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Today's high-strength materials allow for significant increases in working and limit stresses. To fully 
exploit material improvements as weight savings on structures, it is desirable to enhance the 
performance of structural components. The work presented in this paper proposes that the buckling 
behavior of cold form steel columns may be effectively improved without increased material volume. In 
order to achieve this goal, optimization algorithm which integrates finite strip analysis, geometric 
modeling, semi analytical sensitivity analysis and sequential quadratic mathematical programming 
methods can be used to find an optimum cross section of cold-formed steel columns under axial 
compression. The objective is the maximization of the critical buckling load with constraints on the 
volume of material used. Several examples are included to illustrate advantage of the optimization. The 
post buckling performance of optimized cold form steel columns was also investigated using nonlinear 
variable thickness finite strip analysis. Non-linear finite strip analysis helped to understand the 
behaviour of these cold form steel columns and select the most promising designs. The optimum forms 
found in this paper can be used to develop improved designs for cold formed steel columns. 
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INTRODUCTION 
 
Cold-formed steel members have been widely used in 
civil engineering structures. In particular, light gauge 
cold-formed channels are commonly used as wall studs 
and chord members of roof trusses in steel frame 
housing and industrial buildings. Their manufacturing 
process involves forming steel sections in a cold state 
(that is, without application of heat) from steel sheets of 
uniform thickness. Cold-formed steel structural members 
may lead to a more economic design than hot-rolled 
members as a result of their high strength to weight ratio, 
ease of construction and suitability for a wide range of 
applications.  

With the increasing use of high strength steels, it is 
inevitable to reduce the thickness of the section. Based 
on the strength design criterion, the cold-formed steel 
member can have a very thin thickness. Thereupon, cold-
formed steel sections have distinct structural stability pro- 
blems, which are not observed in hot-rolled steel 
sections. In steel compression members, three  structural 
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instability modes, namely local, distortional, and 
flexural/flexural–torsional buckling, are likely to occur. 
Efforts have been made to increase the buckling 
resistance by designing optimum sections  

Under axial compression, cold formed channel columns 
may buckle in one of several modes including local 
buckling, distortional buckling, and flexural–torsional 
buckling (Hancock, 1985). Many theoretical and experi-
mental studies have been conducted for determining the 
buckling behavior of cold formed columns (Kwon and 
Hancock, 1992; Kesti and Davies, 1999).  

Moreover, a closed-form solution was devised by 
modeling a flexural–torsional buckling mode of the lipped 
flange elastically restrained by the web (Lau and 
Hancock, 1987). This closed-form solution was then 
verified by a Finite Strip (FS) buckling analysis and sim-
plified for practical application. Other analytical method 
has been presented, namely the Euro Code 3 method, 
which is based on flexural buckling of the stiffener. The 
generalized beam theory provides a particularly good tool 
with which to analyze distortional buckling in isolation and 
in combination with other modes and has been presented 
in more detail (Davies and Leach, 1994). The FS  method 



 

 

 
 
 
 

has also proved to be a useful approach, because, like 
generalized beam theory, it also has a short solution time 
compared to the finite element method and has been 
used for buckling analysis of cold formed sections 
(Schafer and Peköz, 1998). The FS method simply 
assumes a supported end boundary conditions and is 
applicable for longer sections where multiple half-waves 
occur in the section length. Considering appropriate 
modifications to the element thickness and choice of 
buckling half-wavelength distortional and local buckling of 
a cold-formed steel member with holes, are determined 
with the semi-analytical FS method (Cristopher and 
Schafer, 2009). 

Experimental studies on cold-formed stainless steel 
columns were conducted by many researchers (Talja A 
and Salmi, 1995; Young and Hartono, 2002; Gardner and 
Nethercot, 2004). The recent major experimental 
research work of cold-formed stainless steel structures is 
summarized (Gardner and Nethercot, 2004). Base on 
experiments and theoretical models American (ASCE-8-
02), Australian/New Zealand (AS/NZS 4673) and 
European (Eurocode 3) specifications enclosed the 
design of cold formed steel sections. 

