz
�

�
                                                 (5) 

 
Where ),( yza  is nonsingular for any (z, y). 
 
If system (2) has relative degree [1,1, ...] at x = 0 and 
system (2) is a minimum phase system, then system (5) 
will be equivalent to a passive system and will be 
asymptotically stable at equilibrium points through the 
local feedback control as follows: 
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Where )(zW is the Lyapunov function of )(0 zf , α  is a 
positive real value, and v  is an external signal which is 
connected to the reference input. 
 
 
CHAOS CONTROL OF RABINOVICH CHAOTIC 
SYSTEM 
 
The control of chaotic system (7) is achieved using 
passive control  theory.  The  controlled  model  given  by 
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where u is controller to be designed. Suppose that state 
variable 2x  is the output of the system and suppose 

11 xz = � 32 xz = � 2xy = , then the system can be 
expressed by normal form: 
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Choose the following storage function 
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where 
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is the Lyapunov function of )(0 zf , and 0)0( =W . 
 
According to (15), taking the derivative of )(zW , we have 
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Since 0)( ≥zW  and 0)( ≤zW� , it can be concluded that 

)(zW  is the Lyapunov function of )(0 zf  and )(0 zf  is 
globally asymptotically stable which means that the zero 
dynamics of the controlled system (7) is Lyapunov stable. 
Meanwhile, 01)0( ≠=hLg , That is,  � )0(hLg  is 

nonsingular, and the system has the relative degree 
]1,...,1[ , so the system can be equivalent to a passive 

system using state feedback. 
 
We have 
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As the chaotic system is minimum phase, we obtain 
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From equation (18) and inequality (19), we have 
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Taking equation (u) into inequality (20), the above 
inequality can be written as  
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Taking integration of both sides (21) 
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as 0),( ≥yzV , let µ=),( 00 yzV , we obtain 
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According to definition 2, the system (7) is passive 
system.  

The controlled system (7) can be equivalent to a 
passive system and globally asymptotically stabilized at 
its zero equilibrium by the following state feedback 
controller:   
 

,)(2 211 vbyzzhzu +−+−−= α                              (24) 
 
Where  is a positive constant and  is an external 
input signal. When passive controller is activated at t=50 
s, time trajectories of Rabinovich chaotic system are 
shown in Figure 4. 

The  controlled  Rabinovich  chaotic  system  with  the 
larger � (alpha) quickly converges to equilibrium point as 
shown in Figure 5. 
 
 
NUMERICAL RESULTS 
 
The fourth order Runge-Kutta method is used to solve the 
system with step size 0.001. Using passive theory, the 
feedback controller is designed to control the system. 
The control signal with v=0 is added to Rabinovich 
chaotic  system  at t=50s,  when  parameter  a=4, b=d=1,  
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Figure 4. (a) X1, (b) X2, (c) X3 time series when controller is activated at t=50 s. 
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Figure 5. (a) X1, X2, X3 time series, (b) Phase-space trajectory. 

 
 
 
and h=6.75 in Figure 4. The trajectories and time series 
of the controlled Rabinovich chaotic system are shown in 
Figures 4 and 5. As can be seen in Figures 4 and 5, the 
system converge to origin (0, 0, 0), after the controller is 
activated. So, the controller (24) can regulate the 
Rabinovich chaotic system effectively to zero equilibrium 
point and also the larger � (alpha) provides the better 
performance as shown in Figure 5. 
 
 
CONCLUSION 
 
This  work  addresses  controlling  chaos  of  Rabinovich  
chaotic system by using passive control technique. 
Based on the passive system theory, passive controller is 
proposed to realize the global asymptotical stability of the 
controlled system. In the proposed method, stability of 
the system is guaranteed by applying appropriate control 
signal based on Lyapunov stability theory. All the 
theoretical analyses are verified by numerical simulations 
to show the effectiveness of the proposed control 
method. 
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