One of the prominent advantages of cold-formed steel 
is its flexibility in forming various cross-section shapes. 
However, in practice, only limited cross-sections are 
adopted. Among them, the C-, R- and Z-shapes are the 
most widely preferred by designers. Nevertheless these 
cross-section shapes have never been proven superior to 
alternatives. Actually, using the same amount of steel, it 
is possible to find cross-section designs with higher load 
capacity than the traditional C-, Z- and R-shapes by 
means of powerful optimization tools. Optimizing the 
cross-section shape of a cold-formed steel member is a 
comprehensive issue from a structural mechanics view-
point. There has been various works in cold-formed steel 
member optimization presented in the literature. 
Gradient-based search techniques were used for the 
optimization of hat-shaped sections (Seaburg and 
Salmon, 1971). Comprehensive parametric study was 
performed for the global optimum of hat-shaped beams 
(Karim and Adeli 1999). Genetic algorithm optimization 
was carried out for Z- and R-shape purlins by means of 
FS analysis within the objective function evaluation (Lu, 
2002). Also a micro genetic algorithm was adopted to find 
out optimum cross section for cold formed steel channel 
and lipped channel columns under axial compression 
(Lee et al., 2006). They generated some design curves 
for optimum values of design variables. 

Compression members such as the cold form steel 
channel will locally buckle in a number of half-wave 
lengths and will retain this mode shape into the post-local 
buckling range, until localization occurs in one of the half-
waves propagating failure. It is expected that loads at 
failure may be considerably higher than those at which 
local buckling occurs, due to the redistribution  of  longitu- 
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dinal stresses from the flexible to the stiff parts of the cold 
form steel section. In the past, researchers have 
investigated the post-buckling modes of commonly used 
cold-formed steel sections. A non-linear elastic analysis 
was studied by Kwon and Hancock (1991), Pignataro et 
al. (2000) and Pu et al. (1999) based on the spline finite 
strip / finite element methods that can handle local, 
distortional, and overall buckling modes in the post-
buckling range and the interactions between them. It is a 
consequence of the increasing complexity of section 
shapes that buckling calculations are becoming more 
complicated and that post-buckling takes on increasing 
importance. 

To fully develop and validate optimized cold form steel 
member section, research herein has focused on two key 
areas: 
 
1. To develop and demonstrate the use of the robust and 
inexpensive computational procedure for finding the 
shape and thickness of the optimal cross-sections of cold 
formed steel members under buckling load. The 
optimization procedure is based on maximization of the 
critical buckling load with a constraint that the volume of 
the cold formed steel member material remains constant.  
2. To investigate the post buckling behavior of optimized 
section. 
 
The specific objective of this paper may be summarized 
as: 
  
1. To observe the change in element shapes during 
optimization procedure to remark the efficiency of each 
dimension on the critical buckling load. 
2. Obtain the best shape and thickness variation of cold 
formed steel members, so that it can carry loads without 
buckling. 
 
 
OPTIMIZATION PROCEDURE 
 
Cold formed steel member posses higher buckling loads 
for a given volume of material when properly shaped. 
This may be achieved by the use of structural shape 
optimization procedures in which the shape and 
thickness of the structure are varied to achieve a specific 
objective satisfying certain constraints. Such procedures 
are iterative and involve several re-analyses before an 
optimum solution can be achieved. Structural shape 
optimization tools can be developed by the efficient 
integration of structural shape definition procedures, 
automatic mesh generation, FS analysis, sensitivity 
analysis and mathematical programming methods. Figure 
1 illustrates an overview of a typical structural optimi-
zation procedure. The main parts of the optimization 
algorithm are summarized below.  Problems of structural 
optimization    are   characterized  by   various  objectives 
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Figure 1. Structural optimization flowchart. 

 
 

 
  

 
 
 

 1 

 2  3 

 4 

 2 

 3  1   Key points 

Segments 

 
 
Figure 2. Geometric representation of cold 
formed steel member 

 
 
 
and constraints, which are generally nonlinear functions 
of the design variables. Design variables, objective 
function and constraints can be selected based on 
experience and knowledge about the response. In this 
study, the objective function is maximization of the critical 
buckling load subject to constant volume of material 
constraints. In addition, explicit geometrical constraints 
are imposed on the design variables to avoid impractical 
geometries. For example, a minimum element thickness 
is defined to avoid zero or ' negative'  element   thickness  

 
 
 
 
values. It is worth mentioning here that the objective 
function and the constraint hull may be non-convex and 
therefore local optima may exist. 
 
 
Shape definition 
 
The definition and control of the geometric model of the 
cold formed steel members to be optimized is an 
important task. The cross section of typical cold formed 
steel member shown in Figure 2 is formed by an 
assembly of segments. Each segment may be a cubic 
spline curve passing through certain ‘key points’ all of 
which lie on the mid-surface of the structure cross-
section. Some key points are common to different 
segments at their points of intersection. At such 
intersections one can impose C(0) shape continuity. 
Alternatively, a smooth continuous curve having C(2) 
shape continuity can be obtained. 

The coordinates may be expressed with reference to 
the global set of axes or alternatively some locally 
defined set. Some of the coordinates at the key points 
may be held constant or frozen. To impose symmetry or 
to allow for specially constrained shape changes, some 
of the design variables may be linked through equality 
constraints.  
 
 
Selection of shape design variables 
 
The position vectors of the key points used to define the 
cold formed steel members mid-surface are taken as 
design variables. The mid-surface of the structure to be 
optimized is represented by cubic spline curves passing 
through key points on the structure. The coordinates are 
given in the global Cartesian coordinates system. The 
use of the coordinates of key points as design variables 
leads to fewer design variables and more freedom in 
controlling the shape of the structure. 

Sometimes for practical reasons and computational 
efficiency, it is necessary to link the design variables at 
two or more key points to satisfy certain requirements. 
Linking of design variables also has the following main 
advantages: 
 
1. The number of design variables is reduced 
considerably; 
2. The movement of a whole segment (as a rigid body) 
can be treated with a single design variable; and 
3. Symmetry of shape can be easily achieved. 
 
 
Selection of thickness design variables 
 
A similar approach to that adopted for the shape design 
variables is used in which the thickness  values  at  some  



 

 

 
 
 
 

 
 
 
 

 
 
Figure 3. Mesh representations 
of cold formed steel column. 

 
 
 
key points are specified as design variables. In this study 
due to the production process of cold formed steel 
structures, constant thickness is used. 
 
 

Finite strip model 
 
In order to perform such a FS analysis, proper meshing 
of cold formed steel column cross section is required. 
Here, we use an automatic mesh generator which allows 
refinement of FS meshes. It also allows for a significant 
variation in mesh spacing throughout the region of 
interest. The mesh generator can generate meshes of 
two three and four noded elements and strips. Figure 3 
shows a mesh example of cold formed steel members. 
 
 

Structural analysis method 
 

Structures, which are simply supported on diaphragms at 
two opposite edges with the remaining edges arbitrarily 
restrained such as cold formed steel members (where 
the cross section does not change between the simply 
supported ends) can be analyzed accurately and 
inexpensively using the FS method in cases where a full 
finite element analysis could be considered extravagant. 
In a way, FS method combines the use of Fourier 
expansions and one-dimensional finite elements to model 
the longitudinal and transverse structural behavior 
respectively.  Two, three and four noded members of 
Mindlin Reissner strips were used for buckling analysis of 
cold formed steel members used. The formulation was 
shown to be extremely efficient and simple. Note that, FS 
formulation which is based on the previous work of 
Özakça et al. (1993), summarized, can be used for 
buckling analysis of cold formed steel members. 

If we consider the buckling of the Mindlin Reissner shell 
strip translations in the � , y  and n  directions can be 

represented by the displacement components 
��

vu ,  and 

�
w . The displacement components 

�
u  and 

�
w  may be 

written in terms of global displacements u and w in the x 
and z directions as: 
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α+α= sinwcosuu
�

   α+α−= coswsinuw
�

       (1) 
 
where � is the angle between the x and l axes. 
 
The strain energy for a typical Mindlin Reissner strip e of 
length b is given in terms of the global displacements u, 
v, w and the rotations  and  of the mid-surface normal 
in the ln and yn planes respectively by the expression: 
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where mεεεε , bεεεε  and sεεεε  are the membrane, bending and 
transverse shear strains respectively and the matrix of 
membrane Dm, flexural Db and shear Ds rigidities are 
given in Hinton et al. (1993).  
 
 
Potential energy of the applied in-plane stresses 
 
The potential energy of the applied in-plane stresses 

,0
�

σ  and 0
yσ  is caused by the action of these stresses 

on the corresponding second order strains and has form: 
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Stiffness matrix 
 

eK  of strip elements can be evaluated considering the 
strain energy of the Mindlin Reissner strip. The strain 
energy of a strip element can be expressed as: 
 

q
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where the typical sub-matrix of the stiffness eK  of strip 
e linking nodes i  and j  and harmonics p and q  has 
the form: 
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In which p
miB , p

biB  and p
siB are the membrane, bending 

and shear strain–displacement matrices associated with 
harmonic p, node i as given in Hinton et al. (1993) 
together with Jacobian term J. 
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Geometric stiffness matrix  
 

We can now evaluate the geometric stiffness matrix e
σK  

associated with the potential energy eV  of the applied 

inplane stresses 0
�

σ  and 0
yσ  which can be expressed as: 
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If the structure geometry is well modeled, then such a 
formulation yields and upper, bound to the magnitude of 
the true buckling load. The ‘true’ buckling load is the 
linear bifurcation load of the structure in its reference 
configuration; it is not necessarily the collapse load of the 
actual structure. The FS formulation given in this section 
yields the ‘true’ buckling load. The geometric stiffness 
matrices can be written as: 
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in which p
uiS , p

viS , p
wiS , p

iQ , p
iR  and H  matrices 

associated with harmonic p, node i as given in Hinton et 
al. (1993). 
 

Note that, pqe
ij ][K and 0][ =σ

pqe
jiK  if qp ≠  because 

of the orthogonality conditions. Due to orthogonality 
relation, on assembly of the contributions to the total 
potential energy VU +  from all of the strips and 
subsequent minimization with respect to the nodal 
values, the following eigenvalue expression is obtained 
for each harmonic p : 
 

0][ =+ pppppp dKK σλ                                              (8) 
 

where pλ  is the load factor by which the inplane stress 
0
�

σ  and 0
yσ  are multiplied to produce instability and 

pd is the associated buckling mode. In the present 
studies the eigenvalues were evaluated using the 
subspace iteration algorithm. We seek the lowest value  
of pλ  which provides (8). The lowest value of pλ  
generates critical buckling load of structure. 
 

0
p
� PP =cr                                                                    (9) 

 
 
 
 
where P0 is applied load. 
 
 
Sensitivity analysis 
 
Derivative of critical buckling load  
 
The first partial derivatives of the structural response 
quantities with respect to the shape (or other) variables 
provide the essential information required to couple 
mathematical programming methods and structural 
analysis procedures. In eigenproblems, methods for 
calculating eigenvalue and eigenvector sensitivity include 
the finite difference method, the semi-analytical method, 
the modal method, Nelson’s method etc. 

In the present study we use semi-analytical method for 
derivative of critical buckling load. In the FS displacement 
approach the governing equations for buckling situation 
may be written as: 
 

0][ =+ pppppp dKK σλ                                            (10) 
 

where the pth harmonic Kpp is the stiffness matrix, pp
σK  

is the load matrix, pλ  is the buckling factor and pd  is the 

buckling mode shape which is normalized so that: 
 

1pp
�

T =pp dKd                                                            (11) 
 
when the eigenvalues are distinct, the expression for the 
buckling derivative with respect to design variable si can 
be derived from (10) and (11) so that: 
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The derivatives are computed by re-calculating ppK and 
pp
σK for a small perturbation is∆  of the design variable 

(coordinates or thickness). The derivatives of the 
stiffness and mass matrices with respect to the design 
variable si may then be written as: 
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Derivative of volume  
 
In  the  present  study, derivative  of   constraint   function 
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Figure 4. LC plain channel cross section. 

 
 
 

Simple supported

Simple supported

 
 
Figure 5. FS model, loading and boundary conditions. 

 

 
volume is calculated using a forward finite difference 
approximation: 
 

i
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i s
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                                      (15) 

 
where the volume V of the whole structure (or cross-
sectional area of the structure may also be used) can be 
calculated by adding the volumes of numerically 
integrated FSs. 
 
 
Mathematical programming  
 
Using the information derived from FS analysis and 
sensitivity analysis, mathematical programming methods 
are used to generate new shapes with improved 
objective functions. Furthermore, the constraints must be 
satisfied if the new design is to be deemed acceptable. If 
the convergence criteria for the optimization algorithm 
are satisfied, then the optimum solution has been found 
and the solution is terminated.  
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In structural optimization, various mathematical progra-
mming techniques have been extensively applied, with 
most of the applications based upon one of following 
algorithms: The method of moving asymptotes, sequen-
tial quadratic programming (SQP), penalty function 
methods or feasible direction methods. In the present 
work, only the sequential quadratic programming 
algorithm is used (Svanberg, 1987). No effort has been 
made to study the mathematical programming methods 
used in the structural optimization procedures and SQP 
algorithm is used here essentially as a black box. 
 
 
Example 
 
We now consider a LC shape profile to demonstrate the 
ability of the present algorithm to optimize the cold 
formed steel columns (Figure 4). The column is 
supported by diaphragms at each end. The objective is to 
maximize the critical buckling load subject to the 
constraints that the volume of the panel remains constant 
and the buckling loads from 1λ  to 10λ should be greater 
than the critical buckling loads. The design improvement 
procedures are carried out by allowing changes of the 
thickness and shape parameters so as to maximize the 
buckling load under the given constant total material 
volume which is 291000 mm3. 

Figure 4 shows shape and dimensions of the LC 
shaped cold formed steel column cross section. All 
dimensions are in milimeter. Optimized column length is 
considered as 1000 mm. The linear buckling analysis 
needs material properties such as Elastic modulus and 
Poisson’s ratio. In this study, the elastic modulus of 
material is E = 200 GPa and Poisson’s ratio is � = 0.3. 
Figure 5 illustrates the idealized FS model, loading and 
boundary conditions of column section. The buckling 
analyses of column sections performed under axially 
uniformly distributed pressure loads. Note that uniform 
compressive load is redistributed according to the 
changes in element dimensions during optimization 
process.  

The used program has the ability of shape optimization 
without limitation in number of design variables. As 
mentioned before, the above three cases were decided  
to be proper  for the  generation of  applicable cross  sec- 
tions. The structural optimization procedures are applied 
for three different design variable cases. Types of design 
variables which are shown in Figure 6 were established 
by considering applicability and reproducibility of steel 
columns. 
 
 
Case I 
 
The cross-sectional shape of the LC plain channel is 
modeled using 3  segments and 4  key  points. Thickness  
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Figure 6. Optimization cases and design variables 

 
 
 

Table 1. Optimum design variables and critical buckling loads of cold form steel columns. 
 

Case 
Optimum values of design variables Buckling load 

s t Optimum % increases 
i 17.724 2.732 108.953 21.5 
ii -36.459 2.137 153.016 70.6 
iii 89.780 2.013 289.648 223.0 

 
 
 
of the profile and x-distance between key points 1 and 4 
are considered as design variables. That is x-coordinate 
of the key points 1 and 4 are linked so that symmetry is 
maintained. 
 
 
Case II 
 
The cross-sectional shape of the LC plain channel is 
modeled using 4 segments and 5 key points. Thickness 
of the profile and y- coordinate of key point 3 are chosen 
as design variables (S2 is midpoint of second segment). 
 
 
Case III 
 
The cross-sectional shape of the LC plain channel is 
modeled using 5 segments and 6 key points. Thickness 
of the profile and x-distance between key points 2 and 5 
are chosen as design variables. That is, x-coordinate of 
the key points 2 and 5 are linked so that symmetry is 
maintained. Table 1 presents the optimal values and 
percentage increases of critical buckling loads. The anal- 
yses are carried out using a mesh of 24 cubic strips. The 
initial critical buckling load of LC column crP  was 89.668 
kN. The critical buckling loads are increased by 21.5, 
70.6 and 223.0% for each of the three design variables 
cases (i), (ii) and (iii) respectively.  

It is worth mentioning here that, when constraints on 
the buckling loads are not imposed, the first buckling load 

1λ  increases over 300%. However,  the  critical  buckling 

load occurs at higher modes, n > 1, and reduces to lower 
values than the initial value. As stated before, this 
highlights the dangers in optimizing the buckling load. In 
order to eliminate this problem, modes higher than n > 1 
are checked in the present study. The optimized shape 
and the critical buckling loads are shown in Figure 7 on a 
graphical illustration. 
 
 
Post-buckling analysis 
 
Using the finite element method and employing geome-
tric analysis procedures, it is possible to model the local 
buckling and post buckling failure behavior of cold form 
steel members. To test the optimized sections on the 
post-buckling performance of realistic cold form steel 
section, base profile and three optimized section were 
selected.  

The non-linear finite element analyses were carried out 
using ANSYS commercial program. The finite element 
model employed 8-node quadrilateral thick shell 
elements (MARC type 22). Changes in thickness were 
modelled as changes in element thickness. For the post-
buckling analysis, the mesh was perturbed in the first 
increment using the first eigenmode, with the amplitude 
of the chosen deformations 1/1000 of the panel length. 
Geometric non-linearity was activated but the large strain 
capability was left deactivated, since little plastic strain 
was expected. Solution was achieved using the arc 
length method 

In all cases, linear buckling and collapse modes were 
correctly predicted. The linear buckling loads were under- 
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Figure 7. Optimum shapes of cold form steel columns. 

 
 
 

 
 
Figure 8. The force end shortening diagram. 

 
 
 
underpredicted, (only slightly 6 to 11% depending on the 
profile). Figure 8 displays the force-end shortening 
diagram for the base profile and three optimized profile. 
Figure 8 also shows large gains in collapse load for case 
ii. The force-end displacement diagrams of case i, 
arbitrarily conceived base profile. However, the snap 
through occurred in case iii. 

Conclusions 
 
A general structural shape optimization algorithm, based 
on mathematical programming techniques coupled with a 
numerical structural analysis method, has been presen-
ted. Geometric modeling, automatic mesh generation, FS 
analysis, behavior sensitivity analysis has been  success- 
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fully applied to the maximization of critical buckling load 
of cold form steel columns. The following general 
conclusions may be drawn: 
 
1. The integrated structural optimization algorithm 
described in this paper is robust and reliable and 
provides an efficient way of finding optimum shapes for 
cold form steel columns. 
2. The application of structural shape optimization in 
conjunction with FS analysis is an efficient and effective 
method, in particular for problems with a great number of 
design variables and a reasonable number of design 
constraints. 
3. Definition of the shape variables is crucial, that is, the 
parameterization of the optimization model need to have 
as few degrees of freedom as possible to simplify the 
optimization task and as many degrees of freedom as 
necessary so that the problem is not over-constrained. 
The optimum solution obtained is only the optimum for 
this particular problem definition; in only very rare cases 
will it be the global optimum. 
4. Incorrectly formulated optimization problems may lead 
to designs which at best show very little reserve because 
of tight constraints margins and at worst are imperfection 
sensitive and fail prematurely. Also local optima may be 
produced which are long way from the global optimum. 
Consequently, care should be taken in the selection of 
appropriate design variables, the accurate representation 
of the boundary curves and the selection of the objective 
function and constraints. 
5. All the optimized profile section should be checked 
against post-buckling. The optimized profile sections can 
show different post-buckling behavior. The post-buckling 
stiffness can be increased in some example but in all. 
The most crucial point is that, the snap through behavior 
can occur in some optimized profile section. 
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